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Abstract: We propose a new asymmetric discrete model by combining the uniform and Poisson–
Ailamujia distributions using the binomial decay transformation method. The distribution, named
the uniform Poisson–Ailamujia, due to its flexibility is a good alternative to the well-known Poisson
and geometric distributions for real data applications in public health, biology, sociology, medicine,
and agriculture. Its main statistical properties are studied, including the cumulative and hazard rate
functions, moments, and entropy. The new distribution is considered to be suitable for modeling
purposes; its parameter is estimated by eight classical methods. Three applications to biological data
are presented herein.

Keywords: data analysis; asymmetric discrete distributions; Poisson–Ailamujia distribution; moment
estimation; Monte Carlo simulations; Shannon entropy; COVID-19 data

1. Introduction

Discrete distributions are quite useful for modeling discrete lifetime data in many
situations. Recently, several continuous distributions have been discretized for modeling
lifetime data, such as those summarized in Table 1.

Table 1. Some discretized continuous distributions.

Continuous Distribution Discrete Distribution Author

Weibull Discrete Weibull Nakagawa and Osaki [1]
Inverse Weibull Discrete inverse Weibull Stein and Dattero [2]
Normal and Rayleigh Discrete normal and Rayleigh Roy [3,4]
Burr XII and Pareto Discrete Burr XII and Pareto Krishna and Pundir [5]
Gamma Discrete gamma Chakraborty and Chakravarty [6]
Chen Discrete Chen Noughabi et al. [7]

On the other hand, a natural discrete analog of the continuous Lindley model, called
natural discrete Lindley (NDL), was introduced by [8] as a mixture of the negative binomial
and geometric distributions. Several reliability properties of the NDL were explored by [9].

Let N and X be two discrete random variables denoting the numbers of particles
entering and leaving an attenuator, with their probability mass functions (pmfs) p(n)
and P(X = x) that are connected by the binomial decay transformation introduced by
Hu et al. [10]

P(X = x) =
∞

∑
n=x

(
n
x

)
(1− p)n−x px p(n), x = 0, 1, . . . , (1)
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where 0 ≤ p ≤ 1 is the attenuating coefficient. Hu et al. [10] defined p(n) as a pmf of a
Poisson distribution with rate parameter λ > 0 and illustrated that P(X = x) is also a
Poisson distribution with rate λ p. They investigated the quantitative relation between
the input and output distributions after the attenuation. In recent studies, new discrete
models have been constructed by compounding two discrete distributions. For exam-
ple, Déniz [11] defined the uniform Poisson, Akdoğan et al. [12] proposed the uniform
geometric, and Kuş et al. [13] introduced the binomial discrete Lindley.

In this paper, we introduce the asymmetric uniform Poisson–Ailamujia (UPA) distri-
bution using the methodology of Hu et al. [10]. This distribution is a competitor to the
Poisson–Ailamujia (PA) model, and it is suitable for fitting datasets with excesses of ones.
We estimate the parameter α of the UPA distribution using eight classical methods and
provide detailed simulations to explore the behavior of the estimators.

The rest of the paper is organized as follows. Section 2 defines the new one-parameter
distribution and some of its properties. Two actuarial measures are calculated in Section 3. The
estimation methods are discussed in Section 4. In Section 5, the efficiency of the estimators
is studied via Monte Carlo simulations. Section 6 provides three real applications of the
new distribution. Section 7 offers some conclusions.

2. The Discrete UPA Distribution

The PA distribution was derived from the Poisson compounding scheme based on the
continuous Ailamujia distribution by Lv et al. [14]. It was pioneered by Hassan et al. [15] for
modeling count data, offering a new alternative to the Poisson and the negative binomial,
among other models. Its pmf has the form (for α > 0).

P(X = x) =
4 α2 (1 + x)
(1 + 2 α)x+2 , x ∈ N. (2)

Equation (2) can be expressed as

P(X = x) =
∞

∑
n=x

P(N = n) P(X = x | N = n), (3)

where X|N = n has the binomial B(n, p) model. Now, let X|N = n have the discrete
uniform U(n) with parameter n ≥ 0, and let N have a PA distribution with parameter
α > 0. Then, the pmf of the UPA random variable (rv), say, X ∼UPA(α), is as follows (for
x = 0, 1, . . .):

f (x) = P(X = x) =
∞

∑
n=x

1
(n + 1)

4 α2 (1 + n)
(1 + 2 α)n+2 =

2 α

(1 + 2 α)x+1 . (4)

Figure 1 displays plots of the pmf of X, which is unimodal. The probabilities of
P(X = x) decrease when x increases.
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Figure 1. Pmf of the UPA(α) distribution for some values of α.

2.1. Properties

The survival function (sf) of the UPA distribution is as follows (for x = 0, 1, . . .):

S(x) = P(X ≥ x) = 1− P(X ≤ x− 1) = 1−
x−1

∑
i=0

2α

(1 + 2α)i+1 =
1

(1 + 2α)x . (5)

The cumulative distribution function (cdf) of X reduces to

F(x) = P(X ≤ x) =
x

∑
i=0

2α

(1 + 2α)i+1 = 1− 1
(1 + 2α)x+1 , x = 0, 1, . . . (6)

The hazard rate function (hrf) of X can be defined as h(x) = P(X = x | X ≥ x) =
P(X = x) / P(X ≥ x), where P(X ≥ x) > 0. Then, the hrf of the UPA distribution follows
from Equations (4) and (5) as

h(x) =
2α

(1 + 2α)
. (7)

The moment generating function of X is

MX(t) = E
(

etX
)
=

∞

∑
x=0

etx 2α

(1 + 2α)x+1 =
2α

1 + 2α− et . (8)

The first fourth ordinary moments of X are

E(X) =
1

2α
, E(X2) =

1 + α

2α2 , (9)

E(X3) =
3 + 6α + 2α2

4α3 and E(X4) =
3 + 9α + 7α2 + α3

2α4 . (10)

The variance, skewness, and kurtosis of X are obtained from these expressions as

Var(X) =
2α + 1

4α2 , γ1(X) =
2(1 + α)√

1 + 2α
> 0 and γ2(X) =

4α2 + 18α + 9
1 + 2α

> 0. (11)
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We note that the new distribution is over-dispersed since the index of dispersion (ID)

ID =
Var(X)

E(X)
=

2α(2α + 1)
4α2 =

2α + 1
2α

> 1. (12)

Hence, the UPA distribution can be used for modeling over-dispersed data. In ad-
dition, it is right-skewed and leptokurtic, since γ1(X) > 0 and γ2(X) > 0, respectively.
The UPA distribution is a heavy-tailed distribution.

