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Abstract: As the core component of the valve cooling system in a converter station, the main pump
plays a major role in ensuring the stable operation of the valve. Thus, accurate and efficient fault
diagnosis of the main pump according to vibration signals is of positive significance for the detection
of failure equipment and reducing the maintenance cost. This paper proposed a new neural network
based on the vibration signals of the main pump to classify four faults and one normal state of the
main pump, which consisted of a convolutional neural network (CNN) and long short-term memory
(LSTM). Multi-scale features were extracted by two CNNs with different kernel sizes, and temporal
features were extracted by LSTM. Moreover, random sampling was used in data processing for
imbalanced data, which is meaningful for data symmetry. Experimental results indicated that the
accuracy of the network was 0.987 obtained from the test set, and the average values of F1-score,
recall, and precision were 0.987, 0.987, and 0.988, respectively. It was found that the proposed network
performed well in a multi-label fault diagnosis of the main pump and was superior to other methods.

Keywords: fault diagnosis; main pump; convolutional neural network; recurrent neural network;
feature fusion; deep neural network

1. Introduction

The main pump, the core of the valve cooling system, is powered for the cooling
system medium to ensure the converter valve work at a normal temperature through heat
exchange, which can affect the safety and stability of HVDC and even threaten large-scale
renewable power generation and load electrification [1,2]. Therefore, it has great practical
significance for fault diagnosis of the main pump [3,4]. However, there are few studies on
fault diagnosis of the main pump, and most of the existing methods are time-consuming
and laborious. Therefore, it is urgent to develop an algorithm that can timely diagnose the
state of the main pump with high accuracy.

Generally, the main pump is a horizontal centrifugal pump to undertake the power
supply task, thus the main pump in this paper refers to the horizontal centrifugal pump [5].
In practical application, four faults and one normal state of the main pump appear most,
namely unbalance, looseness, parallel misalignment (PM), angular misalignment (AM),
and normal.

At present, two main methods have been applied for the fault diagnosis of the main
pump, machine learning, and deep learning. The former is to extract the signal features
manually and carry out fault diagnosis by machine learning methods, such as support
vector machine (SVM), k-neighborhood algorithm (KNN), and so on. Kumar et al. [6]
extracted the features from the original signal and scale edge integral graph, optimized the
SVM parameters by genetic algorithm (GA), trained SVM with the optimal parameters,
and classified the characteristics of the centrifugal pump. The classification accuracy can
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reach 96.66%. Ebrahimi et al. [7] decomposed the vibration signal in three levels by the
Daubechies wavelet, and 44 descriptive statistical features were extracted from the detail
coefficients and approximation coefficients of the wavelet. The SVM classifier with an
accuracy of 96.67% was obtained. Hui et al. [8] proposed a time-frequency signal analysis
method based on the theory of cyclostationary. Firstly, the cyclic autocorrelation function
(CAFs) of various signals was calculated, and then the features of CAFs in the frequency do-
main were obtained by FFT, thus as to carry out the fault classification. Janani et al. [9] used
a wrapper model to select the appropriate features from the power spectrum of vibration
signal and line current signal in an induction motor. The features were input into a multi-
class support vector machine (MSVM), and the optimal MSVM classifier was obtained by
using the fivefold cross-validation to select the optimal Gaussian radial basis function (RBF)
and MSVM parameters. Maamar et al. [10] combined multilayer perceptron with backward
propagation (MLP-BP) and genetic algorithm (GA). The feature extraction was carried out
by using continuous wavelet transform and three different wavelet functions, and then
GA optimized the number of hidden layers and neurons of MLP-BP. Janani et al. [11] pro-
posed two methods based on MSVM, best energy (BE) criterion, and principal component
analysis (PCA). The current and vibration signals of motor were preprocessed by wavelet
packet transform (WPT), and then the appropriate features were selected according to
BE and PCA, and finally, the classification was completed by MSVM. Zahoor et al. [12]
proposed a three-level fault diagnosis strategy. Firstly, the fault characteristic modes of
vibration signals were identified and selected, and then the mixed features were extracted
in the time domain, frequency domain, and time-frequency domain of vibration signals.
Then, the high correlation features in mixed features were dimensioned and a new feature
pool was formed by using Pearson linear discriminant analysis (PLDA). Finally, the fault
classification was carried out by KNN. Zahoor et al. [13] used cross-correlation between
health baseline signal and other kinds of signals to obtain new features from the correlation
sequence. Then, they extracted the mixed features in time domain, frequency domain,
and time-frequency domain from these features and formed feature vectors by calculating
correlation coefficients between different signals. Finally, they input feature vectors into
MSVM to implement fault diagnosis. The research on fault diagnosis of the main pump
mostly adopts the above methods, but they are time-consuming and may cause mistakes
due to human misinterpretation.

