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Abstract: We introduce a new geometric constant Jin(X) based on a generalization of the parallelo-
gram law, which is symmetric and related to the length of the inscribed quadrilateral side of the unit
ball. We first investigate some basic properties of this new coefficient. Next, it is shown that, for a
Banach space, Jin(X) becomes 16 if and only if the norm is induced by an inner product. Moreover,
its properties and some relations between other well-known geometric constants are studied. Finally,
a sufficient condition which implies normal structure is presented.
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1. Introduction

In recent years, many geometric constants have been defined and studied in the
literature, which makes it easier for us to deal with some problems in Banach space,
because it can describe the geometric properties of space quantitatively. These geometric
constants have mathematical beauty, and there are countless relationships between different
geometric constants. One of the best known is the von Neumann–Jordan constant CNJ(X)
and the James constant J(X). Readers interested in this field are advised to see [1–6] and
the references mentioned therein. It is worth mentioning that geometric constants play
a vital role as a tool for solving other problems, such as in the study of Banach–Stone
theorem, Bishop–Phelps–Bollobás theorem, and Tingley’s Problem. These are important
research topics in the area of functional analysis and we recommend that readers refer to
the literature [7–9].

Among all normed spaces, the Hilbert spaces are generally considered to have the
simplest and clearest geometric structure. Many mathematicians have found the conditions
on normed spaces under which such spaces become inner product spaces. Results of
this kind are of importance in functional analysis—for example, in the theory of operator
algebras and certain stability problems [10,11]. In addition, since every physical system
is associated with a Hilbert space, the notion of inner product space also plays a crucial
role in quantum mechanics; see [12]. The rich theory of Hilbert spaces has been created
by the efforts of many mathematicians; refer to [13–15] for more details. It is worth noting
that the background meaning of many famous geometric constants is closely related to the
description of inner product spaces.

The first norm characterization of inner product spaces was given by Fréchet [16]
in 1935.

Lemma 1 ([16]). A complex normed space (X, ‖ · ‖) is an inner product space if and only if

‖x1 + x2‖2 + ‖x2 + x3‖2 + ‖x1 + x3‖2 = ‖x1 + x2 + x3‖2 + ‖x1‖2 + ‖x2‖2 + ‖x3‖2

for all x1, x2, x3 ∈ X.
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If we consider the usual Euclidean space (Rn, ‖ · ‖), then the identity ‖x + y‖2 + ‖x−
y‖2 = 2‖x‖2 + 2‖y‖2 is called the parallelogram law, and it is well known. This identity can
be naturally extended to the more general case. Research on the equivalent characterization
of inner product space has been attracting much attention. We refer the readers to [17,18]
for more details.

M. M. Day [19] gave the following weaker characterization, referred to as “the rhom-
bus law”.

Lemma 2 ([19]). Let (X, ‖ · ‖) be a real normed linear space. Then, ‖ · ‖ derives from an inner
product if and only if

‖x1 + x2‖2 + ‖x1 − x2‖2 ∼ 4

for all x1, x2 ∈ SX , where ∼ stands either for ≤ or for ≥.

2. Preliminaries

We now give some definitions related to geometric constants. Let X be a real Ba-
nach space with dim X ≥ 2 and denote by SX and BX the unit sphere and the unit ball,
respectively.

In combination with Jordan and von Neumann’s [20] brilliant work on the charac-
terization of inner product spaces by the parallelogram law, Clarkson [21] first proposed
the von Neumann–Jordan constant CNJ(X) of Banach space. More precisely, the von
Neumann–Jordan constant of X is defined by

CNJ(X) = sup
{
‖x1 + x2‖2 + ‖x1 − x2‖2

2(‖x1‖2 + ‖x2‖2)
: x1, x2 ∈ X, (x1, x2) 6= (0, 0)

}
.

The James constant J(X) of a Banach space X is introduced by Gao and Lau [22]
as follows:

J(X) = sup{min{‖x1 + x2‖, ‖x1 − x2‖} : x1, x2 ∈ SX}.

Moreover, the various properties of these constants are given in [22–24]:
(1)
√

2 ≤ J(X) ≤ 2.
(2) J(X) =

√
2 whenever X represents Hilbert space; the converse is not correct.

