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Abstract: In this paper, the skew-elliptical sinh-alpha-power distribution is developed as a natural
follow-up to the skew-elliptical log-linear Birnbaum–Saunders alpha-power distribution, previously
studied in the literature. Special cases include the ordinary log-linear Birnbaum–Saunders and
skewed log-linear Birnbaum–Saunders distributions. As shown, it is able to surpass the ordinary
sinh-normal models when fitting data sets with high (above the expected with the sinh-normal)
degrees of asymmetry. Maximum likelihood estimation is developed with the inverse of the observed
information matrix used for standard error estimation. Large sample properties of the maximum
likelihood estimators such as consistency and asymptotic normality are established. An application
is reported for the data set previously analyzed in the literature, where performance of the new
distribution is shown when compared with other proposed alternative models.

Keywords: skewed-elliptical sinh alpha-power distribution; skewed-elliptical alpha-power model;
Birnbaum–Saunders distribution; maximum likelihood; fatigue life

1. Introduction

When observed data does not follow a normal distribution, the use of the elliptical
family of distributions is an important alternative. In this family, all distributions are of the
symmetric type, including distributions with higher (or lower) kurtosis than the one for
the normal distribution.

A random variable (RV) X is distributed according to the elliptical distribution with
location parameter ξ ∈ R and scale parameter η > 0. We use the notation X ∼ EC(ξ, η; g).

Properties of the family of elliptic distributions have been studied in detail by several
authors—among them, Fang and Zhang [1], Fang et al. [2], Gupta and Varga [3], Kelker [4],
Cambanis et al. [5], and Arellano-Valle [6]. The particular case of the Student t distribution
was studied by Lange et al. [7] and Arellano-Valle [8].

Special cases of the distribution X ∼ EC(0, 1; g), are given by the Pearson type VII,
Kotz, Student t, Cauchy, and the normal distributions, among others. Although the class of
elliptic distributions is a good alternative for situations of departure from normality, it is not
appropriate when observations follow an asymmetric distribution. These circumstances
prompted the search for new distributions better suited to fit data with high asymmetry
and kurtosis. It is then necessary to extend the family of elliptical distributions to a more
general family of distributions typically called the skew-elliptical distribution.

The probability density function (pdf) for the standard scalar skew-elliptical model is
given by

fY(y; λ) = 2 f (y)F(λy); y, λ ∈ R (1)
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where f (x) = c
η g
((

x−ξ
η

)2
)

, F is the cumulative distribution function (cdf) corresponding

to f , and λ is an asymmetry parameter. This model is denoted by Y ∼ SE(0, 1; g, λ). The
cdf of this model is given by

FY(y) = 2
∫ y

−∞
f (t)F(λt)dt. (2)

Hence, for λ = 0, the standard elliptical model is obtained. A particular case of model (1) is
the skew-normal distribution (see Azzalini [9]) with f = φ(·) and F = Φ(·) (where φ(·) is
the pdf of standard normal distribution and Φ(·) is the respective cdf) with pdf given by,

φSN(y) = 2φ(y)Φ(λy), y ∈ R, (3)

and cdf:
ΦSN(y) = Φ(y)− 2T(y; λ), y ∈ R, (4)

where T(., .) is the well known Owen’s function [10].
Another type of asymmetric distribution studied by Durrans [11], is the fractional

order statistics model, with pdf

ϕH(z; α) = αh(z){H(z)}α−1, z ∈ R, (5)

where H is an absolutely continuous distribution function with pdf h and α > 0 is a
parameter that controls asymmetry and kurtosis of the distribution. This model is denoted
by AP(α). It has been used to fit data with high amounts of asymmetry and kurtosis.

Moreover, Birnbaum and Saunders [12] introduced a new probability distribution
for modeling the lifetime of certain structures under dynamic load called “fatigue life
distributions”, which is also asymmetric but only fits positive data. Its pdf is given by

fT(t) =
1√
2π

exp
[
− 1

2γ2

(
t
τ
+

τ

t
− 2
)]

t−3/2(t + τ)

2γ
√

τ
, t > 0, (6)

where γ > 0 is the shape parameter and τ > 0 is a scale parameter and the distribution
median. We use the notation T ∼ BS(γ, τ).

It is well known that the BS distribution becomes asymmetric as γ increases and
symmetric around τ as γ gets close to zero. Another property includes kT ∼ BS(γ, kτ), for
k > 0, and T−1 ∼ BS(γ, τ−1), as can be seen in Birnbaum and Saunders [12,13].

Díaz-García et al. [14] presented a generalization of this distribution for the case
of symmetric-elliptic distributions and an extension to the case of asymmetric-elliptic
distributions was studied by Vilca-Labra et al. [15], which is called doubly generalized
Birnbaum–Saunders distribution.

Vilca-Labra and Leiva-Sanchez [15] investigated asymmetric extensions for the Birnbaum–
Saunders model, with the normal distribution replaced by the elliptical asymmetric class of
distributions [16]. Furthermore, Castillo et al. [17] considered the asymmetric epsilon-
Birnbaum–Saunders model, Gómez et al. [18] considered an extension based on the
slash-elliptical family of distributions, Martínez-Flórez et al. [19] studied the extension
of this model to the case of exponentiated or alpha-power distributions, and Moreno-
Arenas et al. [20] studied the extension to the case of hazard proportional family.

