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Abstract: With the high demands on the quality of high-tech products for consumers, assuring the
lifetime performance is a very important task for competitive manufacturing industries. The lifetime
performance index CL is frequently used to monitor the larger-the-better lifetime performance
of products. This research is related to the topic of asymmetrical probability distributions and
applications across disciplines. Chen lifetime distribution with a bathtub shape or increasing failure
rate function has many applications in the lifetime data analysis. We derived the uniformly minimum
variance unbiased estimator (UMVUE) for CL, and we used this estimator to develop a hypothesis
testing procedure of CL under a lower specification limit based on the progressive type-II censored
sample. The Bayesian estimator for CL is also derived, and it is used to develop another hypothesis
testing procedure. A simulation study is conducted to compare the average confidence levels for two
procedures. Finally, one practical example is given to illustrate the implementation of our proposed
non-Bayesian and Bayesian testing procedure.

Keywords: progressive type-II censored sample; Chen lifetime distribution; uniformly minimum
variance unbiased estimator; Bayesian estimator; lifetime performance index; testing procedure

1. Introduction

In the competitive industry of manufacturing, evaluating whether the performance
of products meets the desired quality level is crucial in order to get a larger market share.
Process capability indices have been widely utilized as the measurement of the larger-the-
better type quality characteristics (See Montgomery [1] for more examples and details).
Montgomery [1] proposed a lifetime performance index denoted by CL = µ−L

σ , where µ
represents the process mean, σ denotes the process standard deviation, and L is the known
pre-specified lower specification limit. This lifetime performance index is usually used to
evaluate the lifetime performance of products. Tong et al. [2] constructed the UMVUE for
CL and built a hypothesis testing procedure for the complete sample for an exponential
distribution of lifetimes. In practical applications, the lifetimes of all products cannot be
observed in the life test due to the limited material resources or experimental time. There
are two types of censoring, including type I censoring and type II censoring. Progressive
censoring allows the removal of units (accidental breakage of units) at points other than the
final termination point for some quality engineers. The application of progressive censored
data is referring to Balakrishnan and Cramer [3], Aggarwala [4], Wu [5], and Wu et al. [6].
For the progressive type-I interval censored sample, Wu [7] proposed the testing assessment
on the lifetime performance index of products following a Chen lifetime distribution.
Wu and Chang [8] evaluated the lifetime performance index of products following the
exponentiated Frech’et distribution. Wu and Hsieh [9] assessed the lifetime performance
index of products following the Gompertz distribution. For the progressive type-II censored
data, Laumen and Cramer [10] proposed the inferences for the lifetime performance index
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from gamma distributions. Lee et al. [11] evaluated the lifetime performance index for
products with an exponential distribution, and Wu et al. [12] considered the Bayesian test
for the lifetime performance index. Lee et al. [13] and Wu et al. [14] evaluated the lifetime
performance index for products with the Burr XII distribution. Lee [15] assessed the lifetime
performance index of Rayleigh products based on the Bayesian estimation. This paper
is focused on a two-parameter lifetime distribution with a bathtub shape or increasing
failure rate function proposed by Chen [16] (so-called Chen lifetime distribution). The Chen
lifetime distribution is an asymmetrical probability distribution. This distribution is a case
of a new class of distribution functions for lifetime data with φ(t; β) = (β− 1)t−1 + βtβ−1

in Domma and Condino [17]. They have shown that the failure rate function has a bathtub

shape with the minimum point at t∗ =
(

1−β
β

) 1
β when 0 < β < 1. The failure rate function

is increasing when β ≥ 1. There is no research related to the evaluation of the lifetime
performance index for products from the Chen distribution based on the progressive type-II
censored sample in the literature. Our research objective is to extend the testing procedures
for the lifetime performance index from an exponential distribution, gamma distribution,
Burr XII distribution, and Rayleigh distribution to include the Chen distribution. We
propose two hypothesis testing procedures to assess the lifetime performance for products
based on two estimators. We also conduct the simulation study to verify our proposed
procedures and compare the performance of the two procedures.

The rest of this paper is organized as follows: In Section 2, the lifetime performance
index for products with Chen lifetime distribution is introduced, and the increasing math-
ematical relationship between the lifetime performance index and the conforming rate is
discussed. In Section 3, the UMVUE and the Bayesian estimator for the lifetime performance
index CL are derived, and two hypothesis testing procedures based on these two estimators
are developed. The Monte Carlo simulation is done to compare the average confidence
levels for two procedures. One practical example is given to illustrate the two proposed
testing procedures. The discussion is given in the Discussions Section. Lastly, the summary,
limitations, and future research directions are proposed in the Conclusions Section.