The latter is to preprocess the signal and extract features automatically through deep
learning methods to implement fault diagnosis. Deep learning methods have been used
in fault diagnosis of mechanical equipment because of their superior ability of automatic
feature extraction, especially convolutional neural network (CNN) and recurrent neural
network (RNN). Wang et al. [14] transformed the raw signal into a spectrum signal through
discrete Fourier transform (DFT) and then stacked the spectrum signal as a sample to
input into CNN. Guo et al. [15] proposed a hierarchical CNN network structure with an
adaptive learning rate. The first layer was used to recognize the fault type of bearing.
The second layer was used to evaluate the fault size in the bearing. Because the learn-
ing rate had a great impact on the network, they also proposed a method to obtain an
adaptive learning rate for making an improvement on the training effect of the network.
Zhang et al. [16] studied the rolling bearing fault in a noisy environment and under the
condition of constantly changing workload and proposed a new CNN training method,
which greatly improved the robustness of the network and maintained high accuracy and
stability even in a noisy environment and under the condition of constantly changing
workload. Kumar et al. [17] proposed an improved CNN. The gray image of the sound
signal was obtained by processing the sound signal with the analytic wavelet function
(AWT). They used a new divergence function based on entropy as the loss function of CNN
to solve the overfitting problem of CNN. Considering the outstanding extraction ability for
temporal features in fault diagnosis, RNN based fault diagnosis model has been widely
developed. Talebi et al. [18] put forward the idea of dynamic modeling of RNN based wind
turbines for solving the inevitable problem, which is the wind energy conversion system
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fault. The residual error was obtained by comparing the built model with the actual system
output for improving the performance of the built model. Experiments showed that the
scheme could quickly obtain the fault diagnosis results, and the diagnosis effect was very
effective. Przystalka et al. [19] proposed a robust fault detection method based on RNN and
chaotic engineering by using local RNN to learn the chaotic behavior of chaotic engineering
system. Mrugalski et al. [20] optimized the dynamic nonlinear system, especially studied
the robustness of fault diagnosis. The results output a set of fault diagnosis model to
make an improvement on the robustness of RNN. The model was used to simulate the
disturbance attenuation process of a dynamic nonlinear system, and the results showed
that the system could improve the robustness of fault estimation. Although deep learning
has made some achievements in the field of mechanical fault diagnosis with high efficiency,
there are few pieces of research on the application of deep learning methods in main pump
fault diagnosis. At the same time, CNN’s superior feature extraction ability and automatic
feature extraction can get rid of the shortcomings of traditional fault diagnosis methods in
manual feature extraction, but CNN cannot extract the temporal features of the signal. On
the other hand, RNN can effectively extract the temporal features of signal, but its feature
extraction ability is not as good as CNN in other aspects.

In order to solve the above problems, this paper proposed a fault diagnosis method
based on Muti-scale Convolutional Neural Network and Long Short-Term Memory (MCNN-
LSTM) hybrid neural network model for the main pump of valve cooling system in a
converter station, and the performance of the model was evaluated by several indexes.
This method takes into account the extraction of temporal and spatial features and retains
the most features as far as possible, which makes this method more accurate than other
methods. The experimental results showed that the method can diagnose the main pump
quickly and accurately and had good generalizability. In this paper, Section 2 discusses
the related works such as 1DCNN and LSTM. Section 3 introduces the construction and
function of network in detail. Section 4 provides the composition and preprocessing of
data. Section 5 describes the experiment and analyzes the results, and Section 6 draws
a conclusion.

