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Abstract: The goal of this study was to conduct a literature review of current approaches and tech-
niques for identifying, understanding, and predicting human behaviors through mining a variety of
sources of textual data with a focus on enabling classification of psychological behaviors regarding
emotion, cognition, and social empathy. This review was performed using keyword searches in
ISI Web of Science, Engineering Village Compendex, ProQuest Dissertations, and Google Scholar.
Our findings show that, despite recent advancements in predicting human behaviors based on
unstructured textual data, significant developments in data analytics systems for identification, de-
termination of interrelationships, and prediction of human cognitive, emotional and social behaviors
remain lacking.

Keywords: text mining; human behavior; sentiment analysis; physiological profiling

1. Introduction

At present, the vast amount of textual data being generated from myriad sources (e.g.,
formal or informal reports, interviews, call logs, emails, performance documents, blogs,
tweets, comments, or social media entries) is rapidly increasing [1]. Although this increase
in textual data allows for large repositories to be analyzed, summarized, and deciphered,
using these data to make insightful decisions has become much more challenging. Thus, in
this study, we sought to explore the current approaches through which the unstructured
textual data can be analyzed by extracting valuable information to support decision-making
for various purposes. Consequently, we conducted a systematic literature review of the
techniques and methods used to identify, understand, and predict human behaviors by
mining various textual data sources.

The problem of mining textual data has received substantial attention, owing to the
proliferation of social networks that allow the distribution of opinions and sharing sentiment
on diverse subject matters. This literature review is focused on the methods for understanding
human psychological behavior through the use of textual data. Mining textual data can
provide deep insights into an individual’s views, attitudes, sentiments, and emotions toward
other individuals and help predict future social behaviors [2]. Such human behaviors can be
identified and understood by extracting textual data with meaningful semantic properties,
including metadata such as concepts, events, keywords, categories, including symmetric and
asymmetric relationships. Such knowledge can facilitate improved decision-making (e.g.,
personnel selection and training) or intelligence analyses [3]. According to Bornstein et al. [4],
human behavior is described as “the potential and expressed capacity for physical, men-
tal, and social activity during the phases of human life.” Regarding the identification of
behaviors by text mining, Tausczik et al. [5] stated that “by drawing on massive amounts of
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text, researchers can begin to link everyday language use with behavioral and self-reported
measures of personality, social behavior, and cognitive styles.” Furthermore, Pennebaker and
Stone [6] classified the use of language in the following categories: emotional experience,
social relationships, time orientation, and cognitive abilities.

This present study makes two main contributions. First, it focuses on identifying
the main methodological approaches to understanding human psychological behavior
by analyzing people’s expressions through textual communication. Second, it identifies
gaps in research and the characteristics necessary for the development of analytical tools
and methods to predict behaviors through textual analyses. The remainder of the paper is
ordered as follows: Section 2 describes the methods and criteria used for the selection of
the included literature; Section 3 presents the main results of the study; Section 4 discusses
the results and answers the research questions.

2. Method

This review is based on the guidelines of Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) [7].

The following research questions forming the basis of this systematic literature review
are based on the objectives of the present study, as outlined in the abstract:

• RQ1. What has been the most relevant research reported in the scientific literature for
the identification of human behaviors through text mining?

• RQ2: How can current analytical techniques for the prediction of human behavior
from unstructured textual data be classified?

The inclusion criteria were as follows: (a) papers written in English; (b) peer-reviewed
papers; and (c) papers depicting graphs, charts, equations, and/or tables presenting
text mining techniques that initially identified research focusing only on methods of
psychological analysis of behavior. The exclusion criteria were as follows: (a) papers not
written in English; (b) papers determined upon evaluation to be unrelated to the research
questions; and (c) opinions, letters, and editorials.

A search strategy for the review was used to identify papers applicable to answering
the research questions. The strategy involved defining the search space and the vetting
process to be used in identifying pertinent literature. The recent and influential literature
in the field of text mining, including journal articles, textbooks, proceedings, and grey
literature, were important sources in this research.

With the knowledge of the subject matter and based on widely cited articles such
as [2,5], we developed a list of set of keywords, which after testing in search engines,
was reduced to the 15 keywords that are presented in Table 1. Subsequently, this set was
used to query databases, such as EBSCOhost, Compendex, IEEE Xplore, Google Scholar,
and ProQuest. This process resulted in a reduction of the core search parameters used
to identify the key components affecting the prediction and understanding of human
behavior via text mining. After retrieving the articles, we then carefully chose pertinent
papers. The terms used in the EBSCOhost database were as follows: (“data mining”[MeSH
terms] OR “text mining”[all fields]) AND ((“humans”[MeSH terms] OR “humans”[all
fields] AND (“behavior”[all fields] OR “behavior”[MeSH terms] OR “behavior”[all fields]))
AND ((“1998/01/01”[PDAT]: “2019/12/31”[PDAT]) AND “humans”[MeSH terms] AND
English[lang]).
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Table 1. Keywords used for searching selected databases.

Text Mining Behavioral Markers Cognitive Behavior

Human behavior Linguistic markers Social behavior

Information extraction Lone wolf behavior Emotional behavior

Opinion mining Behavioral profiling Sentiment analysis

Linguistic inquiry and word
count (LIWC) Computational linguistics Natural language processing

To assess the risk of bias in the present study, we used the Cochrane Risk of Bias
Tool [8] as a support instrument. The relevant papers were classified among different bias
domains, such as sequence generation (the methods through which the data were collected),
allocation concealment (whether data allocations could have been foreseen before or during
collection), blinding of participants (the people who generated the text), blinding outcomes
(the people who generated the text data not having knowledge of the results), incomplete
outcome data (whether the papers showed completeness of the outcome in their results)
and finally selective outcome reporting (whether the authors showed outcome reporting
and what was found). Figure 1 depicts the number of papers in each of these categories.
Most of the papers had a low risk of bias. The use of the Cochrane Tool allowed us to
reduce all possible biases that could have affected the quality of the review and thus the
reliability of conclusions.

Figure 1. Assessing the risk of bias with the Cochrane collaboration’s tool.

The risk of bias was evaluated using a subjective judgment (high, low, or unclear)
regarding the individual elements of the domains represented in Figure 1. Once the
classification was made, a percentage estimate of these judgments was obtained. On
average, the different domains were approximately 58% low, 23% unclear, and 18% high
risk of bias.