2. The Monotonic Relationship between the Lifetime Performance Index and the
Conforming Rate

Suppose that the lifetime (U) of products has a Chen lifetime distribution (Chen [14])
with the probability density function (pdf) and the cumulative distribution function (cdf)
as follows:

fU(u) = kβuβ−1euβ
exp

{
k(1− euβ

)
}

, 0 ≤ u ≤ ∞, k > 0, β > 0

and
FU(u) = 1− exp

{
k(1− euβ

)
}

, 0 ≤ u ≤ ∞, k > 0, β > 0

The failure rate function is defined as

hU(u) =
fU(u)

1− FU(u)
= kβuβ−1euβ

.

The failure rate function for β = 0.5, 0.7, 1, and 3 under k = 1 and 2 is displayed in
Figure 1a,b. It is shown that this distribution has an increasing failure rate function when
β ≥ 1 and a bathtub shape failure rate function when β < 1.

Consider the variable transformation from U to Y as Y = eUβ − 1, β > 0. The pdf of
this new random variable Y is obtained as fY(y) = k exp{−ky}, y > 0, k > 0, which is the
pdf of an exponential distribution with scale parameter 1/k and failure rate k.

The lifetime of products is a larger-the-better type quality characteristic since products
with a longer lifetime tend to be more competitive in these emerging markets. The lifetime
performance index CL is used to evaluate the lifetime performance of products.
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Figure 1. (a) Failure rate function under k = 1, (b) Failure rate function under k = 2.

The mean and the standard deviation of the new random variable Y are given by
µ = 1

k and σ = 1
k . Then the lifetime performance index is reduced to CL= 1− kL.

It is observed that CL is a decreasing function of the failure rate k. It implies that
the smaller failure rate, the larger the value of CL. Assume that LU is the pre-specified
lower specification limit for products. An item of product is regarded to be conforming
if its lifetime U exceeds LU . That is the conforming rate, calculated as Pr = P(U ≥ LU).

Since the new lifetime Y = eUβ − 1 is an increasing function of U, then L = eLβ
U − 1 can be

regarded as the lower specification limit for Y. Then, the conforming rate is calculated as

Pr = P(U ≥ LU) = P(Y ≥ L) = exp(−kL) = exp(CL − 1),−∞ < CL < 1.

It is observed that the conforming rate Pr is an increasing function of the lifetime
performance index CL. The conforming rate Pr and the related values of CL are listed in
Table A1. From Table A1, it is shown that if a quality manager desires Pr to exceed 0.860708,
then CL is determined to exceed 0.85.

3. Results
3.1. UMVUE for the Lifetime Performance Index and the Testing Procedure

The censoring scheme is described as follows (from Balakrishnan and Aggarwala [18]):
In the beginning, the first failure time U1 is observed, then R1 surviving units are randomly
removed under the removal percentage p1. When the ith failure time Ui is observed,
Ri surviving units are randomly removed under the removal percentage pi, i = 1, . . . ,
m − 1. When the mth failure time Um is observed, this experiment is terminated, and
the remaining Rm = n− R1 − . . .− Rm−1 −m surviving units are all removed under the
removal percentage pm = 1. Supposing that the failure times are following the Chen dis-
tribution, then U1, . . . , Um is the progressive type-II censored sample under the censoring
scheme R1, . . . , Rm with the removal percentages p1, . . . , pm. From Balakrishnan and Ag-
garwala [18], the likelihood function based on the progressive type-II censored sample
U1, . . . , Um is

L(k, β) ∝
m

∏
i=1

fU(ui)(1− FU(ui))
Ri ∝ kmβ

m
m

∏
i=1

ui
β−1eui

β
e
−k

m
∑

i=1
(Ri+1)(1−eui

β
)
, ui > 0, k > 0, β > 0.

After the transformation of Yi = eUi
β − 1, β > 0, we obtain the likelihood function

based on Y1, . . . , Ym as

L(k) ∝
m

∏
i=1

fY(yi)(1− FY(yi))
Ri ∝ km exp

(
−k

m

∑
i=1

(1 + Ri)yi

)
(1)
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where yi = eui
β − 1. This likelihood function implies that Y1, . . . , Ym is the progressive

type-II censored sample from an exponential distribution with scale parameter 1/k under
the censoring scheme R1, . . . , Rm with the removal percentages p1, . . . , pm.