Table 2 gives some moments, variances, and IDs in terms of α. Figure 2 displays the
plots of the skewness and kurtosis versus α. The ID decreases monotonically in α, whereas
the skewness and kurtosis monotonically increase for α ∈ (0, ∞).

Table 2. Moments and ID of the UPA(α) distribution.

α Mean B E
(
X2) E

(
X3) E

(
X4) ID

0.25 2.0000 6.0000 10.0000 74.0000 730.0000 3.0000
0.75 0.6667 1.1111 1.5555 5.1111 22.2963 1.6667
1.00 0.5000 0.7500 1.0000 2.7500 10.0000 1.5000
1.25 0.4000 0.5600 0.7200 1.7440 5.5584 1.4000
1.50 0.3333 0.4444 0.5555 1.2222 3.5185 1.3333
1.75 0.2857 0.3673 0.4490 0.9154 2.4281 1.2857
2.00 0.2500 0.3125 0.3750 0.7187 1.7812 1.2500
2.25 0.2222 0.2716 0.3210 0.5844 1.3672 1.2222
2.50 0.2000 0.2400 0.2800 0.4880 1.0864 1.2000
2.75 0.1818 0.2149 0.2479 0.4162 0.8872 1.1818
3.25 0.1538 0.1775 0.2011 0.3177 0.6297 1.1538
3.75 0.1333 0.1511 0.1689 0.2542 0.4751 1.1333
4.50 0.1111 0.1234 0.1358 0.1934 0.3370 1.1111
5.50 0.0909 0.0992 0.1074 0.1450 0.2353 1.0909
7.50 0.0667 0.0711 0.0755 0.0951 0.1400 1.0667
9.50 0.0526 0.0554 0.0582 0.0701 0.0968 1.0526

10.00 0.0500 0.0525 0.0550 0.0657 0.0896 1.0500
50.00 0.0100 0.0101 0.0102 0.0106 0.0114 1.0100
75.00 0.0067 0.0067 0.0067 0.0069 0.0073 1.0067

100.00 0.0050 0.0050 0.0050 0.0051 0.0053 1.0050
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Figure 2. Skewness and kurtosis of the UPA(α) distribution.
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2.2. Stochastic Orders of the Parameter α

Shaked and Shanthikumar [16] showed that some stochastic orders exist and have
several applications. Theorem 1 shows that the UPA distribution is ordered according to
the strongest stochastic order, namely, the likelihood ratio (lr) order.

Definition 1. Consider the two random variables X and Y with respective pmfs fX(·) and fY(·).
Then, X is said to be smaller than Y in the lr order, denoted by X ≤lr Y, if fX(x) / fY(x) is
non-decreasing in x.

Theorem 1. Let X ∼UPA(α1) and Y ∼UPA(α2). Then X ≤lr Y for all α1 > α2.

Proof. We have

Lx =
fX(x)
fY(x)

=
α1

α2

(
1 + 2α2

1 + 2α1

)x+1
(13)

and

Lx+1 =
fX(x + 1)
fY(x + 1)

=
α1

α2

(
1 + 2α2

1 + 2α1

)x+2
. (14)

Clearly, one can note that

Lx+1

Lx
=

1 + 2α2

1 + 2α1
< 1, ∀ α1 > α2. (15)

2.3. Entropy

The Shannon entropy of X can be expressed as

H(X) = −
∞

∑
x=0

P(X = x) log[P(X = x)]

= −
∞

∑
x=0

2 α
(2 α+1)x+1

{
log(2 α)− (x + 1) log(2 α + 1)

}
= (2 α)−1 log(2 α + 1) + log(2 α + 1)− log(2 α)

= log(2 α + 1)
(

1
2 α + 1

)
− log(2 α).

(16)

Table 3 gives some values of H(X) in terms of the parameter α. Figure 3 displays the
plot of H(X) versus α. The entropy H(X) is monotonically decreasing for α ∈ (0, ∞), and
it proceeds to zero when α becomes larger.

Table 3. Entropy of the UPA(α) distribution.

α H(X) α H(X) α H(X)

3.5 0.4306 7 0.2624
0.5 1.3863 4 0.3924 7.5 0.2494
1 0.9548 4.5 0.3612 8 0.2377

1.5 0.7498 5 0.3351 8.5 0.2272
2 0.6255 5.5 0.3129 9 0.2176

2.5 0.5407 6 0.2938 9.5 0.2090
3 0.4785 6.5 0.2771 10 0.2010
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Figure 3. Entropy of the UPA(α) distribution.

2.4. Quantile Function

The quantile function (qf) of the UPA distribution is determined by inverting (6) as

Q(u) = −1− log(1− u)
log(1 + 2 α)

. (17)

The ath quantile (xa) of X can be expressed from Equation (17) as

xa=


⌊
−1− log(1− u)

log(1 + 2 α)

⌋
+ 1 , bQ(a)c 6= Q(a){⌊

−1− log(1−u)
log(1+2 α)

⌋
,
⌊
−1− log(1− u)

log(1 + 2 α)

⌋
+ 1
}

, bQ(a)c = Q(a)
, (18)

where bxc denotes the integer part of x. The quantity xa satisfies F(x−a ) ≤ p ≤ F(xa),
where F(x) is the cdf given in (6). The median of the UPA(α) distribution is x0.5.

