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Abstract: New oscillatory properties for the oscillation of solutions to a class of fourth-order delay
differential equations with several deviating arguments are established, which extend and generalize
related results in previous studies. Some oscillation results are established by using the Riccati
technique under the case of canonical coefficients. The symmetry plays an important and fundamental
role in the study of the oscillation of solutions of the equations. Examples are given to prove the
significance of the new theorems.
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1. Introduction

In this article, we present some oscillatory properties of the equation

(
j(y)

(
ξ ′′′(y)

)r1
)′

+
n

∑
i=1

ςi(y)ξr2(zi(y)) = 0, y ≥ y0. (1)

Throughout this article, we suppose that
j ∈ C1([y0, ∞)), ςi ∈ C([y0, ∞)), j(y) > 0, ςi(y) > 0, j′(y) ≥ 0,
zi(y) ∈ C([y0, ∞),R), zi(y) ≤ y, limy→∞ zi(y) = ∞, i = 1, 2, . . . , n,
r1 and r2 are quotients of odd positive integers.

Definition 1. A solution of (1) is said to be non-oscillatory if it is positive or negative, ultimately;
otherwise, it is said to be oscillatory.

Definition 2. The equation (1) is said to be oscillatory if every solution of it is oscillatory.

Delayed differential equations contribute to many real-life applications and real-
world problems, as they play an important role in physics, chemistry, medicine, biology,
engineering and aviation. In addition, for networks containing lossless transmission lines,
see [1–3].

On the other hand, a study of the oscillation of solutions to fourth-order differential
equations in the non-canonical case has interested some researchers due to its utmost
importance in many applications (see [4–6]).

In addition, there are some papers and books dealing with the oscillation of the
solutions of delay differential equations with/without deviating arguments (see [7–13]).
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The motivation for this article is to complement the results reported in [14,15]; there-
fore, we discuss their findings and results below.

The authors in [14] presented some oscillatory properties for the equation(
j(y)

(
ξ ′′′(y)

)r1
)′

+ ς(y)ξr2(z(y)) = 0, y ≥ y0, (2)

They also used the comparison technique.
Agarwal et al. [12] investigated the oscillation of equation:(

j(y)
(
ξ ′′′(y)

)r1
)′

+ ς(y) f (ξr1(z(y))) = 0,

The authors used the integral averaging technique to obtain oscillation results for
this equation.

Zhang et al. [16] presented criteria for the oscillation of Equation (2), under the
assumption that

∫ ∞
y0

1
j1/r1 (s)

ds < ∞. Moreover, the authors used the Riccati method to find

the oscillation criteria for this equation.
Moaaz et al. [15] presented conditions for oscillation of equation(

j(y)
(
ξ ′′′(y)

)r1
)′

+ ς(y) f (ξr2(z(y))) = 0,

under the condition ∫ ∞

y0

εr2−r1
1 ς(s)

z3r1(s)
s3r1

ds = ∞,

where ε1 is a positive constant. Additionally, the authors used the comparison technique.
In [17,18], the authors studied the equation

ς(n)(y) + ς(y)ξ(z(y)) = 0, (3)

By using the comparison technique, they proved that this equation is oscillatory if

lim inf
y→∞

∫ y

z(y)
zn−1(s)ds >

(n− 1)2(n−1)(n−2)

e
(4)

and

lim inf
y→∞

∫ y

z(y)
zn−1(s)ds >

(n− 1)!
e

, (5)

where n ≥ 4 is an even natural number.
Our main goal in this article is to obtain some oscillatory properties of (1) under

the hypothesis ∫ ∞

y0

1
j1/r1(s)

ds = ∞, (6)

which complement some properties that have been studied in the literature, where we use
a different technique based on using the Riccati method. The benefit gained using this
approach is to get more effective oscillation conditions.

2. Oscillation Criteria

We present some lemmas, which are required for our theorem proofs.