To solve the log-likelihood equation, the maximum likelihood estimator (MLE) of k is
given by k̂ = m

m
∑

i=1
(1+Ri)yi

.

Let Z1 = nkY1, Z2 = k(n − R1 − 1)(Y2 − Y1), . . . , Zm = k(n − R1 − . . . − Rm−1 −
m + 1) (Ym − Ym−1). We obtain the joint pdf of Z1, Z2, . . . , Zm as fZ1,...,Zm(z1, . . . , zm) =

exp(−
m
∑

i=1
zi), 0 < zi < ∞. This joint pdf implies that Z1, Z2, . . . , Zm are independently and

identically distributed (i.i.d.) random variables from a standard exponential distribution,
and 2Z1, 2Z2, . . . , 2Zm are i.i.d. random variables from a chi-squared distribution with

2 degrees of freedom (d.f.). Let V = 2
m
∑

i=1
Zi = 2k

m
∑

i=1
(1 + Ri)yi =

2mk
k̂

. Then we have

V ∼ χ2(2m) (2)

The first and the second moments of 1/V are

E
(

1
V

)
= E

(
k̂

2mk

)
=

1
2m−2

(3)

E
(

1
V2

)
= E

(
k̂2

4m2k2

)
=

1
4(m− 1)(m−2)

(4)

From Equation (3), we can obtain the expected value of m−1
m k̂ as k. Thus, m−1

m k̂ is the
unbiased estimator for k and C̃L = 1− m−1

m k̂L is the unbiased estimator for CL. Furthermore,
we can claim that C̃L is the UMVUE (uniformly minimum variance unbiased estimator) for
CL. The proof is given in the Appendix A.

From Equations (3) and (4), the variance of m−1
m k̂ is k2

(m−2) . Thus, the variance of C̃L is

obtained as Var(C̃L) = L2Var(m−1
m k̂) = L2k2

m−2 .
We develop a statistical testing procedure based on the UMVUE of CL given by

C̃L = 1− m−1
m k̂L to assess whether the lifetime performance index exceeds the pre-specified

desired level c0. The null hypothesis and alternative hypothesis of the statistical hypothesis
procedure are set up as follows:

H0 : CL ≤ c0 (the process is not capable) vs. Ha : CL > c0 (the process is capable).
Since the pivotal quantity V = 2(m−1)kL

(1−C̃L)
∼ χ2(2m), then we have

P

(
2(m− 1)kL
(1− C̃L)

< Chiinv(1− α, 2m)|Y1, . . . , Ym

)
= 1− α

where Chiinv(1− α, 2m) represents the lower 1—α percentile of χ2(2m).
Then we obtain the 100 (1− α)% one-sided credible interval for CL as(

1− Chiinv(1− α, 2m)(1− C̃L)

2(m− 1)
, ∞

)

and the lower confidence bound for CL is

LBUMVUE = 1− Chiinv(1− α, 2m)(1− C̃L)

2(m− 1)

where C̃L = 1− m−1
m k̂L is the UMVUE of CL. Based on the lower confidence bound for CL,

the quality manager can use it to conduct a testing procedure about CL as follows:
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The decision rule: Reject the null hypothesis if c0 /∈ (LBUMVUE, ∞) to conclude that
the lifetime performance index of the product meets the target level.

3.2. Bayesian Estimator for the Lifetime Performance Index and the Testing Procedure

The Bayesian approach provides the methodology for the incorporation of previous
information with the current data, and k is considered a random variable having a specified
distribution. Let random variable k have a gamma distribution that is a conjugate prior
denoted as Γ(a, b) and the conjugacy is with respect to Equation (1). Then the pdf of k is
given by g(k) = 1

Γ(a)ba ka−1e−
k
b .

Then the posterior pdf of k is

π(k|y1 . . . , ym) =
1

Γ(a)ba km+a−1 exp

(
−k

(
m

∑
i=1

(1 + Ri)yi +
1
b

))

Waller et al. [19] presented a method by which engineering experiences, judgments,
and beliefs can be used to assign values to the parameters of gamma prior distribution.