3. Actuarial Measures

In this section, we determine the value at risk (VaR) and tail value at risk (TVaR) of
the UPA(α) distribution.

3.1. VaR Measure

Let X denote a loss rv. The VaRp of X at the 100p% level, say, πp, is the 100p percentile
of the distribution of X, namely,

P
(
X > πp

)
= 1− p, and then πp = F−1(p), (19)

where p ∈ (0, 1), and F(x) is the cdf of the UPA distribution given in (6). The quantity
VaRp of the UPA distribution comes from the qf (17) as follows:

πp = −1− log(1− p)
log(1 + 2 α)

. (20)
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3.2. TVaR Measure

The TVaR of X at the 100p% security level, say, TVARp, has the form

TVARp = E
(
X | X > πp

)
=

∞
∑

x=πp
x f (x)

1− F
(
πp
) . (21)

The TVaRp measure for the UPA(α) model follows from Equations (4) and (6).

TVARp =
(1 + 2α)

1+ log(1−u)
log(1+2 α) {[1− 2 α] log(1 + 2α)− 2 α log(1− p)}

2 α (1− p) log(1 + 2 α)
. (22)

Some VaRp and TVaRp values for the UPA distribution are listed in Table 4.
The figures in Table 4 and the plots in Figure 4 indicate that the VaR and TVaR

measures are increasing functions of α.

Table 4. The VaR and TVaR measures for the UPA(α) model.

α Security Level VaRp TVaRp

0.25

0.80 2.9694 7.4074
0.85 3.6789 7.9012
0.90 4.6789 9.2181
0.95 6.3884 10.5350
0.99 10.3577 15.0293

0.5

0.80 1.3219 4.6338
0.85 1.7369 5.4739
0.90 2.3219 6.6438
0.95 3.3219 8.6438
0.99 5.6438 13.2877

1.5

0.80 0.1610 1.9772
0.85 0.3685 2.8073
0.90 0.6610 3.9772
0.95 1.1610 5.9772
0.99 2.3219 10.6210
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Figure 4. Plots of the VaR and TVaR measures for the UPA(α) distribution.
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4. Estimation

In this section, the parameter α is estimated by eight methods, and their performances
are investigated via Monte Carlo simulations. The proposed estimators are determined
from the maximum likelihood, moments, proportions, ordinary and weighted least-squares,
Cramér–von Mises, right-tail Anderson–Darling, and percentiles methods. For all methods,
let x1, . . . , xn be n independent observations from the UPA distribution.

4.1. Maximum Likelihood

The log-likelihood function for α comes from (4) as follows:

`n(α) =
n

∑
i=0

log[ f (xi; α)] = n log(2α)−
n

∑
i=0

(xi + 1) log(1 + 2α). (23)

Then, the maximum likelihood estimate (MLE) of α, say, α̂, is determined by maximiz-
ing `n(α) with respect to this parameter as the solution of

d`n(α)

dα
=

n
α
− 2

1 + 2α

n

∑
i=0

(xi + 1) = 0, (24)

which gives α̂ = 1/(2x) if x > 0, where x = n−1 ∑n
i=1 xi.

Under some regularity conditions, the distribution of α̂ can be approximated by the
N (α, 1/I(α̂)) distribution, where I(α) is the observed Fisher information.

I(α) =
(
− d2`n(α)

dα2

)
= − n

α2 −
4

(1 + 2α)2

n

∑
i=0

(xi + 1). (25)

An asymptotic confidence interval for α at the level (1− γ)100% with γ ∈ (0, 1) has
the form [

α̂− zγ/2

√
1/I(α̂), α̂ + zγ/2

√
1/I(α̂)

]
, (26)

where zγ/2 is the (1− γ/2)-quantile of the normal N (0, 1) distribution.

4.2. Moments

The moment estimate (MOE) α̃ of α follows from E(X) given in Section 2.1 as

α̃ =
1

2x
, (27)

if x > 0. From the central limit theorem,

√
n
(
X− µ

) d−→ N
(

0, σ2
)

, (28)

where
µ =

1
2α

and σ2 =
2α + 1

4α2 . (29)

Based on the delta method,

√
n( p̃− p) d−→ N(0, 2α + 1). (30)

For any 0 < γ < 1, an approximate 100(1− γ) confidence interval for the parameter
α comes from (30) as

P
(

α̃− zγ/2
S√
n
< α < α̃ + zγ/2

S√
n

)
= 1− γ, (31)

where S =
√

2α̃ + 1.
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4.3. Proportions

We define the indicator function ν(·) (for i = 1, . . . , n) as

ν(xi) =

{
1, xi = 0,
0, xi > 0.

(32)

Clearly, the proportion y = n−1 ∑n
i=1 ν(xi) refers to the proportion of zeros in the

sample, and it is an unbiased and consistent estimate of the probability

f (0) =
2α

1 + 2α
. (33)

Then, the proportions estimate (POE) of α [17] follows by solving

y =
2α

1 + 2α
, (34)

which leads to the estimate α̂ = −y/[2(y− 1)].

4.4. Ordinary and Weighted Least-Squares

Let Xj:n be the jth-order statistic in a sample of size n. We adopt lower cases for sample

values. It is well-known that E
[
F(Xj:n)

]
= j

1+n and V
[
F(Xj:n)

]
= j (n−j+1)

(n+1)2(n+2) .
The least-squares estimate (LSE) of α, α̂, follows by minimizing

n

∑
j=1

[
1− 1

(1 + 2α)xj:n+1 −
j

n + 1

]2

, (35)

in relation to α.
The weighted least-squares estimate (WLSE) of α, α̃, is determined by minimizing

n

∑
j=1

φj

[
1− 1

(1 + 2α)xj:n+1 −
j

n + 1

]2

, (36)

in relation to α, where the weight function is φj = [(n + 1)2(n + 2)]/[j(n− j + 1)].