Lemma 1 ([19]). Let h ∈ Cn([y0, ∞)) and h(y) > 0. Suppose that h(n)(y) is of a fixed sign,
on [y0, ∞), h(n)(y) not identically zero and that there exists a y1 ≥ y0, such that for all y ≥ y1,

h(n−1)(y)h(n)(y) ≤ 0.
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If we have limy→∞ h(y) 6= 0, then there exists yλ ≥ y0, such that

h(y) ≥ λ

(n− 1)!
yn−1

∣∣∣h(n−1)(y)
∣∣∣,

for every λ ∈ (0, 1) and y ≥ yλ.

Lemma 2 ([20]). If ξ(i)(y) > 0, i = 0, 1, . . . , n, and ξ(n+1)(y) < 0, then

ξ(y)
n!
yn ≥ ξ ′(y)

(n− 1)!
yn−1 .

Lemma 3 ([21]). Let

ξ(y) be an eventually positive solution of (1). (7)

Then, there exist two possible cases: either

(N1) ξ(κ)(y) > 0 for κ = 0, 1, 2, 3;

or
(N2) ξ(κ)(y) > 0 for κ = 0, 1, 3, and ξ ′′(y) < 0,

holds.

Lemma 4. Suppose that (7) holds.
(i1) If ξ satisfies (N1), then

δ′1(y) + εr2−r1
1

n

∑
i=1

ςi(y)
z3r1

i (y)
y3r1

+
r1κ

2
y2

j1/r1(y)
δ1+1/r1

1 (y) ≤ 0; (8)

(i2) If ξ satisfies (N2), then

δ′2(y) + δ2
2(y) + εr2−r1

1 G(y) ≤ 0, (9)

where

G(y) := λr2/r1 εr2/r1
2

∫ ∞

y

(
1

j(u)

∫ ∞

u

n

∑
i=1

ςi(s)
(

zi(s)
s

)r2

ds

)1/r1

du,

for every κ ∈ (0, 1) and ε1, ε2 are positive constants.

Proof. Suppose that (7) holds. By Lemma 3, we see that cases (N1) and (N2) hold
Suppose that (N1) holds. From Lemma 1, we find

ξ ′(y) ≥ κ

2
y2ξ ′′′(y) (10)

and by using Lemma 2, we obtain ξ(y) ≥ 1
3 yξ ′(y). Hence,

ξ(zi(y)) ≥
z3

i (y)
y3 ξ(y). (11)

Define

δ1(y) :=
j(y)(ξ ′′′(y))r1

ξr1(y)
.
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Differentiating δ1 and using (1), (10) and (11), we obtain

δ′1(y) ≤ −
n

∑
i=1

ςi(y)
z3r1

i (y)
y3r1

ξr2−r1(zi(y))−
r1κ

2
y2

j1/r1(y)
δ1+1/r1

1 (y).

Since ξ ′(y) > 0, there exist a y2 ≥ y1 and a constant ε1 > 0, such that ξ(y) > ε1, for
all y ≥ y2. Thus, we see that

δ′1(y) ≤ −
n

∑
i=1

ςi(y)
z3r1

i (y)
y3r1

εr2−r1
1 (zi(y))−

r1κ

2
y2

j1/r1(y)
δ1+1/r1

1 (y),

Thus, (8) is satisfied.
Suppose that (N2) holds. Integrating (1) from y to l, we see that

j(l)
(
ξ ′′′(l)

)r1 = j(y)
(
ξ ′′′(y)

)r1 −
∫ l

y

n

∑
i=1

ςi(s)ξr2(zi(s))ds. (12)

By Lemma 2, we find
ξ(y) ≥ yξ ′(y). (13)

Thus, ξ(zi(y)) ≥ (zi(y)/y)ξ(y), from (12) and ξ ′(y) > 0, we obtain

j(l)
(
ξ ′′′(l)

)r1 − j(y)
(
ξ ′′′(y)

)r1 + ξr2(y)
∫ l

y

n

∑
i=1

ςi(s)
(

zi(s)
s

)r2

ds ≤ 0.