Let W =
m
∑

i=1
(1 + Ri)yi +

1
b . Then the posterior distribution of k is Γ

(
m + a, W−1) and

the posterior mean of k is
..
k = (m + a)W−1 = m+a

m
∑

i=1
(1+Ri)yi+

1
b

. From Casella and Berger [20],
..
k

is the Bayesian estimator for k. Furthermore,
..
CL = 1−

..
kL is the Bayesian estimator for CL.

Let T = 2kW = 2k(m+a)
..
k

. Then the pdf of T is

f (t) = π

(
t

2w

∣∣∣∣y1, y2, · · · , ym

)
|J| ∝

(
t

2w

)m+a−1
e−

t
2

1
2w

,

where J = 1
2w is the Jacobian.

Therefore, T has a gamma distribution with parameters m + a and 2. Thus,

T = 2kW =
2k(m + a)

..
k

∼ χ2(2(m + a))

Using this pivotal quantity T = 2k(m+a)
..
k
∼ χ2(2(m + a)), we have

P
(

2k(m + a)
..
k

< Chiinv(1− α, 2(m + a))|Y1, . . . , Ym

)
= 1− α

Then we obtain the 100(1− α)% one-sided credible interval for CL as(
1− Chiinv(1−α,2(m+a))(1−

..
CL)

2(m+a) , ∞
)

, and the Bayesian lower confidence bound for CL is

LBBayes =
Chiinv(1−α,2(m+a))(1−

..
CL)

2(m+a) . Based on the Bayesian lower confidence bound for CL,
the quality manager can use it to conduct a testing procedure about CL as follows: Reject
the null hypothesis if c0 /∈ (LBBayes, ∞) to conclude that lifetime performance index of the
product meets the target level.

3.3. Simulation Study on Two Procedures

Using the Monte Carlo method, we conduct a simulation comparison on the average
confidence level for the credible interval based on UMVUE and the other credible interval
based on the Bayesian estimator. Consider α = 0.05. The Monte Carlo simulation algorithm
of confidence level (1 − α) = 0.95 is given in the following steps:

Step 1: Given n,m,a,b, LU and then L = eLβ
U − 1, α, where n ≤ m, a,b > 0

Step 2: Generate parameter k from the prior distribution of Γ(a, b) .
Step 3: Generate Z1, Z2, . . . , Zm from an exponential distribution of parameter k.
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Step 4: Generate Y1, Y2, . . . , Ym by Y1 = Z1/n, Y2 = Z1/n + Z2/(n − R1 − 1), . . . ,
Yi = ( Z1

n + Z2
n−R1−1 + . . . Zi

n−R1−...−Ri−1−i+1 ), i = 3, . . . , m.

Step 5: Compute CL = 1− kL, LBUMVUE = 1− Chiinv(1−α,2m)(1−C̃L)
2(m−1) for the first credible

interval and LBBayes =
Chiinv(1−α,2(m+a))(1−

..
CL)

2(m+a) for the Bayesian credible interval.
Step 6: If CL = 1− kL ∈ (LB UMVUE, ∞), then count1 = 1, else count1 = 0:

If CL = 1− kL ∈ (LB Bayes, ∞
)

, then count2 = 1, else count2 = 0.
Step 7: Repeat Steps 2–6 N1 times. Then we have the estimated confidence level

1− α̂1 = totalcount1
N1

and 1− α̂2 = totalcount2
N1

for the first and the Bayesian credible intervals,

respectively. Furthermore, we can obtain N1 risk
(

CL − C̃L)
2

and
(

CL −
..
CL)

2
for the

UMVUE and Bayesian estimators.
Step 8: Repeat Steps 2–6 N2 times, we get N2 estimated confidence levels (1− α̂j)1, . . . ,

(1− α̂j)N2
, j = 1 and 2 for the first and the Bayesian credible intervals, respectively. Further-

more, we can obtain the N2 risks.

Step 9: Take the average of N2 estimated confidence levels 1− α̃j =
1000
∑

i=1
(1− α̂j)i/N2,

j = 1,2 as the average confidence level for two credible intervals. Take the average of N2
risks to yield the estimated risks for the UMVUE estimator and Bayesian estimator.