Rieck and Nedelman [21] developed the sinh-normal distribution, which is obtained
as a transformation of the standard normal distribution after considering the RV Y =
arcsinh(γZ/2)η + ξ, where Z ∼ N(0, 1), γ > 0 is a shape parameter, ξ ∈ R is a location
parameter and η > 0 is a scale parameter. We use the notation Y ∼ SHN(γ, ξ, η). It is well
known that if Y ∼ SHN(γ, ξ, 2) then the RV T = exp(Y) ∼ BS(γ, exp(ξ)). For this reason,
the sinh-normal distribution is typically called the log-Birnbaum–Saunders distribution.
A log-linear extension allowing incorporating covariates was also considered in Rieck and
Nedelman [21] and can be written as
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Yi = xT
i β + εi, i = 1, 2, . . . , n, (7)

where Yi is the log-survival time corresponding to the i-th experimental unit, β = (β1, β2, . . . , βp)T

an unknown parameter vector, xi = (xi1, xi2, . . . , xip)
T a p-dimensional vector with the

(known) values of the explanatory variables and εi, are independent and identically dis-
tributed RV with εi ∼ SHN(γ, 0, 2), i = 1, 2, . . . , n. Diagnostic analysis technics for the
SHN model were developed by Galea et al. [22]. More recently, Barros et al. [23] extended
this model for the case of error distributions with heavier tails emphasizing the use of
the Student t distribution. They also conducted estimation and diagnostic studies for the
model entertained.

Extensions for the sinh-normal model using an asymmetric setup were studied in
Leiva et al. [24], where a skew-sinh-normal model is developed and used in a study of
the air pollution in the city of Santiago de Chile. Some other asymmetric extensions of
the sinh-normal models are reported in Lemonte [25], Santana et al. [26], and Martínez-
Flórez et al. [19], who studied the extension of this model to the case of alpha-power distri-
butions.

We consider in this paper an extension of the linear model (7) by replacing the sinh-
normal distribution of the errors by the skewed-elliptical sinh alpha-power distribution.

The introduction of two extra shape parameters makes the error distribution more
flexible, allowing it to incorporate additional kurtosis and asymmetry. Inference is con-
ducted using the maximum likelihood approach while the observed information matrix is
derived for computing standard errors. The new model is fitted to a real data set, revealing
that it has great potential in applied scenarios.

The paper is organized as follows. In Section 2, the skewed-elliptical sinh-alpha-
power distribution is defined and some of its main properties are studied. In Section 3,
the new model is defined is defined, maximum likelihood estimation is discussed, and
the score function and observed information matrix for the model parameters are studied.
In Section 4, we carry out a simulation study to assess the performance of the proposed
estimators. In Section 5, we apply the proposed model to analyze two data sets. Concluding
remarks are given in Section 6.

2. Skew-Elliptical Alpha-Power Model

We now extend the model AP(α). This new model has pdf given by

ϕSE(z; λ, α) = αh(z; λ){H(z; λ)}α−1, z ∈ R, (8)

where H is the distribution function corresponding to h. We call it the skew-elliptical
alpha-power distribution and we will denote it by Z ∼ APSE(0, 1; g, λ, α). Moments of the
RV Z have no closed form, but under a variable change, the r-th moment of the RV Z can
be written as

E(Zr) = α
∫ 1

0
[H−1(z; λ)]rzα−1dz, (9)

where H−1 is the inverse of the function H. If h is of the form (3); then, we have the skew-
normal alpha-power model of parameter λ and α. This model is denoted PESN(λ, α).

Special cases of model PESN occur with α = 1 so that the skew-normal model φSN(x)
follows. On the other hand, with λ = 0, the model with pdf ϕΦ(x), that is, Durrans’s
generalized normal model, follows. The ordinary standard normal model is also a special
case that follows by taking α = 1 and λ = 0, that is, ϕSE(x; 0, 1) = φ(x). Notice from
Figure 1a,b below that α and λ affect both distribution asymmetry and kurtosis; hence, the
model proposed seems more flexible than the models by Azzalini [9] and Durrans [11].
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Figure 1. Distribution PESN. (a) α = 1.5 and λ = −0.75 (dotted dashed line), 0 (dotted line),
1 (dashed line) and 1.75 (solid line), (b) λ = 0.70 and α = 0.50 (dotted-dashed line), 1.0 (dotted line),
2.0 (dashed line), and 5.0 (solid line).

2.1. Skew-Elliptical Sinh-Alpha-Power Model

In this subsection, we present the pdf for the skew-elliptical sinh-alpha-power distri-
bution. Expressions are derived for the model mean and variance and consequences of
changing parameter values in the density are reported.