Letting l → ∞, we obtain

ξ ′′′(y) ≥ λr2/r1

j1/r1(y)
ξr2/r1(y)

(∫ ∞

y

n

∑
i=1

ςi(s)
(

zi(s)
s

)r2

ds

)1/r1

.

Integrating the above inequality from y to ∞, we obtain

ξ ′′(y) ≤ −λr2/r1 ξr2/r1(y)
∫ ∞

y

(
1

j(u)

∫ ∞

u

n

∑
i=1

ςi(s)
(

zi(s)
s

)r2

ds

)1/r1

du

≤ −G(y)ξr2/r1(y). (14)

Define

δ2(y) :=
ξ ′(y)
ξ(y)

.

Differentiating δ2 and using (14), we obtain

δ′2(y) + δ2
2(y) + εr2−r1

1 G(y) ≤ 0.

Lemma 4 is proved.

Theorem 1. Let ∫ ∞

y0

εr2−r1
1

n

∑
i=1

ςi(s)
z3r1

i (s)
s3r1

ds = ∞ (15)

and ∫ ∞

y0

λr2/r1 εr2/r1
2

∫ ∞

y

(
1

j(u)

∫ ∞

u

n

∑
i=1

ςi(s)
(

zi(s)
s

)r2

ds

)1/r1

duds = ∞, (16)

then (1) is oscillatory.
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Proof. Suppose that ξ(y) > 0. By Lemma 3, there exist two possible cases for y ≥
y1, where y1 ≥ y0 is sufficiently large.

For case (N1), by Lemma 4, we find (8) holds, which yields

δ′1(y) + εr2−r1
1

n

∑
i=1

ςi(y)
z3r1

i (y)
y3r1

≤ 0. (17)

Integrating (17) from y2 to y and using (15), we obtain

δ1(y) ≤ δ1(y2)−
∫ y

y2

εr2−r1
1

n

∑
i=1

ςi(s)
z3r1

i (s)
s3r1

ds→ −∞ as y→ ∞.

This contradicts that δ1(y) > 0.
Similarly, suppose that case (N2) holds, we obtain a contradiction with (16), which is

omitted here for convenience. Theorem 1 is proved.

Definition 3. Let sequence {φn(y)}∞
n=0 and {ϕn(y)}∞

n=0 be defined as

φn(y) = φ0(y) +
∫ ∞

y

r1κ

2
s2

j1/r1(s)
φ

r1+1
r1

n−1 (s)ds (18)

and
ϕn(y) = ϕ0(y) +

∫ ∞

y
ϕ2

n−1(s)ds, (19)

where

φ0(y) =
∫ ∞

y
εr2−r1

1

n

∑
i=1

ςi(s)
z3r1

i (s)
s3r1

ds

and

ϕ0(y) =
∫ ∞

y
λr2/r1 εr2/r1

2

∫ ∞

y

(
1

j(u)

∫ ∞

u

n

∑
i=1

ςi(s)
(

zi(s)
s

)r2

ds

)1/r1

duds.

Theorem 2. Assume that

lim inf
y→∞

1
φ0(y)

∫ ∞

y

r1κ

2
s2

j1/r1(s)
φ

r1+1
r1

0 (s)ds >
r1

(r1 + 1)
r1+1

r1

(20)

and
lim inf

y→∞

1
ϕ0(y)

∫ ∞

y
ϕ2

0(s)ds >
1
4

. (21)

Then, (1) is oscillatory.

Proof. Suppose that ξ(y) > 0. By Lemma 3, there exist two possible cases, (N1) and(N2). Let
case (N1) hold. In Lemma 4, integrating (8) from y to l, we obtain

δ1(l)− δ1(y) +
∫ l

y
εr2−r1

1

n

∑
i=1

ςi(s)
z3r1

i (s)
s3r1

ds +
∫ l

y

r1κ

2
s2

j1/r1(s)
δ

r1+1
r1

2 (s)ds ≤ 0. (22)