Step 10: Compute the sample mean square errors (SMSE) as
1000
∑

i=1

(
(1− α̂j)i − 1 + α̃j

)2
/N2,

j = 1,2 for two credible intervals.
R software is utilized to calculate the average confidence level for two intervals. We

used N1 = 100 and N2 = 1000. The simulation results are reported in Table A2.
From Table A2, we have the following findings:

1. Both credible intervals have average confidence levels very close to the nominal ones.
Thus, the performance of both credible intervals is very satisfactory even for a small
sample size n = 20 or larger sample size n = 30,100.

2. The SMSEs for both credible intervals are about the same and very small in the scope
of 0.000433 to 0.000523.

3. The SMSEs for both credible intervals are decreasing when m is increasing for fixed n.
4. The risk for the Bayesian estimator is smaller than the one for UMVUE. The discrep-

ancy between the two estimators is decreasing when m is increasing for fixed n. The
parameter (a,b) = (2,2) always has the smallest risk for both estimators. Generally
speaking, the Bayesian estimator outperforms the UMVUE in terms of risk.

3.4. Example

One practical example of n = 18 failure times (days) of electronic devices (see Xie and
Lai [21]) is given to illustrate our proposed testing procedure. The data is as follows: 5, 11,
21, 31, 46, 75, 98, 122, 145, 165, 195, 224, 245, 293, 321, 330, 350, 420.

The plot of the Gini test’s (see Gill and Gastwirth [22]) p-value against various values
of β, from 0 to 0.50, is given in Figure 2, and the value of β = 0.285 yields the largest
p-values of 0.931 to support a good fit for the Chen distribution. Thus, the value of β can
be determined as 0.285. We also give an ecdf-plot for the data after the transformation of
eU0.285 − 1 at Figure 3 in Appendix A, where U is the data for this example.

Let m = 10 with progressive type-II censoring scheme given by (R1, R2, . . . , R10) =
(3, 3, 1, 0 × 7). Under this setup, the progressive type-II censored sample is obtained as
(5, 11, 46, 75, 122, 145, 165, 293, 330, 350). The new progressive type-II censored lifetime
sample is obtained as Yi = eUi

0.285 − 1 = (3.865, 6.247, 18.643, 29.658, 50.00, 61.201, 71.626,
154.598, 184.170, 201.263). Now we can start to do the proposed testing procedure for CL
as follows:

Step 1: Set a = 2, b = 2, and α = 0.05 and the lower lifetime limit for relief time is
LU = 0.1 days. Then the lower lifetime limit L = eLU

0.285 − 1 = 0.68.
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Figure 2. Plot of p-value vs. the value of β.

Figure 3. Ecdf-plot with the transformed data in the example and the black dotted line is the cdf
from the exponential distribution.

Step 2: If the conforming rate Pr of products is desired to exceed 0.905, then the lifetime
performance index target value c0 should be taken as 0.9 from Table A1. Thus, the testing
null hypothesis H0 : CL ≤ 0.9 and the alternative hypothesis Ha : CL > 0.9 are constructed.

Step 3: Obtain the UMVUE of k as k̃ = 0.01198864 and the Bayesian estimator as
..
k = 0.014, and then calculate the corresponding estimates for CL as C̃L = 1− m−1

m k̂L = 0.993

and
..
CL = 1 −

..
kL = 0.990. Then calculate the credible lower bounds LBUMVUE = 1 −

Chiinv(1−α,2m)(1−C̃L)
2(m−1) = 0.987 and LBBayes =

Chiinv(1−α,2(m+a))(1−
..
CL)

2(m+a) = 0.985.
Step 4: Since c0 = 09. /∈ (LBUMVUE, ∞) and c0 = 0.9 /∈ (LBBayes, ∞), we conclude

to reject the null hypothesis H0 : CL ≤ 0.9. Therefore we can conclude that the lifetime
performance index of the product does meet the desired level 0.9.