3. Results

To understand the evolution of the research on the prediction of human behavior on
the basis of unstructured textual data, the selection procedure and the numbers of papers
selected in the various stages of selection are shown in Figure 2.
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Figure 2. Flow diagram and selection process for including literature in the meta-analysis.

Then the literature review was classified into categories. After a category was iden-
tified, we proceeded to identify the main text mining approach and the main insights of
each work analyzed. The characteristics of the included papers are shown in Table 2.

Table 2. Characteristics of the included papers.

Reference Title Research Method Category

[2] Sentiment Analysis and Opinion Mining Natural language processing Emotional

[3] Clarifying the Linguistic Signature: Measuring Personality
From Natural Speech Document clusterization Emotional and cognition

[5] The Psychological Meaning of Words: LIWC and
Computerized Text Analysis Methods Natural language processing Emotional

[6] Words of wisdom: Language use over the life span Natural language processing Cognition and theory

[9] Mobile phones as medical devices in mental disorder
treatment: an overview Natural language processing Emotional

[10] Opinion Mining for text classification Document classification Emotional

[11] A new significant area: Emotion detection in E-learning
using opinion mining techniques Natural language processing Emotional

[12] Modeling Public Mood and Emotion: Twitter Sentiment
and Socio-Economic Phenomena Natural language processing Emotional

[12] Twitter mood predicts the stock market Information extraction Social

[13] Sentiment classification based on supervised latent
n-gram analysis Document classification Emotional

[14] Supporting disease insight through data analysis:
Refinements of the monarca self-assessment system Natural language processing Emotional

[15] Smartphone-Based Recognition of States and State
Changes in Bipolar Disorder Patients Natural language processing Emotional

[16] Mining and summarizing customer reviews Natural language processing Emotional

[17] Sentiment analysis with long short-term memory networks Natural language processing Emotional

[18] Thumbs up? Sentiment Classification using Machine
Learning Techniques Natural language processing Emotional

[19] A faceted characterization of the opinion mining landscape Natural language processing Emotional

[20] A Survey of Text Mining in Social Media: Facebook and
Twitter Perspectives Web mining Emotional

[21] Thumbs Up or Thumbs Down? Semantic Orientation
Applied to Unsupervised Classification of Reviews Document clusterization Emotional

[22] Opinion Mining of Movie Review using Hybrid Method of
Support Vector Machine and Particle Swarm Optimization Web mining Emotional
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Table 2. Cont.

Reference Title Research Method Category

[23] Product aspect ranking using sentiment analysis: A survey Web mining Emotional

[24] Opinion mining and sentimental analysis approaches:
A survey Natural language processing Emotional

[25] Opinion mining and sentiment analysis Natural language processing Emotional

[26] Sentiment analysis and opinion mining: A survey Natural language processing Emotional

[27] #MyDepressionLooksLike: Examining Public Discourse
About Depression on Twitter Web mining Emotional

[28] Understanding customers using Facebook Pages: Data
mining users feedback using text analysis Natural language processing Emotional and social

[29] Using causal models in heterogeneous information fusion
to detect terrorists Natural language processing Emotional and social

[30] INSiGHT: A system for detecting radicalization trajectories
in large heterogeneous graphs Natural language processing Emotional and social

[31] Harvesting and analysis of weak signals for detecting lone
wolf terrorists Natural language processing Emotional and social

[32] Detecting Linguistic Markers for Radical Violence in
Social Media Natural language processing Emotional and social

[33] Personality and language: The projection and perception of
personality in computer-mediated communication Natural language processing Emotional and social

[34] Hierarchical Sentiment Analysis Model for Automatic
Review Classification for E-commerce Users Natural language processing Emotional and social

[35] Assessing Bipolar Episodes Using Speech Cues Derived
from Phone Calls Information retrieval Emotional and social

[36] Using behavioral indicators to help detect potential
violent acts Natural language processing Emotional and social

[37] Sentiment analysis: capturing favorability using natural
language processing Natural language processing Emotional and social

[38] Identifying topical influencers on twitter based on user
behavior and network topology Natural language processing Emotional and social

[39] Language-based personality: a new approach to
personality in a digital world Natural language processing Emotional and cognition

[40] The efficacy of SMS text messages to compensate for the
effects of cognitive impairments in schizophrenia Natural language processing Emotional and cognition

[41]
Sentiment classification on customer feedback data: Noisy

data, large feature vectors, and the role of
linguistic analysis

Natural language processing Emotional and theory

[42] The Development and Psychometric Properties of
LIWC2015 Natural language processing Emotional and theory

[43] The Role of Text Pre-processing in Sentiment Analysis Document clusterization Emotional and theory

[44] Text sentiment analysis based on long short-term memory Information extraction Emotional and theory

[45] Analysing the presence of school-shooting related
communities at social media sites Web mining Social

[46] The State of the Art 2015: A literature review of social
media intelligence capabilities for counter-terrorism Natural language processing Social

[47] Opinion Mining platform for Intelligence in business Natural language processing Social

[48] Mining the peanut gallery: opinion extraction and
semantic classification of product reviews Information extraction Social

[49] Analysis of Online Social Networks Posts to Investigate
Suspects Using SEMCON Information retrieval Social

[50] A mutually beneficial integration of data mining and
information extraction Information extraction Social

[51] Product aspect ranking and its applications Information extraction Social

[52] Opinion zoom: a modular tool to explore tourism opinions
on the web Natural language processing Social

[53] Language and interaction: applying sociolinguistics to
social network analysis Information retrieval Social

[54] A Generic Architecture for a Social Network Monitoring
and Analysis System Document classification Social
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Table 2. Cont.