The skew-elliptic sinh-alpha-power distribution is defined as a transformation of the
skew-elliptical alpha-power distribution, that is,

Y = arcsinh(γZ/2)η + ξ with Z ∼ APSE(0, 1, g; λ, α) where γ, α ∈ R+ and λ ∈ R are
shape parameters, ξ ∈ R is a location parameter and η > 0 is a scale parameter. The pdf of
Y is given by

ϕPSE(y) = α

2
γ cosh

(
y−ξ

η

)
η

h
(

2
γ

sinh
(

y− ξ

η

)
; λ

){
H
(

2
γ

sinh
(

y− ξ

η

)
; λ

)}α−1
, (10)

which we denote by Y ∼ SAPSE(γ, ξ, η; g, λ, α).
When h = φSN and H = ΦSN , the skew-sinh-normal power distribution follows,

with pdf given by

ϕPESN(y) = α

2
γ cosh

(
y−ξ

η

)
η

φSN

(
2
γ

sinh
(

y− ξ

η

)){
ΦSN

(
2
γ

sinh
(

y− ξ

η

))}α−1
, (11)

which we denote by Y ∼ SPESN(γ, ξ, η, λ, α).
Particular case:

• sinh-normal model, when λ = 0 and α = 1,
• skew sinh-normal distribution, when α = 1
• sinh-normal power-normal distribution, when λ = 0

The cdf of Y is given by

FPESN(y; λ) =

{
ΦSN

[
2
γ

sinh
(

y− ξ

η

)]}α

, (12)

with ΦSN(·) as above. Accordingly to (12), the inversion method can be used for generating
from an RV with distribution SPESN(γ, ξ, η, λ, α). That is, if U ∼ U(0, 1), the uniform
distribution, then the RV Y = ξ + η

[
arcsinh

{
γ
2 Φ−1

SN(U
1/α)

}]
is distributed according to

the SPESN distribution with parameters γ, ξ, η, λ and α where Φ−1
SN is the inverse of the
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skew-normal distribution. Figure 2 reveals the behavior of the pdf in (11) for ξ = 0 and
η = 2 and different values for γ, λ, and α.
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Figure 2. Plots for pdf ϕSPESN(y; γ, ξ, η, λ, α). (a) (γ, ξ, η, λ, α) = (0.75, 0,2, 1.75, 1.5) (dashed and dotted line),
(1.25, 0, 2, 1.75, 1.5) (dotted line), (1.75,0,2,1.75,1.5) (dashed line) and (2.25, 0, 2, 1.75, 1.5) (solid line). (b) (γ, ξ, η, λ, α) =

(1.75, 0, 2, −1.5, 1.5) (dashed and dotted line), (1.75, 0, 2,−0.75, 1.5) (dotted line), (1.75, 0, 2, 0.75, 1.5) (dashed line) and
(1.75, 0, 2, 1.5, 1.5) (solid line). (c) (γ, ξ, η, λ, α) = (0.75, 0, 2, 1.75, 0.75) (dashed and dotted line), (0.75, 0, 2, 1.75, 1.0) (dotted
line), (0.75, 0, 2, 1.75, 1.25) (dashed line) and (0.75, 0, 2, 1.75, 1.5) (solid line) .

Let Y ∼ SPESN(γ, ξ, η, λ, α). Then, the mode (or modes) of the RV Y is the solution
of the nonlinear equation

γ

2
cosech(z) tanh(z)− y +

√
2
π

φ(λw) + (α− 1)ω(w) = 0,

where z = y−ξ
η , w = 2

γ sinh(z) and ω(w) = φSN(w)
ΦSN(w)

.
Concerning Figure 2, the RV Y is asymmetric around location parameter ξ and has a

single mode. Figure 3 shows the bimodal case. Moreover, expectation and variance of Y
are given by

E(Yk) =
k

∑
j=0

2j
(

k
j

)
ξk−jcj(γ, λ, α) and Var(Y) = η2V(γ, λ, α)

where cj and V are functions of γ, λ, and α, given by

cj(γ, λ, α) = α
∫ ∞

−∞

{
arcsinh

(γz
2

)}j
φSN(z){ΦSN(z)}α−1dz,

and V(γ, λ, α) is the variance of the RV arcsinh(γZ/2). There are no closed form expres-
sions for cj and V.

Let Y ∼ SPESN(γ, ξ, 2, λ, α). Then, T = exp(Y) ∼ PESNBS(γ, exp(ξ), λ, α). The Y
moment-generating function can be written in the form

MY(r) = E(ery) = E(er log T) = E(Tr)

where E(Tr) can be obtain using the expression given in Theorem (2.6) de Martínez-
Flórez et al. (2020) [27].

Let

U =
2(Y− ξ)

γη
, where Y ∼ SPESN(γ, ξ, η, λ, α).

Then, we can write
fU(u)

D→ αφSN(u){ΦSN(u)}α−1,
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as γ→ 0. Therefore, U converges in distribution to a standard PESN distribution.
The survivor function, cumulative risk function, inverted risk function, and risk

function for model SPESN are given, respectively, by:

S(t) = 1−
{

ΦSN

[
2
γ

sinh
(

t− ξ

η

)]}α

, H(t) = − log[S(t)], R(t) = αRSSN(t) and

r(t) = αrSSN(t)