4. Discussion

The assessment of the lifetime performance index of products proposed by Mont-
gomery [1] in manufacturing industries has become an important issue in modern en-
terprises. The statistical inference of the lifetime performance index for products whose
lifetime distributed different distributions have been widely studied in recent years. For a
complete sample, Tong et al. [2] used the UMVUE for CL to develop a hypothesis testing
procedure for the lifetime performance index based on the complete sample for an exponen-
tial distribution lifetime. In practice, we cannot observe all lifetimes of products due to the
restrictive resources or some experimental factors. In this case, we can only observe type I
or type II censored data. Integrating the progressive censoring, which allows the removal
of units progressively (accidental breakage of units) at some time points, including the final
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termination point, the progressive censored data is collected. Wu [7] derived the maximum
likelihood estimator (MLE) for the lifetime performance index based on the progressive
type-I interval censored sample and built a testing procedure about CL when the lifetime of
products follows a Chen lifetime distribution. Wu and Chang [8] derived the MLE for the
lifetime performance index based on the progressive type-I interval censored sample and
built a testing procedure about CL with the lifetime of products following an exponentiated
Frech’et distribution. Wu and Hsieh [9] found the MLE for the lifetime performance index
based on the progressive type-I interval censored sample and built a testing procedure
about CL when the lifetime of products follows the Gompertz distribution. Progressive
type-I interval censoring has the advantage of the convenience of collecting data for exper-
imenters. However, experimenters can only observe the number of failure units at each
inspection time, not the failure time for each experimental unit. Under the progressive
type-II censoring, the experiment terminates when the mth failure time is observed and the
failure times for the first m units, excluding the progressive censored units, are collected.
Laumen and Cramer [10] derived the MLE for the lifetime performance index from gamma
distributions and built a testing procedure under the same censoring. For the exponential
lifetime model, Lee et al. [11] derived the UMVUE for the lifetime performance index and
utilized it to build a hypothesis testing procedure for CL. Wu et al. [12] considered two
Bayesian tests based on two Bayesian estimators and made simulation comparisons on
the test power for two procedures. For the Burr XII model, Lee et al. [13] constructed the
UMVUE for the lifetime performance index and utilized it to build a hypothesis testing
procedure for CL. Wu et al. [14] consider another lifetime performance index and utilize its
MLE to develop the testing procedure about CL. Lee [15] assessed the lifetime performance
index of Rayleigh products based on the Bayesian estimation and used it to build a testing
procedure for CL. Our theoretical contribution for this paper is to find the UMVUE for the
lifetime performance index based on the MLE for Chen lifetime products and prove this
result. We also find the Bayesian estimator for the lifetime performance index. We develop
two testing procedures about CL based on the UMVUE and Bayesian estimators. We also
make the simulation comparison for these two tests and these two estimators. The Chen
distribution is a two-parameter lifetime distribution with a bathtub shape or increasing
failure rate function (see Chen [16]). The property of the failure rate function is illustrated
in Figure 1. The practical implications of our research are to provide two assessment testing
procedures for products following lifetime distributions with a bathtub shape or increasing
failure rate function. The practical application of our research is illustrated by the example
of 18 failure times (days) of electronic devices (see Xie and Lai [21]) given in Section 3.4.
There is not any research on the evaluation of lifetime performance index for products
from a Chen distribution based on progressive type-II censored sample in the literature.
Our research goal is to expand the field of the assessment on the lifetime performance
index from an exponential distribution, gamma distribution, Rayleigh distribution, and
Burr XII distribution to include Chen distribution based on the progressive type-II cen-
sored sample. Our research is needed to help engineers to manage the reliability of their
high-quality products.

5. Conclusions
5.1. Summary

Referring to products with a Chen lifetime distribution, we derived the UMVUE and
the Bayesian estimator for the lifetime performance index based on a progressive type-II
censored sample. Based on these two estimators, we propose two testing procedures
for the lifetime performance index. In the simulation studies, the results show that the
performance of both approaches is satisfactory in terms of confidence level under various
structures of censoring schemes. The SMSEs for both approaches are very small and about
the same, and it implies that the estimation of the confidence level is very consistent. In
terms of the risk, the Bayesian estimation always has a smaller risk than the UMVUE.
This implies that the Bayesian estimation outperforms the UMVUE in the view of point
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estimation for the lifetime performance index. Lastly, one practical example is given to
illustrate the decision testing procedure to assess whether the lifetime performance index
meets the desired target level based on the progressive type-II censored sample.