Reference Title Research Method Category

[55] Mind mapping: Using everyday language to explore social
& psychological processes Information extraction Social and cognition

[56] Information extraction: Distilling structured data from
unstructured text Information extraction Social and theory

[57] Class Diagram Extraction from Textual Requirements
Using Natural Language Processing (NLP) Techniques Information extraction Social and theory

[58] Affinity: A System for Latent User Similarity Comparison
on Texting Data Natural language processing Cognition

[59] Automated computer-based feedback in expressive writing Natural language processing Cognition

[60] Intelligence analysis: Behavioral and social
scientific foundations Document clusterization Cognition

[61]
Revealing dimensions of thinking in open-ended

self-descriptions: An automated meaning extraction
method for natural language

Natural language processing Cognition and theory

[62] Text Mining—Knowledge extraction from unstructured
textual data Information extraction Cognition and theory

[63] Opinion Mining and Information Fusion: A survey Natural language processing Others/theory

[64] Text mining and analysis: Practical methods, examples,
and case studies using SAS Information extraction Others/theory

[64] Analysis of unstructured data: Applications of text
analytics and sentiment mining Information extraction Others/theory

[65] Web mining research: a survey Web mining Others/theory

[66] Foundations of statistical natural language processing Natural language processing Others/theory

[67] Using maximum entropy for text classification Document classification Others/theory

[68] Sentiment miner: a prototype for sentiment analysis of
unstructured data and text Natural language processing Others/theory

[69] Text mining: predictive methods for analyzing
unstructured information Natural language processing Others/theory

[70]
Development of a Scale to Measure Problem Use of Short

Message Service: The SMS Problem Use Diagnostic
Questionnaire

Natural language processing Others/theory

[71] An introduction to text mining NA Others/theory

[72] Text mining. Applications and Theory NA Others/theory

[73] Text mining: challenges and future directions Unstructured text mining
objective Others/theory

[74]
Leveraging process discovery with trace clustering and text

mining for intelligent analysis of incident
management processes

Information retrieval Others/theory

[75] Document-level sentiment classification: an empirical
comparison between SVM and ANN Document classification Others/theory

[76] How to conduct behavioral research over the Internet: a
beginner’s guide to HTML and CGI/Perl Web mining Others/theory

[77] Emotional Text Mining: Customer profiling in
brand management Natural language processing Emotional

[78] Text-based emotion detection: Advances, challenges,
and opportunities Information extraction Emotional

[79] Opinion mining and emotion recognition applied to
learning environments Information extraction Emotional

[80] Emotion correlation mining through deep learning models
on natural language text Natural language processing Emotional

[81] Using Opinion Mining as an educational analytic: An
integrated strategy for the analysis of students’ feedback Information extraction Emotional

[82] Text Analytics of Customers on Twitter: Brand Sentiments
in Customer Support Natural language processing Emotional

[83] A Suicide Prediction System Based on Twitter Tweets
Using Sentiment Analysis and Machine Learning Natural language processing Emotional
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Table 2. Cont.

Reference Title Research Method Category

[84] Study of coronavirus impact on parisian population from
april to june using twitter and text mining approach Information extraction Emotional

[85] Characterizing Twitter Interaction during COVID-19
pandemic using Complex Networks and Text Mining Natural language processing Emotional

[86] Estimating Industry 4.0 impact on job profiles and skills
using text mining Information extraction Emotional

[87] When Emotions Rule Knowledge: A Text-Mining Study of
Emotions in Knowledge Management Research Natural language processing Emotional

[88]
Determining a Person’s Suicide Risk by Voting on the
Short-Term History of Tweets for the CLPsych 2021

Shared Task
Natural language processing Emotional

[89] Identification and Prediction of Human Behavior through
Mining of Unstructured Textual Data. Natural language processing Others/theory

[90] An Exploration about the Last Mile Logistic Efficiency in
Indian E-Commerce Sector- A Text Mining Approach Natural language processing Cognition

[91] Saving Human Lives: What Complexity Science and
Information Systems can Contribute Natural language processing Others/theory

The articles, which were included on the basis of the publication date, relevance,
and content, were classified into three main behavioral categories: emotional, social, and
cognitive. For each paper, we identified objectives, algorithms/techniques, models of
computational aims, and main applications. Each of the included papers was subclassified
according to the categories shown in Figure 3. The present review retrieved a combination
of 82 relevant papers, which are identified by subcategory.

Figure 3. Sub classification of publications.

Figure 4 represents the percentages for each of the analyzed text mining approaches.
The results indicated that more than 50% of the reviewed literature was completed by using
natural language processing (NLP), which was one of the strongest approaches. This method
was followed by information extraction (15%); document classification and clusterization
(13%); and web mining, information retrieval, and summarization (20% combined).

Figure 4. The literature according to the text mining behavior analysis approach.



Symmetry 2021, 13, 1276 8 of 22

We also provide a map of the co-occurrence of the “text mining” term in the title
and abstract in Figure 5. We used VOSviewer software (https://www.vosviewer.com/,
accessed on 10 June 2021) to map the bibliometric data as a network and develop keyword
co-occurrence maps.

Figure 5. The map of the co-occurrence of the “text mining” term.

In this figure, links between the “text mining” node and other nodes show the co-
occurrence of the terms, and their sizes indicate the frequency of occurrence.

Efficient analyses of unstructured information about people make continuous mon-
itoring of a given individual’s performance or learning effectiveness very difficult. This
aspect explains the increased need for automated techniques to analyze and apply tags of
human behavior signatures and human performance. Such a task, performed by a human
expert, might require weeks or months when performed manually, particularly when the
analyzed results are biased because of emotional, relational, and other environmental fac-
tors. The present study discusses the state of the art in the applications of behavior analysis
from the mining of unstructured texts to assess attitudes, emotions, or performance at the
individual level.

4. Discussion

In this section, the included papers are discussed according to their research methods
and categories of human behavior.

4.1. Research Methods and Classification of Approaches and Techniques for Text Mining

Recently, studies highlighted multiple applications of text mining in a variety of
forms [20–89]. Select examples of such applications, which used various data mining
algorithms and methods, and are relevant to the goals of this research, are briefly reviewed
below. Huang et al. [92] described a technique focusing on processing large quantities of
unstructured intelligence information and used mathematical analyses for unstructured
data in emergency systems. This approach focuses on visual computing, cognitive model-
ing, and NLP to build an intelligence information service platform. Bakshi [93] reported
an unstructured data-mining method based on the data processing paradigm MapReduce.
MapReduce is a programming model for processing large quantities of unstructured data
and generating datasets by using a parallel, distributed algorithm on a cluster to extract
sentiment information and other meaningful social and relational data. Weerdt et al. [74]
proposed a method based on a combination of text mining and trace-clustering for incident
reporting and predicting possible modes of action.

https://www.vosviewer.com/
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Wu et al. [28] described an analytical process for interpreting dialogue on social
network platforms, such as Facebook or Twitter group pages. This technique focuses on
critical elements of posted internet content and uses textual analyses to apply knowledge
and information processing to extract key phrases from conversations. Shahbaz et al. [68]
proposed a method based on the software Sentiment Miner. Sentiment Miner filters text
files, such as interviews, for “opinion mining” at the sentence level by using NLP techniques
and opinion mining (OM) algorithms. This approach filters users or groups of users
that are relevant to the custom search query in question via an analysis of unstructured
data. Chakraborty et al. [64] described an approach to analyzing unstructured textual
data to extract user insights from an extensive collection of documents by using “Text-
Miner” and “SAS Sentiment Analysis”, which are based on artificial neural networks and
use a regression model to predict target variables such as descriptive classifications of
behavioral models.