{
ΦSN

[
2
γ sinh

(
t−ξ

η

)]}α−1
−
{

ΦSN

[
2
γ sinh

(
t−ξ

η

)]}α

1−
{

ΦSN

[
2
γ sinh

(
t−ξ

η

)]}α

where rSESN(t) and RSESN(t) are the indices for the risk and inverted risk for the skewed
sinh-normal model, that is, the inverse risk rate is proportional to the risk rate for the
skewed sinh-normal distribution. Therefore, the intervals where R(t) is decreasing or
increasing are the same intervals where RSSN(t) is decreasing or increasing. Figure 4
depicts r(t) for ξ = 0, 1, η = 2 and different values for γ, λ, and α.
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Figure 3. Plots for density function ϕSPESN(y; γ, ξ, η, λ, α). (a) (γ, ξ, η, λ, α) = (5.5, 0, 2, 0.5, 0.75)
(dashed and dotted line), (7.5, 0, 2, 0.5, 0.75) (dotted line), (9.5, 0, 2, 0.5, 0.75) (dashed line), and (11.5,
0, 2, 0.5, 0.75) (solid line). (b) (γ, ξ, η, λ, α) = (5.5, 0, 2, −0.5, 0.75) (dashed and dotted line), (7.5, 0, 2,
−0.5, 0.75) (dotted line), (9.5, 0, 2, −0.5, 0.75) (dashed line), and (11.5, 0, 2, −0.5, 0.75) (solid line).
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Figure 4. Plots for r(t) (a) (γ, ξ, η, λ, α) = (0.5, 0, 2, 1.75, 1.5) (dashed and dotted line), (0.75, 0, 2, 1.75, 1.5) (dotted line),
(1.25, 0, 2, 1.75, 1.5) (dashed line), and (1.75, 0, 2, 1.75, 1.5) (solid line). (b) (γ, ξ, η, λ, α) = (1.75, 1, 2,−1.5, 1.5) (dashed
and dotted line), (1.75, 1, 2,−0.75, 1.5) (dotted line), (1.75, 1, 2, 0.75, 1.5) (dashed line), and (1.75,1,2,1.5,1.5) (solid line).
(c) (γ, ξ, η, λ, α) = (0.75, 1, 2, 1.75, 0.75) (dashed and dotted line), (0.75, 1, 2, 1.75, 1.0) (dotted line), (0.75, 1, 2, 1.75, 1.25)
(dashed line), and (0.75, 1, 2, 1.75, 1.5) (solid line) .
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The density generator of the generalized Student t, type I logistic, type II logistic, and
power exponential are, respectively, given by g(u) = (2π)−1/2 exp(−u/2), g(u) = {π(1 +
u)}−1, g(u) = νν/2B(1/2, ν/2)−1(ν + u)−(ν+1)/2, where ν > 0 and B(·, ·) is the beta func-
tion, g(u) = sr/2B(1/2, r/2)−1(s+ u)−(r+1)/2 (s, r > 0), g(u) = c exp(−u)(1+ exp(−u))−2,
where c ≈ 1.484300029 is the normalizing constant obtained from

∫ ∞
0 u−1/2g(u)du = 1,

g(u) = exp(−
√

u)(1 + exp(−
√

u))−2, and g(u) = c(k) exp(− 1
2 u1/(1+k)), −1 < k ≤ 1,

where c(k) = Γ(1 + (k + 1)/2)21+(1+k)/2.
As a natural step, we now introduce the skew-alpha-power BS model from the skew-

sinh-power-normal model. This result is stated in the following theorem.

Theorem 1. If Y ∼ SPESN(γ, ξ, 2, λ, α), then RV T = exp(Y) follows the skewed Birnbaum–
Saunders alpha-power distribution, with shape parameters γ, λ, α and scale parameter exp(ξ). We
denote ∼ PESNBS(γ, exp(ξ), λ, α).

As in the classical BS model and the asymmetric BS model of Vilca-Labra et al. [15],
this new model is an alternative for modeling the lifetime of certain structures under
dynamic load on joint observations with asymmetry and/or kurtosis outside the range
permitted by these distributions. Properties of the PESNBS model can be obtained from
the properties derived for the BS and skew-BS models.

Theorem 2. Let T ∼ PESNBS(γ, τ, λ, α). Then,

1. bT ∼ PESNBS(γ, bτ, λ, α), b > 0 and
2. T−1 ∼ PESNBS(γ, τ−1,−λ, α).

2.2. More Properties

1. Let Y ∼ SPESN(γ, ξ, η, λ, α); then, for constants a ∈ R and b ∈ R+,

W = a + bY ∼ SPESN(γ, a + bξ, bη, λ, α).

In particular,
W = bY ∼ SPESN(γ, bξ, bη, λ, α).

2. Let Y ∼ SAPSE(γ, ξ, η; g, λ, α); then,

W =
2
γ

sinh
(

Y− ξ

η

)
∼ APSE(0, 1; g, λ, α).

3. Let Y ∼ SPESN(γ, ξ, η, λ, α); then,

W =
2
γ

sinh
(

Y− ξ

η

)
∼ PESN(0, 1, λ, α).

4. Let Y ∼ SPESN(γ, ξ, η, λ, 1); then,

W2 =
4

γ2 sinh2
(

Y− ξ

η

)
∼ χ2

1.

2.3. The Skew-Elliptical Log-Linear Birnbaum–Saunders Alpha-Power Model

Then, let T1, T2, ...Tn independent RVs, where Ti ∼ PESNBS(γi, τi, λi, αi). Suppose
now that the distribution of Ti is independent of a set of p explanatory variables, denoted
by xi = (xi1, xi2, . . . , xip)

T , where
1. τi = exp(xT

i β), i = 1, 2, . . . , n, where βT = (β1, β2, . . . , βp) is a p-dimensional
vector of unknown parameters.