(3) 1 ≤ CNJ(X) ≤ 2.
(4) X is a Hilbert space if CNJ(X) = 1.
(5) X is uniformly non-square if CNJ(X) < 2.
(6) CNJ(X) = CNJ(X∗) .
The modified von Neumann–Jordan constant

C′NJ(X) := sup
{
‖x1 + x2‖2 + ‖x1 − x2‖2

4
: x1, x2 ∈ SX

}
was studied by Takahashi [25] and Alonso et al. [2].

Recall that the Banach space X is called uniformly non-square [26] if there exists a
δ ∈ (0, 1) such that for any x1, x2 ∈ SX either ‖x1+x2‖

2 ≤ 1− δ or ‖x1−x2‖
2 ≤ 1− δ. It is

known that X is uniformly non-square if and only if C′NJ(X) < 2.

Definition 1 ([27]). A Banach space (X, ‖ · ‖) is non-square if, for every x1, x2 ∈ SX , we have

min{‖x1 + x2‖, ‖x1 − x2‖} < 2.

Baronti et al. defined the following two new constants, which are related to the
perimeter of an inscribed triangle in a semicircle of normed space.



Symmetry 2021, 13, 1294 3 of 10

Definition 2 ([28]).

A1(X) =
1
2

inf
x1∈SX

sup
x2∈SX

(‖x1 − x2‖+ ‖x1 + x2‖)

and
A2(X) =

1
2

sup
x1∈SX

sup
x2∈SX

(‖x1 − x2‖+ ‖x1 + x2‖).

Javier Alonso and Enrique Llorens-Fuster [29] also introduced the constants

t(x) = inf
x1∈SX

sup
x2∈SX

√
‖x1 + x2‖‖x1 − x2‖,

T(x) = sup
x1,x2∈SX

√
‖x1 + x2‖‖x1 − x2‖.

It is intuitive to show that the geometric meaning of t(x) and T(x) is the geometric
mean of the diagonals of a “rhombus”.

Fu et al. also introduced the constants:

JL(X) = inf{‖x1 − x2‖, ‖x2 − x3‖, ‖x1 − x3‖ : ‖x1‖ = ‖x2‖ = ‖x3‖ = 1, x1 + x2 + x3 = 0};

YJ(X) = sup{‖x1 − x2‖, ‖x2 − x3‖, ‖x1 − x3‖ : ‖x1‖ = ‖x2‖ = ‖x3‖ = 1, x1 + x2 + x3 = 0},

which are related to the side lengths of the inscribed triangles of unit balls to study the
geometric properties of Banach spaces. Moreover, the various properties of these constants
are given in [30] :

(1) 1 ≤ JL(X) ≤ 2,
√

3 ≤ YJ(X) ≤ 2.
(2) Let X be a Hilbert space, then JL(X) = YJ(X) =

√
3.

(3) 2
J(X)
≤ JL(X) ≤ YJ(X) ≤

√
4J(X)− 1.

Inspired by the above constants, and in combination with the characterization of the
inner product space, we define a new geometric constant Jin(X) and some related prop-
erties are discussed. Furthermore, we attempt to relate this to other important geometric
concepts and finally give an application that is closely related to normal structure.

The paper is organized as follows: we exhibit some basic properties of this new
coefficient in the next section. Furthermore, the connections between Hilbert spaces are
investigated. The relationship between the constant Jin(X) and other well-known constants
is emphasized in terms of nontrivial inequalities. In Section 4, we establish a new necessary
condition for Banach spaces with normal structure in the form of Jin(X).

3. Constant Jin(X)

It is well known that the circle and its inscribed polygon is an important research
topic in Euclidean geometry. The results of this study reveal many important geometric
properties of Euclidean planes. Some results have been generalized to Banach spaces, such
as orthogonality, angle, circumference, and other geometric concepts. Instead of Euclidean
plane geometry, we consider a more general case, in the framework of a Banach space. We
can invesigate the Banach space by considering its unit sphere, because the unit sphere
can largely reflect the geometric properties of a space X, such as the well-known convexity.
According to the result of [31], in many cases, we only need to consider the extreme points
on the unit ball to study the geometric constant; for some classical Banach spaces, such as
l1, l∞, the two dimensional case, the number of its extreme points on the unit ball is four or
more. In a way, our four variables are significant, either in terms of the four sides of an
inscribed quadrilateral and its two diagonals to understand, or through four variables,
which are special points. Considering these factors, we begin by introducing the following
key definition:
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Definition 3.