Every day, humans generate vast amounts of textual information, which is stored
electronically. This information is of great relevance because it includes information on
moods, opinions, behavioral trends, and preferences. An example of this value is in text
mining for commercial uses, such as consumer identification and purchase preferences for
products and services [94]. Text mining includes the application of different methodological
approaches and algorithms [71–95].

Information extraction: Information extraction enables the automatic extraction of
structured information from structured or semi-structured documents or databases, which
can later be used to perform calculations. It has various applications, such as consumer
care and personal information management [96].

Information retrieval: Information retrieval is a process enabling organizing and
retrieving information at different levels of storage, whether from metadata, images, doc-
uments, or information within a specific document or query. The process is performed
according to the user’s needs via a query, after which the information is indexed and
filtered, and the relevant data are subsequently extracted and returned to the user for a
corresponding purpose.

Document classification and clusterization: In many practical applications, data
must be organized by groups according to content to facilitate information handling.
The process of organizing the information often uses supervised document classification
models or methods created for unsupervised clusterization, such as NMF [97] or LDA [98].
As discussed by Kowsari et al. [99], text classification is a significant challenge in many
domains and fields of application. Clustering, in contrast, allows for the same organization
to be performed according to groups, but in an unsupervised manner, by using clusters
of the same types of data information that are not initially labeled, thereby decreasing the
possibility that the data that are incorrectly assigned [100].

Summarization: Summarization creates a short representation of the original text,
thus allowing readers to grasp the entire information on a general level. It can take the
form of identification of key sentences in a document, which are subsequently presented as
a summary with considerable relevance for the user. In contrast, in the abstract form, the
summarization tool attempts to understand the information described in the text to later
extract the relevant idea and present it to the user [101].

Natural language processing: NLP is the technique through which data and texts
written in natural language are processed. The importance of this technique lies in the
difficulties in computing systems’ understanding of how humans execute communication,
because communication requires not only the use of words and symbols but also accentu-
ation, expression, and their respective meanings within a given context, which in many
cases can become abstract [102]. The field of applying NLP ranges from applications such
as Grammarly, Siri, or Alexa to sectors such as the economic and health sectors (e.g., the
IBM supercomputer Watson).

Web mining: In web mining, techniques and algorithms are used to obtain relevant
information found on the internet. It can focus on user activities, such as visited websites,
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the links that users click during browsing, or the documents consulted. However, the
data gathered from the internet are most often used to extract relevant information to
find patterns that enable, for example, diagnosis and prediction of trends of consumption.
These data also include analyses of a given user’s reaction to receiving a product or service
and are used to create personalized marketing strategies, thereby enabling business and
closing processes to be conducted effectively [103].

OM or sentiment analysis: Sentiment analysis refers to a wide range of machine
learning methods, including computational classification techniques that focus on linguis-
tics, NLP, and textual analytics. These techniques allow for the identification of the attitudes
and opinions of individuals toward a specific issue on the basis of metrics representing the
characteristics of the problems of interest. Such attitudes and opinions can be evaluated
via human judgments, expert evaluations of the emotional states of individuals, or the
intended meaning of communication in a specific context.

One method for unstructured text mining is sentiment analysis [24,26,69], also known
as OM in the context of NLP. Opinions are subjective descriptions, appraisals, and feel-
ings expressed by individuals, whereas sentiment analysis focuses on the algorithmic
extraction of various attributes of expressed opinions, such as polarity, subject matter, and
ownership. Sentiment mining focuses on the computational analysis of the “subjective”
information typically contained in textual sources, such as reports, reviews, blogs, posts,
and comments [34]. As noted by Shahbaz et al. [68], the main aim of sentiment analysis
is to categorize text at the document or sentence level and to provide information about
whether the analyzed text expresses a positive, negative, or neutral sentiment toward a
given topic.

Turney [21] and Pang et al. [18] discussed various approaches for categorizing the
polarity of individual opinions and introduced the feature-based analysis model, similarly
to the sentiment analysis used by Hu and Liu [16]. This model can be used to determine
views expressed by individuals about specific features (e.g., product features) as well as
user attitudes (e.g., positive, neutral, or negative) regarding specific features or aspects of
an issue through the use of certain words and sentences. Sentiment analysis can be applied
at the text, sentence, or sub-sentence level and can be optimized to offer a fine-grained
analysis on a five-point Likert scale or a five-star rating, which is used to detect the emotion
of the entity expressing the opinion in aspect-based, intent, and multilingual analyses. With
the exponential increase in unstructured data, the algorithmic extraction of sentiment from
expressed personal views significantly improves behavioral insights and makes behavioral
analysis more efficient.

4.2. Human Behavior

This literature review proposes three main categories to classify human behavior in
the context of text mining: cognitive, emotional, and social behaviors. Most of the literature
conveys how textual data are analyzed to understand the activities, mental skills, and social
interactions among people, with the goal of identifying emotional, social, and cognitive
behaviors, whose characteristics are depicted in Figure 6 [55].

Figure 6. Classification of psychological behaviors.

Emotional behavior is correlated with mental health issues (e.g., stress, depression,
anger, or violence), and the monitoring and treatment of mental disorders can be achieved
by extracting textual data from communication devices. Several studies have explicitly
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shown that assumptions can be made about a given person’s current mood by analyz-
ing variations in mobile usage patterns, texting, and calling [9]. Moreover, studies by
Tausczik et al. [5] and Rutland et al. [70] described machine-learning methods to analyze
the content of messages sent by short message service (SMS) to scan words from texts and
link them to psychologically meaningful terms that can be used to asses emotions and
changes in mood. In addition, audio data from mobile calls can be analyzed and translated
to text, and the person’s mood can be extracted to detect emotional signatures [35].