5.2. Limitations and Future Research Directions

The two testing procedures proposed in this research are basically developed for the
lifetime of products following a Chen distribution with an increasing failure rate function
or bathtub shape failure rate function based on the progressive type-II censored sample.
This research completes the field of assessment of the lifetime performance index for
various lifetime distributions. The limitation of this research is that the assumption of
the lifetime of products is following the Chen distribution. We only focus on the sample
collected for the experiment of progressive type-II censoring. When R1 = . . . = Rm = 0,
the censored sample is reduced to the complete sample. When R1 = . . . = Rm−1 = 0 and
Rm 6= 0, the censored sample is reduced to the right type II censored sample. When R1 6= 0
and R2 . . . = Rm = 0, the censored sample is reduced to the left type II censored sample.
Therefore, the progressive type-II censored sample covers the cases of right type II censored
sample, left type II censored sample, and complete sample. In the future, we can extend
the research to other censoring schemes, for example, progressive type-I interval censoring,
hybrid type II censoring. We can also extend the lifetime distribution to other kinds, for
example, exponentiated Frech’et, exponentiated Weibull, exponentiated extreme value.
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Appendix A

Proof to show that C̃L is the UMVUE for CL:

From Equation (2), we have V = 2k
m
∑

i=1
(1 + Ri)Yi ∼ χ2(2m). Let W =

m
∑

i=1
(1 + Ri)Yi.

The pdf of W is given by fW(w) = kmwm−1e−kw

Γ(m)
, w > 0. By the factorization theorem, we

write fW(w) = g(w, k)h(w), where g(w, k) = e−kw and h(w) = kmwm−1

Γ(m)
. Then the statistic

W is the sufficient statistic for k. The pdf of W implies that the statistic W has a gamma
distribution with parameters m and 1/k. Since the gamma distribution is an exponential
family, this statistic is a complete statistic from Theorem 6.2.25 of Casella and Berger [20].
From Equation (3), m−1

m k̂ is the unbiased estimator for k and then C̃L = 1 − m−1
m k̂L is

the unbiased estimator for CL, where k̂ = m
W . Using the theorem of Lehmann–Scheffe’

(Lehmann and Scheffe’ [23]), since C̃L is a function of the complete and sufficient statistic
W, we can claim that C̃L is the UMVUE (uniformly minimum variance unbiased estimator)
for CL.
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Table A1. The lifetime performance index CL and its corresponding conforming rates Pr.

CL Pr CL Pr CL Pr

−∞ 0.000000 −0.125 0.324652 0.550 0.637628

−3.000 0.018316 0.000 0.367879 0.575 0.653770

−2.750 0.023518 0.125 0.416862 0.600 0.670320

−2.500 0.030197 0.150 0.427415 0.625 0.687289

−2.250 0.038774 0.175 0.438235 0.650 0.704688

−2.125 0.043937 0.200 0.449329 0.675 0.722527

−2.000 0.049787 0.225 0.460704 0.700 0.740818

−1.750 0.063928 0.250 0.472367 0.725 0.759572

−1.500 0.082085 0.275 0.484325 0.750 0.778801

−1.250 0.105399 0.300 0.496585 0.775 0.798516

−1.125 0.119433 0.325 0.509156 0.800 0.818731

−1.000 0.135335 0.350 0.522046 0.825 0.839457

−0.750 0.173774 0.375 0.535261 0.850 0.860708

−0.500 0.223130 0.400 0.548812 0.875 0.882497

−0.250 0.286505 0.425 0.562705 0.900 0.904837

−0.225 0.293758 0.450 0.576950 0.925 0.927743

−0.200 0.301194 0.475 0.591555 0.950 0.951229

−0.175 0.308819 0.500 0.606531 0.975 0.975310

−0.15 0.316637 0.525 0.621885 1.000 1.000000

Table A2. Average confidence level for CL, SMSE (in the first parentheses) and risk (in the second parentheses) under
LU = 0.1 and 1− α = 0.95.

(a,b) = (2,2) (a,b) = (2,5) (a,b) = (5,2)

n m (R1,. . . ,Rm) UMVUE Bayes UMVUE Bayes UMVUE Bayes

20 10 (5, 4, 1, 0 × 7) 0.95046 0.95049 0.95062 0.95039 0.95025 0.95018

(0.000459) (0.000454) (0.000485) (0.000466) (0.000439) (0.00046)

(0.032338) (0.020448) (0.206719) (0.129118) (0.166737) (0.082863)

(0 × 3, 2, 3, 3, 2, 0× 3) 0.94954 0.94965 0.94927 0.94990 0.94871 0.94895

(0.000458) (0.000475) (0.000478) (0.000491) (0.000493) (0.000496)

(0.033270) (0.020028) (0.202740) (0.126668) (0.172086) (0.083376)

(0 × 7, 1, 4, 5) 0.94997 0.94944 0.94962 0.94882 0.95002 0.94905

(0.000479) (0.000513) (0.000476) (0.000490) (0.000458) (0.000464)