Jin(X) = sup
{

∑ ‖xi − xj‖2 : xi, xj ∈ SX , 1 ≤ i < j ≤ 4, i, j ∈ {1, 2, 3, 4},
4

∑
i=1

xi = 0
}

= sup
{
‖x1 − x2‖2 + ‖x2 − x3‖2 + ‖x1 − x3‖2 + ‖x1 − x4‖2

+ ‖x2 − x4‖2 + ‖x3 − x4‖2 : x1, x2, x3, x4 ∈ SX , x1 + x2 + x3 + x4 = 0
}

.

In fact, upon observation, we find that the constant Jin(X) is symmetric because the
positions of x1, x2, x3, and x4 are interchangeable, and point x1 + x2 is actually symmetric
to point x3 + x4. The constant Jin(X) can be understood in a very intuitive way: the sum
of the squares of the lengths of the four sides of the inscribed quadrilateral plus the sum of
the squares of the two diagonals.

Proposition 1. Suppose that X is a normed space. Then,

Jin(X) ≥ 8C′NJ(X) + 8.

Proof. Assume x1 = x, x2 = −x, x3 = y, x4 = −y and x, y ∈ SX ; then, we have

‖x1 − x2‖2 + ‖x2 − x3‖2 + ‖x1 − x3‖2

+ ‖x1 − x4‖2 + ‖x2 − x4‖2 + ‖x3 − x4‖2

= ‖2x‖2 + ‖x + y‖2 + ‖x− y‖2

+ ‖x + y‖2 + ‖x− y‖2 + ‖2y‖2

= 2‖x + y‖2 + 2‖x− y‖2 + 8.

Hence, we can deduce that

Jin(X) ≥ 8C′NJ(X) + 8.

From Proposition 1, we can obtain the following estimate.

Proposition 2. Suppose that X is a normed space. Then,

16 ≤ Jin(X) ≤ 24.

Proof. Using the same method as in Proposition 1, we can conclude that

Jin(X) ≥ 2‖x + y‖2 + 2‖x− y‖2 + 8

for any x, y ∈ SX , letting x = −y and hence Jin(X) ≥ 16.
The latter assertion can be derived from the following estimate

‖x1 + x2‖2 ≤ 2‖x1‖2 + 2‖x2‖2,

as desired.
Next, we give the following two examples, which illustrate the relationship between

the constant Jin(X) and the four variables.

Example 1. Let X be R2 with the norm defined by

‖(x1, x2)‖ = max{|x1|, |x2|}.
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Letting x1 = (1, 1), x2 = (1,−1), x3 = (−1, 1), x4 = (−1,−1), it is easy to see that

‖x1 − x2‖ = ‖x2 − x3‖ = ‖x1 − x3‖ = ‖x1 − x4‖ = ‖x2 − x4‖ = ‖x3 − x4‖ = 2

and x1 + x2 + x3 + x4 = 0. Hence, we can obtain Jin(X) = 24.

Example 2. Let X be R2 with the norm defined by

‖(x1, x2)‖ = |x1|+ |x2|.

Letting x1 = (1, 0), x2 = (−1, 0), x3 = (0, 1), x4 = (0,−1), we then have

‖x1 − x2‖ = ‖x2 − x3‖ = ‖x1 − x3‖ = ‖x1 − x4‖ = ‖x2 − x4‖ = ‖x3 − x4‖ = 2

and x1 + x2 + x3 + x4 = 0. Thus, Jin(X) = 24.

Proposition 3. Suppose that X is a normed space. Then,

Jin(X) ≥ 4J(X)2 + 8.

Proof. Using the same method as in Proposition 1 and applying the elementary inequality,
we can conclude that

Jin(X) ≥ 2‖x1 + x2‖2 + 2‖x1 − x2‖2 + 8

= 4
‖x1 + x2‖2 + ‖x1 − x2‖2

2
+ 8

≥ 4 min{‖x1 + x2‖2, ‖x1 − x2‖2}+ 8

for any x1, x2 ∈ SX . Hence,
Jin(X) ≥ 4J(X)2 + 8.

Theorem 1. Let X be a Banach space. Then, Jin(X) = 16 if and only if X is a Hilbert space.

Proof. By Lemma 1, we can deduce that

‖x1 + x2‖2 + ‖x2 + x3‖2 + ‖x1 + x3‖2 = 4

for any x1, x2, x3, x4 ∈ SX , x1 + x2 + x3 + x4 = 0.
Applying the parallelogram law, we obtain that

‖x1 + x2‖2 + ‖x1 − x2‖2

+ ‖x2 + x3‖2 + ‖x2 − x3‖2

+ ‖x1 + x3‖2 + ‖x1 − x3‖2

= 12.