2. Shape parameters do not involve xi; that is, γi = γ, λi = λ and αi = α, i =
1, 2, . . . , n.
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Suppose now that Yi = log(Ti),; then, the skew-log-linear Birnbaum–Saunders power-
normal model is defined by

Yi = xT
i β + εi, (13)

where εi ∼ SPESN(γ, 0, 2, λ, α). Therefore, Yi ∼ SPESN(γ, xT
i β, 2, λ, α). The expecta-

tion and variance of ε are given by: E(εi) = 2c1(γ, λ, α) and Var(εi) = 4V(γ, λ, α),
i = 1, 2, . . . , n. Additionally, Y1, Y2, . . . , Yn, are independent RVs, so that the covariance
Cov(εi, εj) = 0. Then, making β∗0 = β0 + 2c1(γ, λ, α), we have that E(Yi) = xT

i β∗, so that
an unbiased linear estimator for β∗ = (β∗0, βT

1 )
T follows from the ordinary least squares

approach, with solution
β̂
∗
= (XTX)−1XTY,

and covariance matrix
Cov(β̂

∗
) = 4V(γ, λ, α)(XTX)−1.

when λ = 0 and α = 1, we have that the log-linear BS model, with α = 1, the skewed
log-linear BS model follows, and for λ = 0, the log-linear BS power-normal model follows.

Moreover, the class was largely extended by considering the family of elliptical distributions.

3. Inference

We have that the log-likelihood function corresponding to the vector θ = (γ, βT , λ, α)T

for a random sample of n observations is given by:

`(θ) ∝ n log(α) +
n

∑
i=1

log(ξi1)−
1
2

n

∑
i=1

ξ2
i2 +

n

∑
i=1

log(Φ(λξi2)) + (α− 1)
n

∑
i=1

ξi3, (14)

where

ξi1 =
2
γ

cosh

(
yi − xT

i β

2

)
, ξi2 =

2
γ

sinh

(
yi − xT

i β

2

)
and

ξi3 = log ΦSN

{
2
γ

sinh

(
yi − xT

i β

2

)}
, i = 1, 2, . . . , n.

Additionally, since Yi ∼ SPESN(γ, xT
i β, 2, λ, α) and ξi2 = 2

γ sinh
(

yi−xT
i β

2

)
, it follows that

ξi2 ∼ PESN(0, 1, λ, α).

We have then the following score functions

U(γ) = − n
γ
+

1
γ

n

∑
i=1

ξ2
i2 −

λ

γ

n

∑
i=1

wiξi2 −
α− 1

γ

n

∑
i=1

wi1ξi2,

U(β j) =
1
2

n

∑
i=1

xij

(
ξi1ξi2 −

ξi2
ξi1

)
− λ

2

n

∑
i=1

xijξi1wi −
α− 1

2

n

∑
i=1

xijwi1ξi1, j = 1, 2, . . . , p,

U(λ) =
n

∑
i=1

ξi2wi −
√

2
π

(α− 1)
1 + λ2

n

∑
i=1

w2i, U(α) =
n
α
+

n

∑
i=1

ξi3,

where

wi =
φ(λξi2)

Φ(λξi2)
, wi1 =

φSN(ξi2)

ΦSN(ξi2)
and wi2 =

φ
(√

1 + λ2ξi2

)
ΦSN(ξi2)

, i = 1, . . . , n.
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Maximum likelihood estimators for the regression parameters β and parameters γ, λ, and α
are then solutions to the equations U(β j) = 0, j = 1, 2, . . . , p, U(γ) = 0, U(λ) = 0, and
U(α) = 0, which require numerical procedures.

Solving U(α) = 0, we obtain the maximum likelihood estimator for the parameter α,
which is a function of γ, λ, and β, that is,

α̂(γ, β, λ) = − n

∑n
i=1 log

[
ΦSN

{
2
γ sinh

(
yi−xT

i β
2

)}] , (15)

so that, replacing (15) in (14), we obtain

`(β,�) ∝ n log

(
−

n

∑
i=1

ξi3

)
+

n

∑
i=1

log(ξi1)−
1
2

n

∑
i=1

ξ2
i2 +

n

∑
i=1

log(Φ(λξi2))−
n

∑
i=1

ξi3, (16)

that is, the maximum likelihood estimators for γ, λ, and β can be obtained by maximizing
(16), leading to an iterative algorithm with α in (15).

Observed Information Matrix

The observed information matrix follows from minus the second derivatives of the
log-likelihood function, J(θ̂) = −`θ̂θ̂, where `θθ is the Hessian matrix with parameters
replaced by their MLEs. The elements of the observed information matrix are denoted by
jβ j βk , jγβ j , . . . , jαα, and are given by

jγγ =− n
γ2 +

3
γ2

n

∑
i=1

ξ2
i2 +

λ

γ2

n

∑
i=1

wiξi2[−2 + λξi2(λξi2 + wi)]+

α− 1
γ2

n

∑
i=1

ξi2

[
wi1(ξ

2
i2 + ξi2wi1 − 2)−

√
2
π

λwi2ξi2

]
,

jγβ j =
1
γ

n

∑
i=1

xijξi1ξi2 +
λ

2γ

n

∑
i=1

xijwiξi1[−1 + λξi2(λξi2 + wi)]