2. Related Work
2.1. One-Dimensional Convolutional Neural Network (1DCNN)

CNN is an efficient algorithm for image recognition. It is a deep feedforward neural
network including convolution operation. CNN is highly invariant to translation, scaling,
tilting, or other forms of deformation, thus it is mainly used to identify two-dimensional
(2D) images with distortion invariance. CNN is commonly classified into 1DCNN and
2DCNN. 2DCNN is usually used for image feature extraction. 2D filter convolutes the
data on the two-dimensional plane to extract features, but it will cause the loss of time
features when processing time series data. The 1DCNN’s 1D filter will convolute along
a single dimension, which can conserve the temporal features of the data. The vibration
signal studied in this paper is 1D data and has obvious time characteristics, thus 1DCNN
is used to extract data features. The convolution operation of 1DCNN’s convolution layer
is as follows:

xl+1
i (j) = Kl

i × xl(j) + bl
i (1)

where K and b are the weights and biases of the i-th filter of the l-st layer, respectively, and
are the i-th local input of the l-th layer.

After the 1D convolution layer, the max-pooling layer is applied to decreasing the
dimension and compressing the features, thus as to decrease the computational load of the
model and extract the major features. The pooling operation of the max-pooling layer is
as follows:

Pl+1
i (j) = max

(j−1)W+1≤t≤jW
{ql

i(t)} (2)

where q is the t-th neuron in the l-th layer of the i-th channel, and W is the width of the
pooling kernel.
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In this study, we also used the global average pooling (GAP) layer instead of the full
connection layer to regularize the structure of the whole network, prevent over fitting, and
directly give each channel the actual category meaning. The effect of the GAP was better
than that of the full connection layer.

2.2. LSTM

RNN is a kind of network model with the characteristics of memory and parameter
sharing, which can effectively process and predict sequence data. However, RNN has the
situation of gradient disappearance and gradient explosion. For dealing with this problem,
LSTM is proposed [21]. LSTM is an improved network based on traditional RNN, adding
forget gate, input gate, and output gate. According to the hidden state of the upper layer,
the forget gate adds weight to each input information through the sigmoid activation
function, thus as to determine the retention and discard of information. The input gate
uses the sigmoid activation function and the activation function to update the information,
which determines how much information to update. The output gate determines what
information is output. The three gates jointly control the updated state of the signal along
the time axis to obtain the information of each time step. The update formula of the three
doors is as follows:

f t = σ(W f xt + Viht−1 + b f ) (3)

it = σ(Wixt + Viht−1 + bi) (4)

ot = σ(Woxt + Voht−1 + bo) (5)

ct = f t � ct−1 + i� tanh(Wcxt + Vcht−1 + bc) (6)

ht = ot � tanh(ct) (7)

where b is the deviation, W and V represent the input state weight and hidden state weight,
respectively. In step t, forget gate ft, input gate it, output gate ot, and cell state ct are updated
by input xt and hidden state.

3. The Proposed Model
3.1. The Framework of Proposed Model

The framework of the proposed MCNN-LSTM network is shown in Figure 1. To
prevent the time sequence of data from being destroyed and extract multi-scale features of
data, two 1DCNN with different sizes and number of cores were selected to implement
feature extraction. Wide kernels CNN automatically extracts low-frequency features, and
narrow kernels CNN automatically extracts high-frequency features. The features were
fused after GAP, and the formed fusion features adjust the data distribution through
the Batch Normalization (BN) layer [22], thus as to speed up the network training and
convergence. Then the temporal features were extracted by two-layer LSTM. Finally, a
softmax classifier was used for output classification. The network structure proposed in
this paper was inspired by the traditional CNN-LSTM and GoogLeNet model, and some
improvements have been made. The framework of network and data transmission is
shown in Figure 1. The network parameters are shown in Table 1.
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network output is a 1 × 5 vector obtained by the softmax function. The components of the network
are 1D convolution layer, 1D pooling layer and LSTM.

Table 1. Proposed network parameters applied. The parameters of each layer, which contains the input layer, including the
number of filters, kernel size, kernel stride, input and output size of each layer.

Name Filters Kernel Size/Stride Units Input Size Output Size

Input 1024 × 3
Conv_1 50 36/2 1024 × 3 495 × 50
Conv_2 30 5/2 495 × 50 246 × 30

AveragePooling_1 2/2 246 × 30 123 × 30
Conv_3 50 7/1 1024 × 3 1018 × 50
Conv_4 40 7/1 1018 × 50 1012 × 40

Maxpooling_1 2/2 1012 × 40 506 × 40
Conv_5 30 7/1 506 × 40 500 × 30
Conv_6 30 7/2 500 × 30 247 × 30

Averagepooling_2 2/2 247 × 30 123 × 30
Batch_normalization_1 123 × 30 123 × 30

Lstm_1 60 123 × 30 123 × 60
Lstm_2 30 123 × 60 1 × 30
Dense 5 1 × 30 1 × 5

3.2. Model Setup

In this paper, the Adam algorithm [23] was used to update the parameters. The Adam
algorithm can adjust the learning rate adaptively to make the training converge faster, and
the learning rate was set to 0.006. Mean square error (MSE) was selected as a loss function.