4.5. Cramér-von Mises

The Cramér–von Mises estimate (CVME) (see [18,19]) is based on the difference between
the estimate of the cdf and its empirical cdf [20]. The CVME of α follows by minimizing

C(α) =
1

12n
+

n

∑
j=1

[
1− 1

(1 + 2α)xj:n+1 −
2j− 1

2n

]2

, (37)

with respect to α. Further, the CVME of α is also obtained by solving

n

∑
j=1

[
1− 1

(1 + 2α)xj:n+1 −
2j− 1

2n

]
2
(
xj:n + 1

)
(1 + 2α)xj:n+2 = 0. (38)

4.6. Right-Tail Anderson–Darling

The right-tail Anderson–Darling estimate (RADE) of α follows by minimizing

R(α) =
n
2
− 2

n

∑
j=1

[
1− 1

(1 + 2α)xj:n+1

]
− 1

n

n

∑
j=1

(2j− 1) log
[

1− 1
(1 + 2α)xn+1−j:n

]
, (39)
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in relation to α. The RADE of α is also found by solving the equation

− 4
n

∑
j=1

(
xj:n + 1

)
(1 + 2α)xj:n+2 +

2
n

n

∑
j=1

(2 j− 1)

(
xn+1−j:n + 1

)
(1 + 2α)2 = 0. (40)

4.7. Percentiles

The percentile estimate (PCE) is obtained by equating the sample percentile point to
the population percentile. If pj denotes an estimate of F(xj:n; α), the PCE of α, say α̂PCE,
follows by minimizing

P(α) =
n

∑
j=1

[
xj −Q(pj)

]2, (41)

where pj =
j

1+n is an unbiased estimator of F(xj:n; α) and

Q(pj) = −
log
[
(1 + 2α)

(
1− pj

)]
log(1 + 2α)

. (42)

5. Simulation Study

We conducted a simulation study to evaluate the accuracy of the eight estimators
discussed before. We generated samples of sizes n = 30, 75, 100, 150, 200, and 300 from
the UPA distribution and then calculated the average values of the MLE, MOE, POE, LSE,
WLSE, CVME, RADE, and PCE of α (AVEs), mean square errors (MSEs), average absolute
biases (ABBs), and mean relative errors (MREs) when α = 0.35, 0.5, 1.5, and 3.0. The ABBs,
MSEs and MREs are given by

ÂBBsα =
1
N ∑N

i=1|α̂− α|, (43)

M̂SEα =
1
N ∑N

i=1 (α̂− α)2 (44)

and
M̂REα =

1
N ∑N

i=1|α̂− α|/α. (45)

We repeated the simulation 5000 times to calculate these measures for MLE, MOE,
POE, LSE, WLSE, CVME, RADE, and PCE from the previous settings. The results reported
in Tables 5–8 were found using the optim-CG routine of R software.

The numbers in Tables 5–8 reveal that the AVEs became closer to the true values of
α when the sample size n increased, as expected. Further, the ABBs, MREs, and MSEs
for all estimators decreased when n increased. Moreover, the MLE and MOE were the
best estimators under these criteria. The MLE and MOE were almost identical in terms of
the ABBs, MSEs, and MREs, and both had better performances than the other estimators.
Additionally, the biases and MSEs of all estimators decayed toward zero when n increased.
In summary, the performance ordering of the proposed estimators, from best to worst, was
MLE, MOE, WLSE, LSE, POE, PCE, RADE, and CVME. Hence, maximum likelihood was
adopted for the work in the next section.
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Table 5. Simulation results of the UPA model for α = 0.35.

n MLE POE MOE LSE WLSE CVME RADE PCE

30

AVEs 0.3571 0.3333 0.3571 0.3633 0.3635 0.3754 0.3742 0.3724
MSEs 0.3031 0.0076 0.0031 0.0039 0.0040 0.0205 0.0198 0.0764
ABSs 0.0554 0.0875 0.0554 0.0626 0.0631 0.0863 0.0789 0.2624
MREs 0.1583 0.2504 0.1583 0.1788 0.1804 0.2415 0.1428 0.8639

75

AVEs 0.3505 0.3523 0.3505 0.3555 0.3557 0.3495 0.3465 0.3639
MSEs 0.0013 0.0027 0.0013 0.0017 0.0018 0.0101 0.0087 0.0458
ABSs 0.0366 0.0521 0.0366 0.0415 0.0421 0.0774 0.0712 0.2139
MREs 0.1046 0.1489 0.1046 0.1184 0.1204 0.2212 0.0712 0.6112

100

AVEs 0.3521 0.3474 0.3521 0.3525 0.3521 0.3394 0.3416 0.3480
MSEs 0.0010 0.0019 0.0010 0.0013 0.0013 0.0057 0.0050 0.0065
ABSs 0.0315 0.0435 0.0315 0.0355 0.0360 0.0602 0.0557 0.0634
MREs 0.0901 0.1244 0.0908 0.1017 0.1029 0.1719 0.0557 0.1812

150

AVEs 0.3505 0.3523 0.3505 0.3524 0.3524 0.3397 0.3403 0.3478
MSEs 0.0006 0.0018 0.0006 0.0008 0.0008 0.0045 0.0039 0.0049
ABSs 0.0250 0.0428 0.0250 0.0291 0.0294 0.0537 0.0498 0.0556
MREs 0.0714 0.1224 0.0714 0.0832 0.0841 0.1535 0.0498 0.1589

200

AVEs 0.3509 0.3474 0.3508 0.3525 0.3525 0.3354 0.3389 0.3418
MSEs 0.0005 0.0012 0.0005 0.0006 0.0006 0.0023 0.0020 0.0024
ABSs 0.0217 0.0349 0.0217 0.0247 0.0248 0.0392 0.0360 0.0393
MREs 0.0621 0.0999 0.0621 0.0707 0.0710 0.1121 0.0360 0.1123