+
α− 1

2γ

n

∑
i=1

xijξi1

{
−wi + wi1ξi2(ξi2 + wi1)−

√
2
π

λwi2ξi2

}
,

jγλ =
1
γ

n

∑
i=1

wiξi2[1− λξi2(λξi2 + wi)]

+

√
2
π

α− 1
γ

n

∑
i=1

wi2ξi2

{
ξi2 +

1
1 + λ2 wi1

}
,

jβ j βk =
1
4

n

∑
i=1

xijxik

{
2ξ2

i2 +
4

γ2 − 1 +
ξ2

i2
ξ2

i2 + 4/γ2

}
+

λ

4

n

∑
i=1

xijxikwi

[
−ξi2 + λξ2

i1(λξi2 + wi)
]

+
α− 1

4

n

∑
i=1

xijxik

{
wi1ξi2(−1 + ξ2

i1) + w2
i1ξ2

i1 −
√

2
π

λwi2ξ2
i1

}
,

jβ jλ =
1
2

n

∑
i=1

xijwiξi1[1− λξi2(λξi2 + wi)]

+

√
2
π

α− 1
2

n

∑
i=1

xijwi2ξi1

{
ξi2 +

1
1 + λ2 wi1

}
,

jλλ =
n

∑
i=1

ξ2
i2wi(λξi2 + wi)−

√
2
π

2λ(α− 1)
(1 + λ2)2

n

∑
i=1

w2i
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+

√
2
π

α− 1
1 + λ2

n

∑
i=1

w2iξi2

[
−λξi2 +

√
2
π

1
1 + λ2 w2i

]
, jαα =

n
α2 ,

jγα =
1
γ

n

∑
i=1

wiξi2, jβ jα =
1
2

n

∑
i=1

xijwi1ξi1, jλα =

√
2
π

1
1 + λ2

n

∑
i=1

wi2.

The expected (or Fisher) information matrix is n−1 times the expected value of the
elements of the observed information matrix.

For λ = 0 and α = 1 and using the approximation in Chaibub Neto and Branco [28],
we can write the expected Fisher information matrix as

IF(θ) =



2
γ2 0T

p+1 0 1
4γ

π2√
8+π2

0p+1 a(γ)XTX d(γ) 1
γ

√
2
π X̄ d(γ)

√
π

2γ X̄

0 d(γ) 1
γ

√
2
π X̄T 2

π

√
1
2

1
4γ

π2√
8+π2 d(γ)

√
π

2γ X̄T
√

1
2 1

,

where
a(γ) = 2 + 4/γ2 −

√
2π/γ2[1− er f c(

√
2/γ2)] exp(2/γ2),

with er f c(x) = 2√
π

∫ ∞
x exp(−t2)dt being the error function (see Prudnikov et al. [29]) and

d(γ) = 1 +
γ2

25 +
∞

∑
l=2

(−1)l−1γ2l 1× 3× ...× (2l − 3)× (2l)!
26l(l!)2 .

It can be verified that the columns (lines) of the matrix I(θ) are linearly independent;
hence, it is invertible. Therefore, for large samples, the MLE ˆ̀ of ` is asymptotically normal,
that is,

θ̂
A→ Np+4(θ, IF(θ)

−1),

resulting that the asymptotic variance of the MLE θ̂ is the inverse of IF(θ), which we denote
by Σθ = IF(θ)

−1, which is estimated replacing parameters by their MLEs.
Approximation Np+4(θ, Σθ̂) can be used to construct confidence intervals for θr, which

are given by θ̂r ∓ z1−ρ/2

√
σ̂(θ̂r), where σ̂(.) corresponds to the rth diagonal element of the

matrix Σθ̂ and z1−ρ/2 denotes 100(δ/2)-quantile of the standard normal distribution.

4. Simulation Study

In this section, a simulation study was performed to evaluate the performance of the
ML estimators for the model parameter

To check the good behavior of ML estimators in the SPESN model, a simulation study
is carried out. In this study, 1000 samples of sample size n = 100, 200, and 300 have been
generated from the SPESN model. The aim of this simulation is to study the performance
of the ML estimators for the parameters using the proposed procedure.

For each generated sample, the ML estimates for each parameter were computed
numerically. The bias, standard error (se) and mean squared error (MSE) of the estimates
for the parameters (β0, β1, γ, λ, α) are given as summaries in Table 1. It can be seen there
that the ML estimates are quite stable and close to the real values for the sample sizes under
consideration. As expected, the bias and standard deviation of our estimates decrease as
the sample size n increases.
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Table 1. Empirical means and SD for the ML estimators of θ, α and q.