Social behavior is associated with issues of social interaction, such as empathy or
loneliness. Social networks, such as Twitter, LinkedIn, or Facebook, were used to study
human social behavior. Textual comments were analyzed to identify sentiments to extract
information about attitudes, social activity, and interactions with other users [27]. For
example, the number of ongoing or outgoing comments or conversations can reflect the
current mood of a given individual. In addition, people with mental health conditions
tend to increase the number of texts sent during maniac episodes, whereas low levels of
texts sent can be correlated with depression [14]. In terms of societies, governments, and
leader actions, interesting advances using hybrid approaches such as complexity science,
symmetry, and information systems (text) presented by Helbing et al. [91] demonstrate
that they can contribute to areas such as understanding geopolitical tensions by analyzing
an extensive data set from newspaper articles. The published news was used to search the
text of the article for mentions of a given country along with a set of keywords typically as-
sociated with tensions (for example, crisis, conflict, antagonism, clash, contention, discord,
fight, attack, combat) and have predictions about the subsequent actions.

Cognitive behavior is associated with the performance of mental processes such as
thinking and casual reasoning [55]. The information expressed as textual data can be
used to monitor an individual’s skills in different activities. Some authors divide cognitive
functions into categories (e.g., perception, attention, memory, language skills, and executive
functioning), which can be monitored by assessing performance in specific tasks within
these categories. For example, textual analytics was used in SMS text messages from people
with schizophrenia to help identify cognitive impairment [104].

4.2.1. Emotional Category

In this category, the included papers focused on using smartphones, written informa-
tion, opinion mining, and customer feedback. Gravenhorst et al. [9] recognize smartphones
as a promising technology for use in the treatment of mental disorders through the imple-
mentation of sensor devices to monitor illnesses. By using human–computer interfaces
to support therapy and by collecting data from patients’ daily lives, smartphones can be
beneficial for treating people with mental disorders. Grünerbl et al. [15] explored the use
of mobile phones to recognize depressive and manic states in people with bipolar disorder.
This sensor-based smartphone system can support the treatment of patients with bipolar
disorder as a supplementary tool for health care professionals [15]. Muaremi et al. [35]
demonstrated the applicability of phone calls to assess episodes of bipolar disorder in
patients. Statistics were extracted from various phone call conversations by using speech
cues, and different features, social signals, and emotional properties were identified [35].
Li and Qian [44] identified how long-term memory helps classify information by ana-
lyzing different emotions in texts. This method helps classify different sentences with a
corresponding emotion and may be used to project possible trends in preferences [44].

Wang et al. [80] used emotion evolution law for emotion analysis. This method
evaluates natural language text from web news by using one-step and limited-step shifts
as well as path transfer; it was validated on a data set of titles, bodies, and comments from
news articles. This method can identify feelings such as love-anger, sadness-anger, and joy,
thus providing insight into applications regarding affective interaction in network public
sentiment, social media communication, and human–computer interaction. Swain et al. [83]
proposed a method for detecting suicide ideation by using sentiment analysis from tweets
via supervised learning. By using Python language modules and machine learning models
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for opinion mining, the research using this method suggests that machine sentiment
analysis can aid in timely detection and act as an alert system for suicidal tendencies.
Similar work was recently presented by Bayram and Benhiba in [88], where with machine
learning techniques, it was possible to identify a person’s suicide risk based on the short-
term history of their tweets. Fareri et al. [86], in 2020, focused on the development of a
data-driven approach using text mining techniques to analyze job profiles and quantify the
readiness of employees of a large firm to adopt the Industry 4.0 paradigm. This approach
provides a framework for estimating the Industry 4.0 readiness of enterprises.

Mahendran et al. [10] proposed classifying written information as positive, negative,
or neutral to efficiently study raw data by using traditional approaches such as Bag of
Words, Naïve Bayes classifier, and frequency distribution. Tausczik et al. [5] used the com-
puterized text analysis program Linguistic Inquiry and Word Count (LIWC) to determine
the physiological meaning of textual information. In this program, words are categorized
into different psychological classes to assess peoples’ thought processes, emotional states,
intentions, and motivations [5]. Turney [21] categorized data according to an analysis of the
meanings of different words by using algorithms. For example, positive reviews (thumbs
up) are determined if the review contains positive words, whereas negative reviews are
determined by negative words (thumbs down). Nasukawa and Yi [37] applied a semantic
analysis and achieved 70–95% precision in relating sentiments to positive or negative
words in text documents from web pages and articles. Extracting information by using
NLP can help determine sentiments expressed online [37]. Thakur and Han [105] presented
an attractive approach for analyzing the acceptance of interaction with virtual assistants
throughout different interactive devices with sentiment analysis using Natural Language
Processing to explore the views, expressions, and beliefs expressed by older adults.

Pennebaker et al. [42] studied the software LIWC, which processes textual information
to capture the beliefs, preferences, and sentiments of people expressed in words. This study
provides evidence that the words that people use have psychological value [42]. Emotions
play a critical role in the studies of human knowledge and behavior. These emotions can be
determined by the environmental events of the individual or by their cognitive abilities and
social skills. Knowledge management (KM) research considers them from specific angles,
and, to date, a comprehensive understanding of the emotions that dominate KM and their
prediction has been lacking. To offer a holistic view, this study investigated the presence of
emotions in knowledge management publications by applying sentiment analysis [87].

Liu [2] introduced different aspects of sentiment analysis and opinion mining be-
cause these two fields have become the most critical approaches in analyzing people’s
opinions, sentiments, emotions, and attitudes through the collection of textual language.
Miedema [17] explored how sentiment classification can be used to arrange documents
according to sentiments. This method was used to organize feelings gathered through
movie reviews for the long short-term memory. Bo Pang et al. [18] indicated that some
machine learning techniques have not performed correctly in classifying texts by sentiment.
This aspect has become a concern because it makes sentiment analyses more challenging.
Othman et al. [24] explored approaches for opinion mining and sentiment analysis to
gather and analyze information about the opinions of the public. Machine learning can
help collect the responses posted on different social media platforms so that data can be
used for various purposes in the industry. Acheampong et al. [78] focused on sentiment
analysis through emotional detection via text mining. With the ease of sourcing for data, the
analysis of text mining has led to different approaches in the design of text-based emotional
detection systems as well as different proposals regarding the concepts of contributions,
approaches used, datasets used, results obtained, and strengths and weaknesses.