4. Data

In order to make full use of the advantages of the deep neural network, a large quantity
of data was needed to train the network. When the main circulating pump worked in
different fault states, we collected the vibration signals from it, with a total of 1975,914 data
points, and the amplitude of data was quite different. In order to facilitate neural network
training, it was necessary to preprocess the data set first.

4.1. Data Description

The research object of this paper was the main pump of the water cooling system in the
converter valve. The main pump was a NKG200-150-400/410 H1F2KE-SBQQE centrifugal
pump. When sampling, the main pump speed was 2978 r/min, and the sampling frequency
was 12 kHz. For obtaining the data of four different faults, we artificially caused four
main pump failures. The data of normal, unbalance, looseness, parallel misalignment
(PM), and angular misalignment (AM) were collected from the vertical, horizontal, and
axial directions by vibration acceleration sensors. The experimental setup is shown in
Figure 2. The data set containing five kinds of fault data is shown in Table 2. It can be
found that the data set was characterized by serious imbalance. There were 317,031 points
in each direction of PM and AM. However, the amount of data in normal, unbalanced, and
looseness were only 8192 points in each direction.
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Table 2. Detailed data volume of various states of data set, including parallel misalignment (PM),
normal, unbalance, angular misalignment (AM), looseness.

Type Vertical Direction Horizontal Direction Axial Direction

PM 317,031 317,031 317,031
Normal 8192 8192 8192

Unbalance 8192 8192 8192
AM 317,031 317,031 317,031

Looseness 8192 8192 8192

4.2. Data Processing

From Table 1, it can be found that the data were imbalanced. In order to solve this
problem, a random sampling method [24–27] was used to enhance and balance the data set
for data symmetry. Through the comprehensive analysis of the vibration signal, the sample
length of each vibration signal was set at 1024 points, thus as to ensure the maximum
information integrity of the sample in the case of the same sample length. As for the
sample length, we compared different sample lengths in Section 5 to show the impact
of sample length on the model performance. The data in three directions was taken as
a sample for random sampling, and 1024 points in each direction were taken to form a
1000 × 1024 × 3 data set. To ensure effectiveness and robustness of proposed model, the
data set was split into 70% for training and 30% for testing to obtain 700 training samples
and 300 test samples.

Since the magnitude of the data was different, direct input of data into the model will
increase the computational load of the network, affect the classification accuracy, and model
convergence speed. Thus, standardizing the data was necessary. This paper used Z-Score
standardization, which can unify data of different amplitude into the same magnitude. The
specific formula is as follows:

znew =
zold − µ

δ
(8)

where znew stands for standardized data and zold stands for original data. µ and δ are the
mean and standard deviation of the data, respectively.

5. Results and Discussion

Because of the excellent performance of accuracy, recall, precision, and F1-score in the
model evaluation, much literature have adopted these indicators as the evaluation criteria
of the model. Therefore, this paper selected accuracy, recall, precision, and F1-score as
evaluation indexes.

Accuracy =
TP + TN

TP + FP + FN + TN
(9)
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Recall =
TP

TP + FN
(10)

Precision =
TP

TP + FP
(11)

F1 =
2× Precision× Recall

Precision + Recall
(12)

where TP, TN, FP, and FN represent the number of true positive, true negative, false positive
and false negative respectively.

5.1. Results Analysis

All the experiments in the study were completed with the Spyder (python3.6) compiler,
run on a GTX950m graphics card, Intel Core i5 2.3 GHz processor, and a 4 GB RAM. The
neural network was implemented under the Keras (2.0.8) framework with tensorflow
backend. Some third-party libraries such as Sklearn, SciPy, and Matplotlib were used for
data preprocessing and visualization.