True n = 100 n = 200 n = 500

β0 β1 γ λ α Bias se MSE Bias se MSE Bias se MSE

−0.5 −0.75 0.5 −0.9 1.3 β0 0.0921 0.5944 0.6525 0.0543 0.3668 0.4003 0.0352 0.2053 0.2334
β1 −0.0766 0.7066 0.7719 −0.0679 0.5287 0.5875 −0.0434 0.2037 0.2270
γ 0.1795 1.7074 1.8050 0.0959 0.8442 0.9009 0.0685 0.6270 0.6635
λ −0.1949 1.3205 1.4016 −0.0454 1.2749 1.3221 −0.0257 0.3577 0.3902
α 0.5088 1.6844 1.7630 0.2800 1.0306 1.0900 0.0609 0.3562 0.3795

−1 −1 0.25 −0.3 1.5 β0 −0.1087 0.6995 0.7749 −0.0834 0.5313 0.5815 −0.0649 0.3074 0.3320
β1 0.0980 0.7404 0.8209 0.0688 0.5500 0.5982 0.0505 0.3063 0.3290
γ 0.1136 1.1513 1.2464 0.0766 1.0021 1.0450 0.0626 0.3697 0.3964
λ −0.1217 1.5794 1.6623 −0.0824 0.7816 0.8344 −0.0437 0.4614 0.4854
α 0.4648 1.4808 1.5671 0.1977 0.5611 0.6067 0.0902 0.3467 0.3701

1 1.5 0.75 0.3 2 β0 0.1089 0.6150 0.6655 0.0600 0.3760 0.4012 0.0529 0.2760 0.3021
β1 −0.1019 0.5051 0.5774 −0.0405 0.4160 0.4573 −0.0257 0.2900 0.3186
γ 0.1933 1.1773 1.2575 0.0659 1.0441 1.0983 0.0357 0.4767 0.5139
λ 0.1595 1.6046 1.6647 0.0797 0.8889 0.9307 0.0448 0.5883 0.6182
α 0.3369 1.6177 1.7026 0.1618 1.2599 1.2910 0.0729 0.4479 0.4726

5. Applications
5.1. Application 1: Times to Failure

The data sets are of times to failure (T) in rolling contact fatigue of ten hardened
steel specimens tested at each of four values of four contact stress points (x). The data
were obtained using a four-ball rolling contact test rig at the Princeton Laboratories of
Mobil Research and Development Co. The data set was given initially in McCool [30] and
reported in Chan et al. [31]. These data sets were also analyzed in Lemonte [25], who, like
Chan et al. [31], considered the regression model

Yi = β0 + β1 log(Xi) + εi, i = 1, . . . , 40.

For the regression model described above, we propose using the sinh-normal (SHN)
distribution, skewed sinh-normal (SESN), and skewed sinh power-normal (SPESN) distri-
butions for εi, i = 1, 2, . . . , n. To compare the fitness of these models, we use the Akaike [32]
criterion, namely

AIC = −2ˆ̀(·) + 2k,

where k is the number of parameters in the model. According to this criterion, the model
that best fits the data is the one with the lowest AIC. The SESN model can be obtained as a
special case of the SPESN model when α = 1. The estimates for the parameters of these
models are presented in Table 2.

Table 2. MLE estimates for the SHN, SESN, and SPESN models.

Parameters SHN SESN SPESN

γ 1.279 (0.143) 2.011 (0.313) 5.379 (0.189)
β0 0.097 (0.170) −0.961 (0.166) −2.620 (0.060)
β∗0 0.165 0.289
β1 −14.116 (1.571) −13.870 (1.602) −13.602 (1.579)
λ 1.642 (0.618) −0.932 (0.174)
α 13.889 (4.991)

AIC 129.235 125.360 122.917

According to the AIC criterion, the SPESN model presents the best fit to the data set.
Making the correction in the intercept of the SPESN model, we find that β̂∗0 = 0.289, so we
estimate the vector θ̂∗ = (0.289,−13.602)>. We can conclude that the regression model
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with SPESN error distribution provides a better fit than the regression model with SESN
error distribution.

We consider now the problem of testing the null hypothesis of no difference between
the SPESN model and the traditional SHN model, that is,

H01 : (λ, α) = (0, 1) versus H11 : (λ, α) 6= (0, 1)

using the likelihood ratio statistics (models are nested)

Λ1 =
LSHN(θ̂)

LSPESN(θ̂)
.

Numerical evaluations indicate that

−2 log(Λ1) = −2(−59.951 + 56.458) = 6.986,

which is greater than the 5% critical value 5.991. Therefore, the null hypothesis is rejected
and we conclude that the SPESN model (which involves two extra parameters, making it
more flexible in terms of asymmetry and kurtosis) fits the data better (in fact, much better)
than the SHN model.

The SPESN model is also compared to the SESN model by testing the hypothesis

H02 : α = 1 versus H12 : α 6= 1,

respectively, using the likelihood ratio statistics Λ2 = `SESN(θ̂)
`SPESN(θ̂)

After numerical evaluations,

we obtain −2 log(Λ2) = 4.886, which is greater than critical value χ2
1,95% = 3.841, so that

H02 is rejected at the 5% critical value.
Note that the skewed log-linear Birnbaum–Saunders alpha-power model provides

better fit to the data set the corresponding ones for the remaining models.
To confirm the good fit of the distributions used for the error term, we plotted the

transformed standardized residual scale Zi = (2/γ) sinh(Yi − x>β)/2 for the distribution
of the estimated errors. Under this scale, the distribution of Z is normal for the SHN model,
while for the SESN model, Z is the ordinary SN distribution and for the SPESN model, Z is
PESN distribution. Figure 5 depicts the distribution for the scaled residuals Z for the set of
models with the corresponding theoretical distributions.
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Figure 5. Histogram for the scaled residuals Z, from the fitted models. (a) SHN, (b) SESN and (c) SPESN .