Vinodhini and Chandrasekaran [26] established that sentiment analysis and opin-
ion mining can help predict future behavioral trends by elucidating the preferences of
customers according to what they write. This capability is valuable for economic and
marketing studies. Usability in logistics and supply chain management was used recently
to examine customer perceptions of companies’ services. For example, Siby et al., in [90],
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presented an interesting application in last-mile logistics. The research used customer
reviews about their delivery experience regarding quality, service quality, product return,
refund policy, information sharing issues, etc. This work recommended suggestions for
redesigning processes related to last-mile logistics by introducing artificial intelligence tech-
nology. Pang and Lee [25] compared traditional analyses and sentiment-aware applications
that process information about the sentiments and opinions of people. Different techniques,
benchmarking, future work, and resources were also studied. Salloum et al. [20] proposed
a different classification system for the different aspects of opinion mining because the
challenges of correctly detecting the meanings and interpretations of different opinions
can complicate opinion mining (i.e., an understanding of the domain-specific opinion is
required) [20].

Greco and Polli [77] focused on the abundance and use of textual data as a source of
valuable information regarding opinions and feelings and discussed the use of emotional
text mining in brand management. This method is used to profile social media users’
representations and sentiments about a topic by extracting information from a collection
of texts such as Twitter. Raeesi Vanan [82] performed a study in which 3 million inbound
tweets and outbound brand responses (tweets) were collected for brand sentiment analysis.
Steps of CRIP-DM were used as a reference guide for business and data understanding,
preparation, text mining, validation, and discussion of its contributions. The analytical
conclusions regarding the sentiment trends were that the sentiments of customers toward
a brand are significantly correlated with the brand’s proper response to a brand commu-
nity over social media as well as providing customers with a deep feeling of reciprocal
understanding of needs.

Pang and Lee [25] presented the importance of opinion mining and sentiment analysis,
which has led to the development of several techniques and machines to gather and
process information about the opinions and moods of people. The challenge is to seek
better approaches to sentiment-aware applications. Haddi et al. [43] used support-vector
machines (SVM) to explore the importance of text pre-processing in sentiment analysis
because understanding the relevance of product opinion can be very challenging, owing to
the diversity and quantity of unstructured data in existence. [43].

Binali et al. [11] indicated that determining the emotional experiences of e-learning
students can be difficult; however, through mining techniques, analyses can detect emotion
in online students. In addition, identifying the different emotions of e-learning students can
help model more suitable educational programs. Another study [16] proposed summariz-
ing customer reviews by choosing product features on which they commented, classifying
whether the opinion was positive or negative, and summarizing the results. This analysis
is important because extremely high numbers of reviews prevent potential customers from
reviewing every single opinion. Mate [23] proposed a ranking of essential product features
from the online reviews of consumers. These aspects were identified by the number of
times the product features appeared in reports and how these aspects influenced the overall
opinions of consumers.

Estrada et al. [79] performed a comparison of sentiment analysis classifying tech-
niques, machine learning, deep learning, and EvoMSA to classify education opinions in
an Intelligent Learning Environment called ILE-Java. The development of two corpora
expressions, sentiTEXT, which has polarity positive and negative labels, and eduSERE,
which has positive and negative learning-centered emotion labels, reflected students’ emo-
tional states regarding teachers, exams, homework, and projects. EvoMSA produced the
best results among the classifying techniques, with a 93% accuracy rating for the senti-
TEXT corpus and an 84% accuracy rating for the eduSERE corpus. Two expressions in the
programming language domain reflect the emotional states of students and their feelings
regarding teachers’ exams, homework, and academic projects: sentiTEXT (positive and
negative labels) and eduSERE (positive and negative learning-centered emotions labels.
Misuraca et al., 2021 [81] discussed OM as a combination of statistics, linguistics, and
computer science that evaluates sentiments of individual opinions and highlights semantic
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orientation. The discussion includes the induction of OM as a statistical text analysis tool
in a learning environment to process student feedback from natural language producing
useful analytics, and to explore text collections from a quantitative viewpoint.

Wu et al. [28] studied how information shared on Facebook pages can be beneficial
in determining whether a company is correctly reaching its customers or the desired
requirements are met. By analyzing the interactions of Facebook users and the reactions
to their posts, companies can gather information, apply statistical analyses, and model
behavioral trends [28]. Kaur and Bansal [34] introduced opinion mining as a powerful tool
for e-commerce because it gathers information about how customers feel about different
products. This collection of opinions can help companies make better decisions and align
their efforts with what customers really want. The classification of e-commerce users
represents an appealing area of study for marketers seeking to align their efforts to capture
more consumers. [34]. Gamon [41] used large feature vectors and feature reduction to
demonstrate that large, noisy data regarding customer feedback can be analyzed and
classified. Feedback received from customers can present many challenges, and classifying
these data is necessary to retrieve only the important information [41].

Bollen et al. [12] highlighted that many Twitter users express their emotions through
this social media platform. With the use of a psychometric instrument, different social
events were found to profoundly affect changes in public mood. The identification of
these sentiments reflects personality trends, as well as the atmosphere and emotions of
Twitter users. Basari et al. [22] examined how tweets can contain information about
users’ preferences regarding movies. SVM can analyze natural language to determine
patterns via opinion mining. Online reviews can help predict the possible preferences of
the movie audience [22]. Zengin Alp and Gündüz Öğüdücü [38] introduced a method
called Personalized PageRank, which integrates the information retrieved from network
topology and the information of Twitter users regarding their actions and activities. This
capability has become appealing for marketers because Twitter is an online platform where
users share their preferences.

Saire and Cruz [84] focused on the use of text mining of data collected from social
media and search trends to analyze the effects of COVID-19 on the population of Paris,
France, from 23 April 2020 to 18 June 2020. The primary findings revealed a decreasing
pattern of publication/interest in the health crisis and the health and economic effects on
the population resulting from the effects of COVID-19. Chire-Saire [85] used analysis of
social media through complex network representation and text mining to compare the
effects of COVID-19 in other countries. Focusing on South American countries, the analysis
of texts via Twitter indicated the existence of patterns similar to those in complex systems
and confirmed the idea of system and visualization of adjacency matrices, which may
potentially identify posts made by robots as opposed to humans.