From (22), it is obvious that

δ1(l)− δ1(y) +
∫ l

y

r1κ

2
s2

j1/r1(s)
δ1(s)ds ≤ 0. (23)
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Then, we conclude from (23) that either∫ ∞

y

r1κ

2
s2

j1/r1(s)
δ1(s)ds < ∞, for y ≥ Y, (24)

or, otherwise,

δ1(l) ≤ δ1(y)−
∫ l

y

r1κ

2
s2

j1/r1(s)
δ1(s)ds→ −∞ as l → ∞,

which contradicts that δ1(y) > 0. Since δ1(y) is positive and decreasing, limy→∞ δ1(y) =
k ≥ 0. By (24), we see k = 0. So, from (22), we find

δ1(y) ≥ Q̃(y) +
∫ ∞

y

r1κ

2
s2

j1/r1(s)
δ1(s)ds = φ0(y) +

∫ ∞

y

r1κ

2
s2

j1/r1(s)
δ1(s)ds. (25)

From (25), we have

δ1(y)
φ0(y)

≥ 1 +
1

φ0(y)

∫ ∞

y

r1κ

2
s2

j1/r1(s)
φ

r1+1
r1

0 (s)
(

δ1(s)
φ0(s)

) r1+1
r1

ds, y ≥ Y. (26)

If we set a = infy≥Y δ1(y)/φ0(y), then obviously a ≥ 1. Hence, from (20) and (26), we
see that

a ≥ 1 + r1

(
a

r1 + 1

)(r1+1)/r1

or
a

r1 + 1
≥ 1

r1 + 1
+

r1

r1 + 1

(
a

r1 + 1

)(r1+1)/r1

which contradicts the admissible value of r1 and a. Similarly, in the case (N2), if we set
a1 = infy≥Y1 δ2(y)/ϕ0(y) and taking 21 into account, then we arrive at a contradiction
with the admissible value of a1. Therefore, Theorem 2 is proved.

Theorem 3. Let

lim sup
y→∞

φn(y)
(

κ

2
y2
∫ y

y0

j−1/r1(s)ds
)r1

> 1 (27)

and
lim sup

y→∞
yϕn(y) > 1, (28)

hold. Then (1) is oscillatory.

Proof. Suppose that ξ(y) > 0 and case (N1) holds. By Lemma 1, we obtain

ξ(y) ≥ κ

6
y3ξ ′′′(y). (29)

From the definition of δ1 and (29), we have

1
δ1(y)

=
1

j(y)

(
ξ(y)

ξ ′′′(y)

)r1

≥ 1
j(y)

(κ

6
y3
)r1

Thus,

δ1(y)
1

j(y)

(κ

6
y3
)r1 ≤ 1 (30)
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and

lim sup
y→∞

δ1(y)
(

κy3

6j1/r1(y)

)r1

≤ 1,

and this contradicts (27).
Similarly, when (N2) holds, we find a contradiction with (28). Theorem 3 is proved.

Corollary 1. If there exist φn and ϕn such that

∫ y

y
εr2−r1

1

n

∑
i=1

ςi(s)
z3r1

i (s)
s3r1

exp
(∫ s

y

r1κ

2
u2

j1/r1(u)
φ1/r1

n (u)du
)

ds = ∞ (31)

and ∫ y

y
G(s) exp

(∫ s

y
ϕn(u)du

)
ds = ∞, (32)

where

G(s) := λr2/r1 εr2/r1
2

∫ ∞

y

(
1

j(u)

∫ ∞

u

n

∑
i=1

ςi(s)
(

zi(s)
s

)r2

ds

)1/r1

du,

then (1) is oscillatory.

Proof. Let case (N1) hold. From (25), we find

δ1(y) ≥ φ0(y).