300

AVEs 0.3505 0.3522 0.3505 0.3519 0.3516 0.3463 0.3465 0.3488
MSEs 0.0003 0.0007 0.0003 0.0004 0.0004 0.0010 0.0008 0.0009
ABSs 0.0176 0.0272 0.0176 0.0203 0.0204 0.0261 0.0226 0.0236
MREs 0.0504 0.0777 0.0504 0.0579 0.0583 0.0745 0.0226 0.0673

Table 6. Simulation results of the UPA model for α = 0.5.

n MLE POE MOE LSE WLSE CVME RADE PCE

30

AVEs 0.5172 0.5127 0.5172 0.5146 0.5155 0.4757 0.4785 0.4898
MSEs 0.0069 0.0138 0.0069 0.0089 0.0089 0.0167 0.0147 0.0217
ABBs 0.0833 0.1176 0.0833 0.0943 0.0944 0.1028 0.0967 0.1136
MREs 0.1667 0.2353 0.1667 0.1886 0.1888 0.2050 0.1934 0.2273

75

AVEs 0.5145 0.4868 0.5145 0.5020 0.5016 0.4653 0.4713 0.4848
MSEs 0.0029 0.0051 0.0029 0.0037 0.0038 0.0073 0.0060 0.0077
ABBs 0.0536 0.0714 0.0536 0.0612 0.0615 0.0703 0.0634 0.0704
MREs 0.1071 0.1429 0.1071 0.1224 0.1230 0.1407 0.1267 0.1408

100

AVEs 0.5126 0.4868 0.5127 0.5020 0.5016 0.4619 0.4588 0.4871
MSEs 0.0024 0.0041 0.0024 0.0029 0.0029 0.0056 0.0045 0.0059
ABBs 0.0495 0.0638 0.0495 0.0542 0.0542 0.0620 0.0562 0.0615
MREs 0.0989 0.1277 0.0989 0.1085 0.1085 0.1241 0.1124 0.1230

150

AVEs 0.5098 0.5057 0.5097 0.5023 0.5019 0.4588 0.4678 0.4894
MSEs 0.0016 0.0032 0.0016 0.0020 0.0019 0.0045 0.0036 0.0040
ABBs 0.0396 0.0563 0.0396 0.0447 0.0441 0.0562 0.0497 0.0508
MREs 0.0791 0.1127 0.0791 0.0894 0.883 0.1124 0.0993 0.1016

200

AVEs 0.5044 0.5005 0.5045 0.5011 0.5008 0.4600 0.4665 0.4906
MSEs 0.0011 0.0023 0.0011 0.0014 0.0014 0.0037 0.0030 0.0030
ABBs 0.0327 0.0476 0.0327 0.0379 0.0379 0.0510 0.0456 0.0442
MREs 0.0654 0.0952 0.0654 0.0755 0.0758 0.1021 0.0911 0.0883

300

AVEs 0.5005 0.5004 0.5004 0.5003 0.5003 0.4573 0.4667 0.4914
MSEs 0.0008 0.0015 0.0008 0.0010 0.0010 0.0031 0.0024 0.0019
ABBs 0.0282 0.0385 0.0282 0.0312 0.0315 0.0480 0.0406 0.0354
MREs 0.0563 0.0769 0.0563 0.0625 0.0630 0.0961 0.0813 0.0708
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Table 7. Simulation results of the UPA model for α = 1.5.

n MLE POE MOE LSE WLSE CVME RADE PCE

30

AVEs 1.5421 1.6429 1.5521 1.6069 1.6044 1.1887 1.2015 1.5306
MSEs 0.1406 0.2500 0.1406 0.2060 0.2029 0.2316 0.2203 1.0837
ABBs 0.3750 0.5024 0.3750 0.4538 0.4504 0.4160 0.4045 0.4863
MREs 0.2500 0.3333 0.2501 0.3025 0.3003 0.2773 0.2696 0.3241

75

AVEs 1.5215 1.4737 1.5257 1.4992 1.4941 1.1389 1.1612 1.4721
MSEs 0.0428 0.0873 0.0428 0.0604 0.0617 0.1750 0.1594 0.1434
ABBs 0.2069 0.2955 0.2069 0.2457 0.2483 0.3780 0.3598 0.2931
MREs 0.1379 0.1970 0.1379 0.1638 0.1656 0.2520 0.2399 0.1954

100

AVEs 1.5152 1.5247 1.5152 1.5029 1.5028 1.1337 1.1641 1.4760
MSEs 0.0475 0.0459 0.0475 0.0469 0.0470 0.1676 0.1450 0.1075
ABBs 0.2179 0.2143 0.2179 0.2166 0.2169 0.3748 0.3471 0.2555
MREs 0.1453 0.1429 0.1453 0.1444 0.1446 0.2499 0.2314 0.1703

150

AVEs 1.5158 1.5270 1.5247 1.5110 1.5120 1.1305 1.1600 1.4791
MSEs 0.0278 0.0424 0.0278 0.0348 0.0347 0.1575 0.1364 0.0069
ABBs 0.1667 0.2059 0.1667 0.1865 0.1862 0.3714 0.3431 0.2073
MREs 0.1111 0.1373 0.1111 0.1243 0.1241 0.2476 0.2288 01382

200

AVEs 1.5152 1.5123 1.5152 1.5000 1.4995 1.1211 1.1522 1.4794
MSEs 0.0221 0.0302 0.0220 0.0265 0.0265 0.1590 0.1306 0.0494
ABBs 0.1486 0.1739 0.1486 0.1627 0.1629 0.3795 0.3479 0.1778
MREs 0.0991 0.1159 0.0991 0.1084 0.1086 0.2530 0.2330 0.1186