Frost et al. [14] studied the system MONARCA 2.0 to collect relevant information
from bipolar patients, with an aim to provide insight into the disease for both patients and
clinicians by processing subjective and objective data about patient mood. This system
helps identify patterns in behaviors and factors affecting the disease [14]. Lachmar et al. [27]
gathered information shared by individuals with sentiments of depression on Twitter
through the hashtag #MyDepressionLooksLike. These tweets presented dysfunctional
thoughts, hopeless feelings, and unlovability characteristics, thus revealing how people
with depression talk about their symptoms via social networking. Pijnenborg et al. [40]
discussed the benefits of using SMS to decrease the effects of cognitive impairments in
patients who have schizophrenia. Because schizophrenia also involves delusions and
hallucinations, improvements in the status of patients using SMS can be very modest.

Bespalov et al. [13] proposed an approach to modeling higher-order sentences to a
lower order to make the classification of data viable. Supervised latent n-gram analyses
can help classify sentiments that are extracted from textual information. Davis et al. [29]
determined how analytical models can enhance public safety with the help of probabilistic
and parametric methods, as well as different nonlinear algebraic models, by analyzing
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uncertain data and identifying threats and false alarms, and detecting possible terrorist
profiles [29].

Gill [33] illustrated the relationship between the language used and the personality
projected by word choice. The personality traits of extraversion, neuroticism, and psychoti-
cism can be determined by analyzing text from emails [33]. Boyd and Pennebaker [39]
studied the language used by people to identify personality patterns. Rather than focusing
on responses to self-reported questionnaires, language-based measures represent a new
approach to model personality trends. A.S. Cohen et al. [3] applied computerized lexical
analyses to determine positive or negative affectivity dimensions through natural speech.
Measuring personality was possible because people with positive affectivity demonstrate
high levels of positive emotions, whereas those with negative affectivity show high levels
of negative emotions.

Brynielsson et al. [31] used different techniques for analyzing data to detect “lone
wolf” terrorists with the goal of preventing possible attacks. Analytical models were
created by using a platform to harvest and capture online information and trace possible
lone wolves [31]. K. Cohen et al. [32] established the challenges of detecting lone wolves
by using traditional police methods and introduced new tools and technologies that can
detect weak signals in the form of linguistic markers that facilitate the identification of lone
wolves’ profiles [32].

Hung et al. [30] introduced a new framework and technology called INSiGHT (In-
vestigative Search for Graph-Trajectories) that helps detect groups or individuals whose
behavior suggests a potential for violence by identifying radicalization trajectories over
time [30]. Paul K. Davis et al. [36] studied behavioral patterns and their usage to predict
possible acts of violence.

4.2.2. Social Category

In this category, Alexander Semenov et al. [45] studied the identification of possi-
ble school shooters by analyzing the content shared by users on different social media
platforms. Future shooters can be identified by analyzing the emails, chats, texts, and
social media feeds of prior school shooters sharing similar behaviors [45]. Bartlett and
Reynolds [46] presented how social media faces legal and ethical responsibilities, yet also
can be useful to prevent terrorism and preserve public safety. Privacy can protect the
public and prevent the use of social media for terrorism and propagandistic purposes [46].
Marrese-Taylor et al. [52] tested the software Opinion Zoom to gather online information
about tourism opinions to propose solutions to problems in the industry. A modular tool
was used because tourism opinions on the web can help predict possible traveling patterns
as well as preferences of travelers.

Kastrati et al. [49] investigated the activities of users on online social networks to
identify crimes by applying the objective metric SEMCON. By retrieving online posts,
feeds, or users’ comments, this method can determine whether a user is a suspect [49].

Bollen et al. [12] analyzed how OpinionFinder and Google-Profile of Mood States
(GPMOS) can help determine the mood patterns presented on social media regarding
worldwide events. This analysis can also help companies predict the behavior of customers
regarding the stock market and minimize the effects of fluctuations in the stock market.
Bucur [47] established that opinion mining had become a key technique for extracting and
collecting relevant information needed for companies to make better decisions and that the
opinions of customers are fundamental input. Opinion mining has become an appealing
area of study for many businesses [47].

Dave et al. [48] extracted textual information and classified online reviews as positive
or negative according to different product attributes. Opinions can be classified through
semantic analysis of online reviews [48]. Zha et al. [51] introduced a ranking system for
product aspects by identifying that a) the most important aspects are described by more
consumers, and b) these aspects directly affect the overall opinion of consumers. Product
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aspect ranking has many applications in various industries, and the main use is to gather
relevant information to make better decisions.

Nahm and Mooney [50] examined how DiscoTEX can help extract data by combining
data mining and information extraction. This method can locate data within documents
and transform unstructured text into a structured database, as well as predict additional
information for extraction from other documents. The integration of data mining and infor-
mation extraction can help combine data in a more readable structure [50]. McCallum [56]
investigated how unstructured data present a challenge in interpreting information. There-
fore, the aim of information extraction is to create a database by gathering loosely formatted
texts in which patterns can be identified by data mining [56].

Diehl [53] examined not only the structural but also the cultural aspects of social
networks. Relational sociology studies have tended to examine and retrieve information
from text data, whereas the importance of the implications of face-to-face interactions when
analyzing network information has largely been ignored. A. Semenov et al. [54] proposed
three modules for long-term monitoring of different social networks: the crawler, the repos-
itory, and the analyzer. By crawling, storing, and analyzing different sites, longitudinal
data from social media sites can be examined.

Pennebaker [55] analyzed the words that people use in emails, Twitter feeds, and Face-
book posts to determine their emotions, thoughts, social relationships, and personalities.
The focus was on word use rather than on how people were speaking. Mind mapping
can help explore social and psychological trends. Ibrahim and Ahmad [57] researched
how Requirements Analysis and Class Diagram Extraction (RACE) can expedite textual
extractions and improve the analysis of the data requirements that are currently performed
manually. Many NLP techniques were developed to extract relevant information from
textual data.

4.2.3. Cognition Category

Eichinger et al. [58] introduced Affinity, a system that can assess similarities among
the text message histories of users while preserving private information. A latent format is
used, which does not allow for the reconstruction of the comparison words. Chung and
Pennebaker [61] distinguished the adjectives most commonly used by college students
by applying computerized text analytic tools. This study has established the strengths
of analyzing open-ended texts to extract information from the natural language used by
different participants. This method enables the examination of cultural patterns as well as
personality characteristics.

Bond and Pennebaker [59] experimented with changing pronouns to moderate the
health benefits of expressive writing by alternating the focus of participants. Expressive
writing can therefore affect people’s physical and psychological health. Pennebaker and
Stone [6] developed two projects showing the relationship between language use and aging:
as people age, they tend to use more positive affect words than negative affect words and
to use fewer self-references and fewer past-tense verbs.