We added two sets of comparative experiments to study the effect of sample length and
RNN variables on model performance. Table 3 intuitively shows the experimental results
of sample length on the test set from the aspects of data. In Table 3, the average values of
evaluation indexes of each fault type were taken and arranged. It can be seen from Table 3
that the 1024-length sample has the best performance in F1-score and precision, which
are basically above 0.95, and the comprehensive performance is also the best. The mean
values of F1-score, recall, and precision decreased obviously with the decrease of sample
length from 1024. When it increased from 1024, there was an obvious downward trend.
Thus, 1024 was the most suitable sample length. We selected RNN variables including
unidirectional LSTM, unidirectional gated recurrent unit (GRU) [28], bidirectional LSTM
(BiLSTM) [29], and bidirectional GRU (BiGRU) [30]. Based on the 1024-length sample, the
RNN variable comparison test was carried out. In Table 4, the LSTM performed well in
F1-score and recall, but its advantage in precision was not obvious. The precision of LSTM
was only slightly higher than that of BiLSTM, but LSTM was superior in other evaluation
indexes, and the unidirectional network was superior to the bidirectional network, which
was contrary to RNN commonly used in traditional text processing. We speculate that
it may be caused by the change of the length and channel number of the data processed
by CNN.

Table 3. The performance comparison for different sample lengths with the proposed model.

Evaluation Index
Length

256 512 1024 2048 4096

F1-score 0.925 0.942 0.987 0.925 0.881
Recall 0.924 0.941 0.987 0.921 0.876

Precision 0.932 0.944 0.988 0.931 0.899
Accuracy 0.930 0.943 0.987 0.927 0.890

Table 4. The performance comparison for different RNN variables with the proposed model.

Evaluation Index

Module

Unidirectional
LSTM

Bidirectional
LSTM

Unidirectional
GRU

Bidirectional
GRU

F1-score 0.987 0.909 0.883 0.849
Recall 0.987 0.908 0.883 0.849

Precision 0.988 0.970 0.890 0.951
Accuracy 0.987 0.910 0.883 0.840
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5.2. Model Evaluation

The confusion matrix based on the best classification result of the test set is shown in
Figure 3. From Figure 3, it is obvious that the learning outcome of the model is excellent.
For obtaining a more objective and comprehensive evaluation of the model, we calculated
the F1-score, recall, and precision on the test set, which is summarized in Table 5 below. It
can be seen that all indexes of this model have high scores, stable performance, and strong
generalization ability, and it has good performance for fault diagnosis.
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Table 5. Evaluation index of fault diagnosis model on the test set.

Type
Evaluation Index

F1 Score Recall Precision

PM 1.000 1.000 1.000
Normal 1.000 1.000 1.000

Unbalance 0.966 0.933 1.000
AM 1.000 1.000 1.000

Looseness 0.969 1.000 0.939

Average 0.987 0.987 0.988

Accuracy 0.987

5.3. Algorithm Comparison

There are many algorithms for fault diagnosis of vibration signals. We chose several
machine learning algorithms and deep learning algorithms for comparative experiments.
From Table 6, it can be found that our proposed model has a good performance in terms
of F1-score, recall, precision, and accuracy, which is better than the comparison algorithm.
The specific values of each index are shown in the table below.

5.4. Network Visualization

The inner part of the neural network model has always been considered as a black
box, and the inner principle is difficult to understand. In this section, T-SNE was applied
to visualizing the feature extraction process of internal network structure and exploring
the internal feature extraction and classification process. First of all, from the input data,
we selected the wide kernels CNN to preliminarily classify the data and distinguish PM,
normal, and unbalance from AM and looseness. Then, narrow kernel CNN was used to
subdivide AM and looseness. Through the first-layer LSTM, it can be preliminarily divided
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into three categories: PM, normal, and unbalance. On the basis of the first-layer LSTM,
the boundaries of the five types of data were clearly divided with the second-layer LSTM.
Finally, the data were divided into five categories by softmax. As shown in Figure 4, the
feature distribution extracted in this paper has a very clear boundary, and the classification
effect is very good.

Table 6. The proposed model was compared with other models.