300

AVEs 1.5045 1.5057 1.5098 1.5032 1.5028 1.1205 1.1522 1.4813
MSEs 0.0127 0.0156 0.0127 0.0160 0.0159 0.1543 0.1306 0.0329
ABBs 0.1129 0.1250 0.1129 0.1265 0.1260 0.3766 0.3479 0.1452
MREs 0.0753 0.0833 0.0752 0.0844 0.0840 0.2531 0.2319 0.0968

Table 8. Simulation results of the UPA model for α = 3.0.

n MLE POE MOE LSE WLSE CVME RADE PCE

30

AVEs 3.4270 3.2500 3.2347 3.2366 3.2866 2.5001 2.5030 3.4441
MSEs 0.7347 1.0124 0.7347 1.0417 1.0248 1.5788 1.5904 1.8639
ABBs 0.8571 1.0147 0.8571 1.0206 1.0123 1.1359 1.1275 1.4804
MREs 0.2857 0.3333 0.2857 0.3402 0.3374 0.3786 0.3758 0.4935

75

AVEs 3.1250 2.9091 3.1250 2.9339 2.9364 2.8859 2.9132 3.0907
MSEs 0.4307 0.4444 0.4307 0.4302 0.4304 1.4055 1.3384 1.2770
ABBs 0.6562 0.6667 0.6563 0.6560 0.6561 1.1236 1.0963 0.7931
MREs 0.2188 0.2222 0.2188 0.2187 0.2187 0.3745 0.3654 0.2644

100

AVEs 3.1250 3.0714 3.1250 3.0711 3.0711 2.8642 2.8988 3.0839
MSEs 0.3265 0.3122 0.3265 0.3318 0.3289 1.4062 1.3243 0.8779
ABBs 0.5714 0.5588 0.5714 0.5760 0.5735 1.1388 1.1045 0.6850
MREs 0.1905 0.1863 0.1905 0.1920 0.1912 0.3796 0.3681 0.2283

150

AVEs 3.0785 3.0714 3.0673 3.0650 3.0656 2.8513 2.8892 3.0408
MSEs 0.1712 0.2001 0.1712 0.2026 0.2031 1.3906 1.3021 0.5301
ABBs 0.4138 0.4474 0.4138 0.4502 0.4507 1.1487 1.1109 0.5437
MREs 0.1379 0.1491 0.1379 0.1500 0.1502 0.3829 0.3703 0.1819

200

AVEs 3.0303 3.0714 3.0303 3.0578 3.0562 2.8470 2.8804 3.0547
MSEs 0.1357 0.1406 0.1357 0.1439 0.1449 1.3820 1.3047 0.3779
ABBs 0.3684 0.3750 0.3684 0.3794 0.3807 1.1530 1.1197 0.4726
MREs 0.1228 0.1250 0.1228 0.1265 0.1269 0.3844 0.3732 0.1576

300

AVEs 3.0159 2.9884 3.0158 2.9923 2.9917 2.8412 2.8765 3.0507
MSEs 0.1033 0.1198 0.1033 0.1178 0.1183 1.3785 1.2945 0.2502
ABBs 0.3214 0.3462 0.3214 0.3432 0.3439 1.1588 1.1235 0.3854
MREs 0.1071 0.1154 0.1071 0.1144 0.1146 0.3863 0.3745 0.1285
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6. Modeling Biological Data

In this section, the UPA distribution is fitted to three real biological datasets and
compared with the discrete Burr–Hatke (DBH) [21], discrete Poisson Lindley (DPL) [22],
natural discrete Lindley (NDL) [8], discrete Pareto (DP) [5], PA and Poisson distributions
according to the model’s ability. The first dataset (Catcheside et al. [23]) refers to numbers of
chromatid aberrations, and it was adopted by Hassan et al. [15] for comparing the Poisson
and PA distributions. We aimed to test whether the UPA model is a more reasonable choice
for these data based on the chi-squared test. Under the null hypothesis, the estimated
probabilities were

α̂i = P̂(X = i) =
2α̂

(1 + 2α̂)i+1 , i = 0, 1. . . . (46)

The estimated expected frequencies were êi = nα̂i. The results of the chi-square test
were reported in Table 9 considering five cells, where

χ2 =
5

∑
i=1

(oi − êi)
2

êi
= 4.2507 < χ2

0.95(4) = 9.4877, (47)

where êi and oi are, respectively, the expected and observed frequencies for x = i. Thus, we
cannot reject H0 at the 5% significance level, and then the UPA distribution is quite suitable
for these data.

Table 9. Results of the χ2 test for the first dataset.

Count Observed
Expected

UPA DBH NDL Poisson Pareto PA DPL

0 268 264.03 282.33 258.76 238.99 292.41 252.96 262.44
1 87 89.75 71.52 95.87 123.09 57.68 103.60 91.61
2 26 30.51 25.79 31.57 31.70 20.97 31.82 30.92
3 9 10.37 10.78 9.75 5.44 9.98 8.69 10.19
4 10 3.53 4.89 2.89 0.70 5.54 2.22 3.30

Total n =400

Parameters
α̂ 0.9709 0.5883 0.7530 0.5150 0.1504 1.9417 2.5012

χ2 5.33 6.49 7.54 29.41 15.17 11.37 5.94
− ˆ̀ 388.44 389.76 390.99 408.63 405.12 392.55 388.74

We also report in Table 9 the results of the χ2 test for the UPA and other distributions
based on the MLE of α. The UPA distribution provided the best fit since it resulted in the
smallest χ2 value. This conclusion can also be confirmed by the log-likelihood test. Figure 5
displays the empirical pmf and seven pmfs fitted to the first dataset, which confirm that
the new distribution yielded the best fit to the current data.

The second dataset (Catcheside et al. [23]) represents the number of mammalian
cytogenetic dosimetry lesions in rabbit lymphoblasts induced by streptonigrin (NSC-45383)
exposure—70 3bc g/kg. We fitted the UPA and other distributions to these data.