Thus, we have

‖x1 − x2‖2 + ‖x2 − x3‖2 + ‖x1 − x3‖2 = 8.

Analogously, we can prove that

‖x1 − x2‖2 + ‖x2 − x4‖2 + ‖x1 − x4‖2 = 8;

‖x2 − x3‖2 + ‖x2 − x4‖2 + ‖x3 − x4‖2 = 8;
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‖x1 − x3‖2 + ‖x1 − x4‖2 + ‖x3 − x4‖2 = 8.

From the above, it follows that

‖x1 − x2‖2 + ‖x2 − x3‖2 + ‖x1 − x3‖2 + ‖x1 − x4‖2 + ‖x2 − x4‖2 + ‖x3 − x4‖2 = 16.

For the second part of the proof, we suppose Jin(X) = 16. Then, we have

‖x1 − x2‖2 + ‖x2 − x3‖2 + ‖x1 − x3‖2 + ‖x1 − x4‖2 + ‖x2 − x4‖2 + ‖x3 − x4‖2 ≤ 16

for any x1, x2, x3, x4 ∈ SX , x1 + x2 + x3 + x4 = 0.
Letting x1 = x, x2 = −x, x3 = y, x4 = −y and x, y ∈ SX , we obtain

‖x1 − x2‖2 + ‖x2 − x3‖2 + ‖x1 − x3‖2

+ ‖x1 − x4‖2 + ‖x2 − x4‖2 + ‖x3 − x4‖2

= 2‖x + y‖2 + 2‖x− y‖2 + ‖2y‖2 + ‖2y‖2

≤ 16.

Consequently,
‖x + y‖2 + ‖x− y‖2 ≤ 4

for any x, y ∈ SX . Thus, X is a Hilbert space directly from Lemma 2.

Proposition 4. Let X be a Banach space; if X is not non-square, then Jin(X) = 24.

Proof. First note that X is not non-square and therefore there exist xn, yn ∈ SX for which

‖xn + yn‖ → 2, ‖xn − yn‖ → 2 (n→ ∞).

Letting x1 = xn, x2 = −xn, x3 = yn, x4 = −yn and xn, yn ∈ SX , we obtain

‖x1 − x2‖2 + ‖x2 − x3‖2 + ‖x1 − x3‖2

+ ‖x1 − x4‖2 + ‖x2 − x4‖2 + ‖x3 − x4‖2

= 2‖xn + yn‖2 + 2‖xn − yn‖2 + 8,

which implies that Jin(X) = 24.
Proposition 4 is thereby proven.
Contractive mappings are closely related to the fixed point property, which plays an

important role in the application of Banach space geometry. It is worth noting that contrac-
tive mappings have attracted more interest in other scientific branches; refer to [32–34] for
more details. Garca-Falset et al. [35] proved that uniformly non-square Banach space has a
fixed point property. Next, we establish a necessary condition for Banach spaces that have
a fixed point property in the form of Jin(X).

Proposition 5. Assume X is a Banach space with Jin(X) < 24; then, X has the fixed point property.

Proof. By Proposition 1, we obtain that

C′NJ(X) ≤ Jin(X)− 8
8

.

This implies that C′NJ(X) < 2 and hence X is uniformly non-square. Thus, we can
deduce that X has the fixed point property (see [35]), as desired.
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4. The Coefficient of Weak Orthogonality

Definition 4 ([36]). A nonempty bounded and convex subset K of a Banach space X is said to have
normal structure if, for every convex subset H of K that contains more than one point, there exists a
point x0 ∈ H such that

sup{‖x0 − x1‖ : x1 ∈ H} < sup{‖x1 − x2‖ : x1, x2 ∈ H}.

A Banach space X is said to have weak normal structure if each weakly compact
convex set K in X that contains more than one point has normal structure. Obviously, for a
reflexive Banach space, weak normal structure and normal structure coincide. Let Y be a
subset of a Banach space X. A mapping g : Y → Y is called a nonexpansive mapping if
‖gx1 − gx2‖ ≤ ‖x1 − x2‖ for any x1, x2 ∈ Y. A large body of literature shows that normal
structure plays an important role in the fixed point theory of nonexpansive mappings
(see [37]).