Rajman and Besançon [62] established that text mining is a powerful technique to
extract important information from a dataset by applying probabilistic associations of
keywords because unstructured data can be challenging to interpret.

Fishhoff and Chauvin [106] investigated how intelligence analysis helps clear difficult
situations and enhance valuable information for better decision-making by evaluating and
integrating pertinent information. Intelligence analysis can help determine behavioral
profiles and social conduct.

4.2.4. Other Studies

Kosala and Blockeel [65] explored the use of web mining by dividing it into three dif-
ferent categories—web content mining, web structure mining, and web usage mining—and
studying representation issues, recess, and learning algorithms. Balazs and Velásquez [63]
studied how information fusion seeks to correctly transform and compress data to trans-
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form them into a more understandable representation. Fusion processes and the devel-
opment of surveys to extract relevant data can be helpful as the use of opinion mining
steadily increases. Nigam et al. [67] evaluated maximum entropy techniques to establish
how a uniform distribution can benefit the classification of data. More studies must be
performed, but this technique appears promising.

Continuous efforts have been undertaken worldwide to propose new classification al-
gorithms such as Tsetlin Machine [107] or Dendritic Neuron Models [108]. Rutland et al. [70]
evaluated how the use of SMS can be measured with the SMS Problem Use Diagnostic
Questionnaire (SMS-PUDQ) to determine behavioral addiction to SMS use. The time spent
using SMS and other measures of mobile phone use were detected during the study. Aggar-
wal and Zhai [71] explored the importance of mining text data, an appealing research topic,
given that the amount of web-enabled data has increased and facilitates the exploration
of vast quantities of textual data. A comparison of the classical and modern aspects of
text mining was also described. Berry and Kogan [72] studied the contributions of text
mining, as well as major topics associated with text mining, by categorizing text into three
different components to explore keyword extraction, classification, and the clustering of
information presented in textual data. Akilan [73] investigated the field of text mining
to extract unstructured data and identify interesting and non-trivial patterns from text
documents. An exploration of the current challenges and projected directions of this field
was described [73]. Chakraborty et al. [64] prepared various case studies and performed
text mining and analysis to extract important information from textual data. Different
scenarios were created wherein SAS was used to perform comprehensive text analytics to
help industries leverage the textual data [64].

Shahbaz et al. [68] proposed a solution to the analysis of textual information by devel-
oping a system, Sentiment Miner, to process and classify text files according to opinions
stated in various sentences by using NLP techniques and opinion mining algorithms.
Weiss et al. [69] introduced methods to predict and analyze unstructured information pre-
sented on textual data. Methods used for data mining could be adapted to be applied
to text.

Chakraborty et al. [64,109] collected insightful information from customers by analyz-
ing textual data from various documents to improve business operations and performance.
Analyses of unstructured data are possible by extracting important information when
performing text analysis and sentiment mining. Weerdt et al. [74] described the importance
of retrieving data to benefit business process management by applying process mining,
which uses techniques to analyze and extract knowledge and information from system
event logs.

Manning and Schutze [66] established the value of using statistical NLP to extract
and interpret textual data, not only for businesses but also for government agencies and
individuals who could benefit from extracting information from a large amount of data.
The theory and practice of these techniques are also explored. [66]

Moraes et al. [75] compared SVM and artificial neural networks to determine the dif-
ferences between these two approaches in performing sentiment analysis and determined
that artificial neural networks perform better than SVMs. Fraley [76] presented guidelines
on how to construct web-based surveys to conduct behavioral research. Strengths and
limitations of online surveys are highlighted, as well as the factors affecting the design of
internet-based research.

5. Conclusions

In this paper, we analyzed published articles on different topics related to text mining
and human behavior. We divided the analysis into psychological behaviors regarding
emotion, cognition, and social empathy. The current research in identifying behaviors
has focused primarily on detecting emotional and social behaviors, whereas studies on
cognitive behavior are rarer. We found that NLP is the most common approach, which is
followed by information extraction and document classification. Another main finding
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in this review was that few studies have focused on detecting cognitive behavior. To our
knowledge, no decision support system has used a holistic approach to analyze cognitive,
emotional, and social behaviors simultaneously. The literature reviews analyzed and the
articles in Table 2 focus primarily on detecting emotions or empathy. The psychologi-
cal studies, for example [4] and [76], identified relationships between cognitive aspects,
emotions, and empathy. For this reason, it would be helpful to develop analytical and
computational systems that make it possible to identify the connections between different
aspects of human behavior through text analysis. In this way, predictions of future human
behaviors and explanations of past actions could be made. Furthermore, behaviors and
their effects on the outcomes of human action should be distinguished in greater detail.
For instance, the detection of negative words in comments can be associated with certain
social behaviors (e.g., being socially aggressive), as well as with cognitive behaviors (e.g.,
having dementia or depression).

Through the literature review, we identified a trend in the detection of mood states
that may affect a person’s life. For example, technological tools can support the detection
of behaviors over time (e.g., hours, days, weeks, or months). Consequently, detecting short-
term emotional behaviors in users (e.g., being “socially inactive” over a long period) could,
in turn, predict mood states and disorders (e.g., loneliness or depression), which could
also affect long-term social and cognitive behaviors. Thus, the traceability of behaviors
was studied. In the same way, many authors have demonstrated how text messages or the
translation of audio or video to textual data could contain delicate information that might
otherwise be missed. In addition, privacy and security are issues that must be managed
through the use of anonymous analyses.

Most of the literature discussed how the formulation and understanding of human
behavior were challenging and remained an evolving area of research that considerably
affects analytics. On the basis of the present review, a method or platform allowing all
classification methods to be combined has not been thoroughly explored. In contrast, we
found that each element of behavior has generally been examined individually. Hence,
future work should address this lack of information by using more systematic approaches,
in which multiple behavioral aspects can be analyzed simultaneously.

We hope that this review will support the design of a system that combines sentiment
mining and NLP techniques to develop an unstructured data opinion miner and index
engine for polarity extraction and classification at the sentence level through the use
of a variety of documents from repositories that represent or describe a given group of
individuals. Such a system should also facilitate the use of progressive tracking to capture
various changes in individual behavior, including the detection of behavioral changes,
the detection of anomalies, risk evaluation, and monitoring. This research may serve as a
reference for practitioners and researchers interested in detecting human behavior through
text analysis.
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