Table 10 reports the results of the χ2 test for seven fitted distributions, and Figure 6
displays the empirical pmf and seven pmfs fitted to these data. We have

χ2 =
5

∑
i=1

(oi − êi)
2

êi
= 4.9000 < χ2

0.95(4) = 9.4877. (48)
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Figure 5. Fitted and empirical distributions for the first dataset.

Then, the hypothesis H0 : X ∼ UPA(α) cannot be rejected at the 5% significance level.
Thus, the UPA distribution is a reasonable model for these data.

Table 10. Results of the χ2 test for the second dataset.

Count Observed
Expected

UPA DBH NDL Poisson Pareto PA DPL

0 200 195.80 209.55 190.60 174.83 216.88 186.00 193.45
1 57 68.31 54.09 73.07 94.40 43.89 79.09 69.82
2 30 24.96 19.92 24.90 25.49 16.20 25.22 24.34
3 7 8.41 8.51 7.96 4.59 7.80 7.15 8.28

4≥ 6 3.06 3.95 2.44 0.62 4.37 1.90 2.76

Total n =300

Parameters
α̂ 0.9259 0.6030 0.7444 0.5400 0.1570 1.8518 2.4002

χ2 4.90 5.02 8.08 34.04 11.32 13.10 6.15
− ˆ̀ 299.31 301.70 300.16 314.23 312.94 302.41 302.41

Based on the χ2 tests, log-likelihood values, and Figure 6, we conclude that the UPA
model provided a better fit for the second dataset than the other distributions.
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Figure 6. Fitted and empirical distributions for the second dataset.

The third dataset refers to counts of daily new COVID-19 deaths of Switzerland
between 1 March to 30 June 2021 available at https://github.com/owid/COVID-19-data/
tree/master/public/data/ (accessed on 6 July 2021). We adopt these data to show the
flexibility of the UPA model comparing to other models based on three criteria: Akaike
information criterion (AIC), Bayesian information criterion (BIC), and −maximized log-
likelihood (− ˆ̀). These daily new deaths are: 22, 17, 9, 8, 19, 5, 2, 8, 9, 17, 8, 14, 4, 4, 6, 29, 16,
20, 20, 0, 10, 26, 8, 29, 8, 14, 1, 1, 5, 17, 15, 13, 1, 0, 2, 24, 26, 29, 13, 5, 2, 1, 13, 6, 16, 10, 7, 0, 3,
13, 11, 14, 9, 11, 28, 13, 8, 26, 8, 7, 1, 1, 21, 12, 18, 10, 7, 2, 2, 9, 6, 4, 3, 2, 0, 1, 13, 8, 4, 4, 8, 7, 1,
3, 7, 3, 9, 3, 4, 1, 4, 16, 0, 2, 3, 1, 0, 9, 3, 7, 2, 6, 0, 0, 2, 5, 2, 0, 1, 0, 0, 7, 0, 0, 4, 2, 0, 0, 3, 2, 4. The
Kolmogorov–Smirnov statistic for the UPA model is 0.1132 with a p-value of 0.0920.

Table 11 reports the estimates of α, and the values of AIC, BIC and − ˆ̀ for the UPA
and other distributions. According to the figures in this table, the UPA distribution is more
adequate for these data than the DPL, NDL, DPL, PA, DP, DBH, and Poisson distributions.
This conclusion is also supported by Figure 7.

Table 11. Estimates, AIC, BIC, and − ˆ̀ for the third dataset.

Model α̂ AIC BIC −`

UPA 0.0585 757.2386 757.3214 377.6193
DPL 0.2318 765.8140 765.8968 381.9070
NDL 0.1901 767.1740 767.2568 382.5870
PA 0.1275 778.3318 778.4146 388.1659
DP 0.5857 849.9678 850.0506 423.9839
DBH 0.9920 909.8294 910.0438 452.9147
Poisson 7.8430 1260.3650 1260.4478 629.1825

Some useful probabilities can be easily calculated from the estimated cdf. For example,
a researcher would like to know the risk that more than ten deaths occur in Switzerland in
just one day during that coronavirus period.

https://github.com/owid/COVID-19-data/tree/master/public/data/
https://github.com/owid/COVID-19-data/tree/master/public/data/
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Figure 7. Empirical and estimated cdf of the UPA distribution for the third dataset.

7. Conclusions

New discrete distributions are very important for modeling real-life scenarios since
the traditional ones have limited applications in failure times, reliability, counts, etc. We
proposed and studied the uniform Poisson–Ailamujia (UPA) distribution, which can give
better fits than other discrete distributions, especially when modeling over-dispersed
count data. Seven methods were discussed to estimate its parameter, and Monte Carlo
simulations showed that the maximum likelihood and moments are the best ones. The
flexibility of the UPA model was proven empirically by means of three real biological
datasets. Furthermore, the UPA distribution can be extended in some ways. For example,
the transmuted UPA, exponentiated UPA, Beta UPA, Kumaraswamy UPA can be defined
to provide more flexibility with two and three parameters and to increase the potential
applicability of the UPA distribution. It is difficult, sometimes, to measure lifetimes or
counts on a continuous scale. In practice, we come across situations, where lifetimes are
discrete random variables. For example, the number of days that COVID-19 patients stay in
hospital beds, the number of hospital beds occupied by coronavirus patients in a hospital,
the number of comorbidities in these patients, etc. We point out examples of epidemiology,
but it can be applied in several other areas.

Author Contributions: Conceptualization, Y.A. and G.M.C.; methodology, Y.A. and A.Z.A.; software,
Y.A.; writing—original draft preparation, Y.A. and A.Z.A.; writing—review and editing, H.M.A.,
G.M.C. and A.Z.A.; project administration, H.M.A. and A.Z.A.; funding acquisition, H.M.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by Taif University Researchers Supporting Project number (TURSP-
2020/279), Taif University, Taif, Saudi Arabia.