Figure 6 shows the qq-plots for the scaled residuals Z for the set of models SSN and
SESN with the indicated theoretical distributions. One can see the good fit of the model
with errors SPESN. Thus, this model is presented as a viable alternative to study data when
the distribution of the response variable is asymmetric.
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Figure 6. Qq-plots for the scaled residuals Z, from the fitted models. (a) SESN and (b) SPESN .

5.2. Application 2: Patients with Advanced Lung Cancer Status

The second application reported is related to the censored data set presented in
Kalbfleisch and Prentice [33]. The uncensored data set under study corresponds to 128 male
patients with advanced lung cancer status. The study aims at explaining the survival time
T (in days) using a regression model. The explanatory variables that we consider were the
following: a randomized measure of patients condition (Karnofsky). The data set was also
analyzed in Martínez-Flores et al. [19]. Consider the regression model

Yi = β0 + β1 log(x1) + β4 log(x4) + εi, i = 1, . . . , 128.

where (x1) is 10–30 fully randomized, 40–60 partially, and 70–90 patient’s ability for selfcare
and x4 histologic tumor squamous type: dichotomized as 1 for “yes” and 0 for “no” The
estimates for the parameters of these models are presented in Table 3.

Table 3. MLE estimates for the SHN, SESN, and SPESN models.

Parameters SHN SESN SPESN

γ 2.412 (0.153) 6.963 ( 2.185) 43.489 (19.792)
β0 1.524 (0.837) −1.356 ( 0.713) −5.678 (0.954)
β1 0.041 ( 0.015) 0.034 (0.007) 0.033 (0.004)
β2 −0.129 ( 0.509) 0.488 ( 0.305) 0.5776 (0.194)
λ 8.505 (5.523) 9.793 (16.669)
α 2.468 (0.306)

AIC 322.208 193.285 154.786

According to the AIC criterion, the SPESN model presents the best fit to the data set.
We can conclude that the regression model with SPESN error distribution provides a better
fit than the regression model with SESN error distribution.

We consider now the problem of testing the null hypothesis of no difference between
the SPESN model and the traditional SHN model, using the likelihood ratio statistics

(models are nested) Λ1 = LSHN(θ̂)
LSPESN(θ̂)

. After numerical evaluations, we obtain −2 log(Λ1) =

169.422, which is greater than the 5% critical value 5.991. Therefore, the null hypothesis
is rejected and we conclude that the SPESN model (which involves two extra parameters,
making it more flexible in terms of asymmetry and kurtosis) fits the data better (in fact,
much better) than the SHN model. The SPESN model is also compared to the SESN

model by testing the hypothesis, using the likelihood ratio statistics Λ2 = `SESN(θ̂)
`SPESN(θ̂)

After
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numerical evaluations, we obtain −2 log(Λ2) = 39.495, which is greater than critical value
χ2

1,95% = 3.841, so that H02 is rejected at the 5% critical value.
Note that skewed log-linear Birnbaum–Saunders alpha-power model provides better

fit to the data set the corresponding ones for the remaining models.
To confirm the good fit of the distributions used for the error term, we plotted the

transformed standardized residual scale Zi = (2/γ) sinh(Yi − x>β)/2 for the distribution
of the estimated errors. Under this scale, the distribution of Z is normal for the SHN model,
while for the SESN model, Z is the ordinary SN distribution and for the SPESN model, Z is
PESN distribution. Figure 7 depicts the distribution for the scaled residuals Z for the set of
models with the corresponding theoretical distributions.

scale residuals

pr
ob

ab
ili

ty

−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

(a)

scale residuals

pr
ob

ab
ili

ty

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

(b)

scale residuals

pr
ob

ab
ili

ty

0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c)

Figure 7. Histogram for the scaled residuals Z, from the fitted models. (a) SHN, (b) SESN and
(c) SPESN.

Figure 8 shows the qq-plots for the scaled residuals Z for the set of models SSN and
SESN with the indicated theoretical distributions. One can see the good fit of the model
with errors SPESN. Thus, this model is presented as a viable alternative to study data when
the distribution of the response variable is asymmetric.

0 1 2 3 4

0

1

2

3

4

Sample quantiles

T
he

or
et

ic
al

 q
ua

nt
ile

s

(a)

0 1 2 3 4

0

1

2

3

4

Sample quantiles

T
he

or
et

ic
al

 q
ua

nt
ile

s

(b)

Figure 8. Qq-plots for the scaled residuals Z, from the fitted models. (a) SESN and (b) SPESN.
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6. Conclusions

This paper introduced an extension of the log-linear Birnbaum–Saunders model by
replacing the sin-normal distribution for the error term by the skew-sinh-power-normal
distribution. Some features of the new model are:

• The introduction of two extra shape parameters makes the error distribution more
flexible, allowing it to incorporate additional kurtosis and asymmetry.

• Maximum likelihood properties of large samples such as consistency and asymptotic
normality were established.

• A simulation study was performed to evaluate of the ML estimations. As expected, the bias
and standard deviation of our estimation decrease as the sample size n increases.

• In the applications, AIC criteria statistics are used. These criteria indicate that the
model that best fit the data is SPESN model.

• A Bayesian approach will be worked on in a future work.
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