Method
Evaluation Index

F1 Score Recall Precision Accuracy

Proposed 0.987 0.987 0.988 0.987
CNN 0.905 0.902 0.910 0.910

WDCNN 0.842 0.845 0.887 0.853
LSTM 0.769 0.766 0.854 0.817

BiLSTM 0.858 0.855 0.897 0.870
GRU 0.812 0.809 0.887 0.817

BiGRU 0.954 0.953 0.956 0.953
K-NN 0.336 0.438 0.491 0.457

Random Forest 0.642 0.650 0.562 0.660

5.5. Future Work

According to some problems of the model, the future research focuses on the following
three aspects. First of all, we need to improve the data preprocessing method and the
network structure and achieve more accurate fault classification while reducing the network
parameters as much as possible. Secondly, this study only realized the classification of four
faults and one normal state. In the future, more vibration signals of other fault types will be
collected to realize more fault classification. Finally, some other data enhancement methods
will be tried, and a new fault diagnosis model is established by combining machine learning
methods such as PCA with deep learning algorithms.

Symmetry 2021, 13, x FOR PEER REVIEW 9 of 12 
 

 

of F1-score, recall, precision, and accuracy, which is better than the comparison algorithm. 
The specific values of each index are shown in the table below. 

Table 6. The proposed model was compared with other models. 

Method 
Evaluation index 

F1 Score Recall Precision Accuracy 
Proposed 0.987 0.987 0.988 0.987 

CNN 0.905 0.902 0.910 0.910 
WDCNN  0.842 0.845 0.887 0.853 

LSTM 0.769 0.766 0.854 0.817 
BiLSTM 0.858 0.855 0.897 0.870 

GRU  0.812 0.809 0.887 0.817 
BiGRU 0.954 0.953 0.956 0.953 
K-NN 0.336 0.438 0.491 0.457 

Random Forest 0.642 0.650 0.562 0.660 

5.4. Network Visualization 
The inner part of the neural network model has always been considered as a black 

box, and the inner principle is difficult to understand. In this section, T-SNE was applied 
to visualizing the feature extraction process of internal network structure and exploring 
the internal feature extraction and classification process. First of all, from the input data, 
we selected the wide kernels CNN to preliminarily classify the data and distinguish PM, 
normal, and unbalance from AM and looseness. Then, narrow kernel CNN was used to 
subdivide AM and looseness. Through the first-layer LSTM, it can be preliminarily di-
vided into three categories: PM, normal, and unbalance. On the basis of the first-layer 
LSTM, the boundaries of the five types of data were clearly divided with the second-layer 
LSTM. Finally, the data were divided into five categories by softmax. As shown in Figure 
4, the feature distribution extracted in this paper has a very clear boundary, and the clas-
sification effect is very good. 

  
(a) (b) 

Figure 4. Cont.



Symmetry 2021, 13, 1284 10 of 12Symmetry 2021, 13, x FOR PEER REVIEW 10 of 12 
 

 

  
(c) (d) 

  
(e) (f) 

Figure 4. Feature visualization based on T-SNE. (a) Feature visualization of input signal, (b) output feature visualization 
of wide kernel CNN, (c) output feature visualization of narrow kernel CNN, (d) output feature visualization of first-layer 
LSTM, (e) output feature visualization of second-layer LSTM, (f) output feature visualization of softmax. 

5.5. Future Work 
According to some problems of the model, the future research focuses on the follow-

ing three aspects. First of all, we need to improve the data preprocessing method and the 
network structure and achieve more accurate fault classification while reducing the net-
work parameters as much as possible. Secondly, this study only realized the classification 
of four faults and one normal state. In the future, more vibration signals of other fault 
types will be collected to realize more fault classification. Finally, some other data en-
hancement methods will be tried, and a new fault diagnosis model is established by com-
bining machine learning methods such as PCA with deep learning algorithms. 

  

Figure 4. Feature visualization based on T-SNE. (a) Feature visualization of input signal, (b) output feature visualization of
wide kernel CNN, (c) output feature visualization of narrow kernel CNN, (d) output feature visualization of first-layer
LSTM, (e) output feature visualization of second-layer LSTM, (f) output feature visualization of softmax.

6. Conclusions

In this paper, the main innovation was to propose a new deep neural network combin-
ing CNN and LSTM, which can classify the vibration signals of the main pump directly. The
influence and importance of sample length and RNN variable selection on the performance
of the model was verified by comparison experiments. The experiments on the test set
showed that the model has high scores in many indexes. The mean values of F1-score,
recall, and precision were 0.987, 0.987, and 0.988, respectively, with an accuracy of 0.987.
Finally, the feature extraction and classification process of the model were also visualized
by T-SNE.
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