Acknowledgments: The authors would like to thank the Editorial Board and three anonymous
reviewers for their constructive comments that greatly improved the final version of the paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Nakagawa, T.; Osaki, S. Discrete Weibull distribution. IEEE Trans. Reliab. 1975, 24, 300–301. [CrossRef]
2. Stein, W.E.; Dattero, R. A new discrete Weibull distribution. IEEE Trans. Reliab. 1984, 33, 196–197. [CrossRef]
3. Roy, D. The discrete normal distribution. Commun. Stat. Theory Methods 2003, 32, 1871–1883. [CrossRef]

http://doi.org/10.1109/TR.1975.5214915
http://dx.doi.org/10.1109/TR.1984.5221777
http://dx.doi.org/10.1081/STA-120023256


Symmetry 2021, 13, 1258 17 of 17

4. Roy, D. Discrete Rayleigh distribution. IEEE Trans. Reliab. 2004, 53, 255–260. [CrossRef]
5. Krishna, H.; Pundir, P.S. Discrete Burr and discrete Pareto distributions. Stat. Methodol. 2009, 6, 177–188. [CrossRef]
6. Chakaraborty, S.; Chakaraborty, D. Discrete gamma distribution: Properties and parameter estimation. Commun. Stat. Theory

Methods 2012, 41, 3301–3324. [CrossRef]
7. Noughabi, M.S.; Rezaei, R.A.H.; Mohtashami, B.G.R. Some discrete lifetime distributions with bathtub-shaped hazard rate

functions. Qual. Eng. 2013, 25, 225–236. [CrossRef]
8. Al-Babtain, A.A.; Ahmed, A.H.N.; Afify, A.Z. A new discrete analog of the continuous Lindley distribution, with reliability

applications. Entropy 2020, 22, 603. [CrossRef]
9. Almazah, M.M.A.; Alnssyan, B.; Ahmed, A.H.N.; Afify, A.Z. Reliability properties of the NDL family of discrete distributions

with its inference. Mathematics 2021, 9, 1139. [CrossRef]
10. Hu, Y.; Peng, X.; Li, T.; Guo, H. On the Poisson approximation to photon distribution for faint lasers. Phys. Lett. A 2007,

367, 173–176. [CrossRef]
11. Gomez-Deniz, E. A new discrete distribution: Properties and applications in medical care. J. Appl. Stat. 2013, 40, 2760–2770.

[CrossRef]
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13. Kuş, C.; Akdoğan, Y.; Asgharzadeh, A.; Kınacı, I.; Karakaya, K. Binomial discrete Lindley distribution. Commun. Fac. Sci. Univ.

Ank. Ser. Math. Stat. 2018, 68, 401–411. [CrossRef]
14. Lv, H.Q.; Gao, L.H.; Chen, C.L. Ailamujia distribution and its application in support ability data analysis. J. Acad. Armored

Force Eng. 2002, 16, 48–52.
15. Hassan, A.; Shalbaf, G.A.; Bilal, S.; Rashid, A. A new flexible discrete distribution with spplications to count data. J. Stat.

Theory Appl. 2020, 19, 102–108.
16. Shaked, M.; Shanthikumar, J.G. Stochastic Orders; Springer: New York, NY, USA, 2007.
17. Khan, M.S.A.; Khalique, A.; Abouammoh, A.M. On estimating parameters in a discrete Weibull distribution. IEEE Trans. Reliab.

1989, 38, 348–350. [CrossRef]
18. Cramér, H. On the composition of elementary errors. Scand. Actuar. J. 1928, 1, 141–180. [CrossRef]
19. Von Mises, R.E. Wahrscheinlichkeit Statistik und Wahrheit; Springer: Basel, Switzerland, 1928.
20. Luceño, A. Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators. Comput. Stat. Data Anal.

2006, 51, 904–917. [CrossRef]
21. El-Morshedy, M.; Eliwa, M.S.; Altun, E. Discrete Burr-Hatke distribution with properties, estimation methods and regression

model. IEEE Access 2020, 8, 74359–74370. [CrossRef]
22. Sankaran, M. The discrete Poisson–Lindley distribution. Biometrics 1970, 26, 145–149. [CrossRef]
23. Catheside, D.G.; Lea, D.E.; Thoday, J.M. Types of chromosome structural change induced by the irradiation of Tradescantia

microspores. J. Genet. 1946, 47, 113–136. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TR.2004.829161
http://dx.doi.org/10.1016/j.stamet.2008.07.001
http://dx.doi.org/10.1080/03610926.2011.563014
http://dx.doi.org/10.1080/08982112.2013.769055
http://dx.doi.org/10.3390/e22060603
http://dx.doi.org/10.3390/math9101139
http://dx.doi.org/10.1016/j.physleta.2007.03.004
http://dx.doi.org/10.1080/02664763.2013.827161
http://dx.doi.org/10.1080/00949655.2015.1081907
http://dx.doi.org/10.31801/cfsuasmas.424228
http://dx.doi.org/10.1109/24.44179
http://dx.doi.org/10.1080/03461238.1928.10416872
http://dx.doi.org/10.1016/j.csda.2005.09.011
http://dx.doi.org/10.1109/ACCESS.2020.2988431
http://dx.doi.org/10.2307/2529053
http://dx.doi.org/10.1007/BF02986782
http://www.ncbi.nlm.nih.gov/pubmed/21010995

	Introduction
	The Discrete UPA Distribution
	Properties
	Stochastic Orders of the Parameter 
	Entropy
	Quantile Function

	Actuarial Measures
	VaR Measure
	TVaR Measure

	Estimation
	Maximum Likelihood
	Moments
	Proportions
	Ordinary and Weighted Least-Squares
	Cramér-von Mises
	Right-Tail Anderson–Darling
	Percentiles

	Simulation Study
	Modeling Biological Data
	Conclusions
	References