(0.033348) (0.020464) (0.210638) (0.129526) (0.167786) (0.083427)

15 (4, 1, 0 × 13) 0.94989 0.95060 0.95011 0.94988 0.94956 0.94983

(0.000435) (0.000442) (0.000435) (0.000452) (0.000471) (0.000501)

(0.019462) (0.014550) (0.128238) (0.092888) (0.101481) (0.063165)

(0 × 6, 1, 3, 1, 0× 6) 0.95047 0.95079 0.95005 0.95018 0.94850 0.94915

(0.000481) (0.000465) (0.000473) (0.000457) (0.000510) (0.000511)

(0.020197) (0.014692) (0.127588) (0.091372) (0.103466) (0.063199)

(0 × 13, 1, 4) 0.94974 0.95031 0.95007 0.94971 0.94926 0.94936
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Table A2. Cont.

(a,b) = (2,2) (a,b) = (2,5) (a,b) = (5,2)

n m (R1,. . . ,Rm) UMVUE Bayes UMVUE Bayes UMVUE Bayes

(0.000439) (0.000463) (0.000509) (0.000516) (0.000488) (0.000507)

(0.020154) (0.014541) (0.130222) (0.093632) (0.100478) (0.062896)

30 15 (7, 5, 3, 0 × 12) 0.95063 0.95028 0.95007 0.95010 0.95138 0.94991

(0.000501) (0.000488) (0.000488) (0.000531) (0.000468) (0.000457)

(0.020698) (0.014852) (0.125239) (0.092391) (0.103473) (0.063256)

(0 × 6, 4, 7, 4, 0× 6) 0.94924 0.94998 0.95129 0.95087 0.94943 0.94928

(0.000467) (0.000472) (0.000447) (0.000459) (0.000475) (0.000488)

(0.020231) (0.014722) (0.128099) (0.092867) (0.102906) (0.063306)

(0 × 12, 3, 5, 7) 0.94985 0.95003 0.95074 0.94997 0.95084 0.95019

(0.000464) (0.000454) (0.000475) (0.000464) (0.000483) (0.000480)

(0.020609) (0.014676) (0.126370) (0.093766) (0.103612) (0.063977)

20 (5, 4, 1, 0 × 17) 0.94953 0.94969 0.95032 0.95063 0.94956 0.95000

(0.000484) (0.000483) (0.000474) (0.000454) (0.000472) (0.000475)

(0.014779) (0.011676) (0.089691) (0.071110) (0.074365) (0.051170)

(0 × 8, 2, 3, 3, 2, 0× 8) 0.95019 0.94991 0.95013 0.94941 0.94926 0.94932

(0.000491) (0.000517) (0.000050) (0.000502) (0.000434) (0.000481)

(0.014722) (0.011651) (0.093602) (0.072828) (0.074644) (0.051560)

(0 × 17, 1, 4, 5) 0.94885 0.94927 0.95023 0.95008 0.95031 0.95006

(0.000503) (0.000523) (0.000484) (0.000491) (0.000457) (0.000451)

(0.014757) (0.011515) (0.090619) (0.072060) (0.073405) (0.051221)

100 20 (60, 20, 0 × 18) 0.94984 0.94966 0.94989 0.94950 0.95015 0.95040

(0.000491) (0.000487) (0.000508) (0.000506) (0.000492) (0.000499)

(0.014944) (0.011491) (0.093359) (0.072604) (0.073616) (0.051114)

(0 × 8, 20, 20, 20, 20, 0× 8) 0.94895 0.94883 0.94985 0.95042 0.94994 0.94926

(0.000449) (0.000475) (0.000466) (0.000489) (0.000465) (0.000471)

(0.014812) (0.011674) (0.08942) (0.071394) (0.074201) (0.051082)

(0 × 18, 20, 60) 0.95057 0.95005 0.95010 0.94935 0.95048 0.94950

(0.000458) (0.000463) (0.000439) (0.000444) (0.000446) (0.000485)

(0.014641) (0.011405) (0.093107) (0.071695) (0.073540) (0.051245)

Note: The censoring scheme (R1, . . . , Rm) = (5, 4, 1, 0 × 7) represents (R1, . . . , Rm) = (5, 4, 1, 0, 0, 0, 0, 0, 0, 0).
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