Definition 5 ([38]). A Banach space X is said to have the property WORTH whenever

lim sup
n→∞

|‖zn + z‖ − ‖zn − z‖| = 0

for all weakly null sequences zn in X and all the elements z of X.

Years later, Sims introduced a parameter [39] on the original basis:

w(X) = sup
{

λ > 0 : λ · lim inf
n→∞

‖zn + z‖ ≤ lim inf
n→∞

‖zn − z‖
}

where the supremum takes over all the weakly null sequences zn in X and all the elements
z of X. It was proven that 1

3 ≤ w(X) ≤ 1 for all Banach space X.
We begin by starting with two lemmas, which will be our main tools.

Lemma 3 ([40]). Let X be a Banach space without weak normal structure; then, for any 0 < ε < 1,
there exists a sequence {zn} ⊆ SX with zn

w−→ 0, and

1− ε < ‖zn+1 − z‖ < 1 + ε

for sufficiently large n, and any z ∈ co{zk}n
k=1.

From Lemma 3, we obtain the following:

Lemma 4. Let X be a Banach space without weak normal structure; then, for any 0 < ε < w(X),
there exists an zn in SX , satisfying

(i) 1− ε ≤ ‖zn − z‖ ≤ 1 + ε;
(ii) ‖zn − z1‖ ≤ 1 + ε;
(iii) ‖zn + x1‖ ≤ 1+ε

w(X)−ε
,

where z ∈ co{zk}n
k=1.

Proof. By defining w(X) and Lemma 3, we can easily obtain the result, so we omit
the proof.

By characterizing the relation between weak orthogonal coefficient w(X) and constant
Jin(X), a sufficient condition for Banach space to have normal structure is given.

Theorem 2. If
Jin(X) < 10w(X)2 + 4w(X) + 10,

then the Banach space X has normal structure.
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Proof. Let z1 and zn be as in Lemma 4, and let

x1 =
zn − z1

‖zn − z1‖
, x2 =

−(w(X)− ε)(zn + z1)

‖(w(X)− ε)(zn + z1)‖

and

x3 =
z1 − zn

‖zn − z1‖
, x4 =

(w(X)− ε)(zn + z1)

‖(w(X)− ε)(zn + z1)‖
.

Then, x1, x2, x3, x4 belong to SX and x1 + x2 + x3 + x4 = 0. We set

A =
1

‖zn − z1‖
+

w(X)− ε

‖(w(X)− ε)(zn + z1)‖

and

B =
1

‖zn − z1‖
− w(X)− ε

‖(w(X)− ε)(zn + z1)‖
.

Then, we obtain

‖x1 − x2‖2 = (A‖zn −
B
A

z1‖)2

=

(
A
∥∥∥∥zn −

(
B
A

z1 +
A− B

A
· 0
)∥∥∥∥)2

≥ (A(1− ε))2 (by Lemma 4(i))

and
‖x1 − x4‖2 = ‖Az1 − Bzn‖2

≥ (‖Az1‖ − ‖Bzn‖)2

= (A− B)2

=

(
2w(X)− 2ε

‖(w(X)− ε)(zn + z1)‖

)2

.

Similarly, we can deduce

‖x2 − x3‖2 ≥
(

2w(X)− 2ε

‖(w(X)− ε)(zn + z1)‖

)2

, ‖x3 − x4‖2 ≥ (A(1− ε))2.

Furthermore,
‖x1 − x3‖2 = 4, ‖x2 − x4‖2 = 4.

Note that if ε→ 0, then A ≥ 1 + w(X). Therefore, from the definition of Jin(X) and
letting ε→ 0, we have

Jin(X) ≥ 10w(X)2 + 4w(X) + 10.

In the case of Jin(X) < 10w(X)2 + 4w(X) + 10, we have Jin(X) < 24, and so X is
uniformly nonsquare. Therefore, X is reflexive [26], which implies that normal structure
equals weak normal structure, as required.

5. Conclusions

Based on the characterization of inner product space and the relative background of
classical Euclidean geometry, we define a new geometric constant Jin(X) for a Banach space
X. It is remarkable that the constant Jin(X) is symmetric and related to the length of the
inscribed quadrilateral side of the unit ball. The introduction of the constant Jin(X) takes
the bridge, attempting to establish a new relationship with the classical constant. In some
ways, it provides some ideas for studying the geometric constants of the four variables.
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