Moreover, by using Lebesgue monotone convergence theorem, we find

φ(y) = φ0(y) +
∫ ∞

y

r1κ

2
s2

j1/r1(s)
φ

r1+1
r1 (s)ds. (33)

From (33), we have that

φ′(y) = − r1κ

2
y2

j1/r1(y)
φ

r1+1
r1 (y)− εr2−r1

1

n

∑
i=1

ςi(y)
z3r1

i (y)
y3r1

. (34)

Since φn(y) ≤ φ(y), it follows from (34) that

φ′(y) ≤ − r1κ

2
y2

j1/r1(y)
φ1/r1

n (y)φ(y)− εr2−r1
1

n

∑
i=1

ςi(y)
z3r1

i (y)
y3r1

.

Hence, we obtain

φ(y) ≤ exp
(
−
∫ y

y

r1κ

2
s2

j1/r1(s)
φ1/r1

n (s)ds
)

(
φ(y)−

∫ y

y
εr2−r1

1

n

∑
i=1

ςi(s)
z3r1

i (s)
s3r1

exp
(∫ s

y

r1κ

2
u2

j1/r1(u)
φ1/r1

n (u)du
)

ds

)
.

The above inequality follows

∫ y

y
εr2−r1

1

n

∑
i=1

ςi(s)
z3r1

i (s)
s3r1

exp
(∫ s

y

r1κ

2
u2

j1/r1(u)
φ1/r1

n (u)du
)

ds ≤ φ(y) < ∞,

and this contradicts (31).
Similarly, when (N2) holds, we find a contradiction with (32). Corollary 1 is proved.
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3. Example

This section presents some interesting examples to examine the applicability of the
theoretical outcomes.

Example 1. Consider the equation

ξ(4)(y) +
ς0

y4 ξ

(
9
10

y
)
= 0, y ≥ 1. (35)

We note that r1 = r2 = 1, n = 4, j(y) = 1, zi(y) = 9y/10 and ς(y) = ς0/y4.
Applying the conditions (4) and (5) to Equation (35), we obtain

The condition (4) (5)

The criterion ς0 > 1839.2 ς0 > 59.5

Using Theorem 2, Equation (35) is oscillatory if ς0 > 57.5.
Observe that, as shown in the table, the value of the condition ς0 > 57.5 is smaller than the

other values for the other conditions. Hence, the condition ς0 > 57.5 provides a better result than
the results obtained by conditions (4) and (5) in [17,18]. However, these conditions for oscillation
cannot be applied to examples where there is no delay term.

Example 2. Let the equation be(
y
(
ξ ′′′(y)

))′
+ yξ(ay) = 0, y ≥ 1, (36)

Let r1 = r2 = 1, j(y) = y, z(y) = ay, ς(y) = y and a ∈ (0, 1). Moreover, we see∫ ∞

y0

1
j1/r1(s)

ds =
∫ ∞

y0

ds
s

= ∞.

It is easy to see that all conditions of Theorem 1 are satisfied. Hence, every solution of
Equation (36) is oscillatory.

Example 3. Consider the equation

ξ(4)(y) +
ς0

y4 ξ

(
1
2

y
)
= 0, (37)

where ς0 > 0. We note that r1 = r2 = 1, j(y) = 1, zi(y) = y/2 and ς(y) = ς0/y4. Hence, it is
easy to see that

φ0 =
ς0

24y

and
ϕ0(y) =

ς0

2y
.

Using Theorem 2, Equation (37) is oscillatory if ς0 > 36.
Furthermore, we see that

∫ ∞
εr2−r1

1

n

∑
i=1

ςi(s)
z3r1

i (s)
s3r1

ds 6= ∞,

and hence Theorem 1 fails.



Symmetry 2021, 13, 1277 9 of 10

4. Conclusions

In this manuscript, we are interested in studying the oscillation conditions of Equa-
tion (1). By the Riccati method, some new oscillation results are established, which extend
and generalize related results in the literature. Two examples are given to clarify our results.

Additionally, in future work, we will contribute by providing more effective conditions
for the oscillation of the equation(

j(y)
(
ξ ′′′(y)

)r1
)′

+ a(y)
(
ξ ′′′(y)

)r1 + ς(y) f (ξr2(z(y))) = 0, y ≥ y0.

under the condition
∫ ∞

y0
1

j1/r1 (s)
ds < ∞.
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