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Abstract: Control of supply chains with chaotic dynamics is an important, yet daunting challenge
because of the limitations and constraints there are in the amplitude of control efforts. In real-
world systems, applying control techniques that need a large amplitude signal is impractical. In the
literature, there is no study that considers the control of supply chain systems subject to control input
limitations. To this end, in the current study, a new control scheme is proposed to tackle this issue. In
the designed control input, limitations in control inputs, as well as robustness against uncertainties,
are taken into account. The proposed scheme is equipped with a fixed time disturbance observer to
eliminate the destructive effects of uncertainties and disturbances. Additionally, the super-twisting
sliding mode technique guarantees the fixed-time convergence of the closed-loop system. After that,
a symmetric supply chain system is presented, and its chaotic attractors are demonstrated. Finally,
the proposed controller is applied to the symmetric supply chain system. Numerical simulations
exhibit the proposed scheme’s excellent performance even though the system is subjected to control
input limitations and time-varying uncertainties.

Keywords: symmetric supply chain system; constrained control input super-twisting sliding mode;
fixed-time disturbance observer; chaos control

1. Introduction

During recent decades, academics and decision makers have been striving for a reli-
able approach to handle advanced supply chain systems. In the past, decisions were often
made based on intuition and experience [1,2]. However, over time, supply chains have
become more and more complicated, resulting in the failure of traditional management
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techniques [3]. Business entities in the supply chain are tightly intertwined with uncertain-
ties. Additionally, most supply chain systems possess nonlinear dynamics that sometimes
provide chaotic responses. Hence, applying up-to-date techniques for their manganates is
of crucial importance [4–6].

Nonlinear dynamical systems with an infinite number of different periodic responses
that are susceptible to initial conditions are known as chaotic systems [7–10]. Although
chaos can be useful in certain situations, it is often an unwelcome occurrence. The chaotic
oscillations must be suppressed; thus, regulation mechanisms are needed [11,12]. Further-
more, due to minor faults, chaotic processes are prone to take entirely separate paths. As a
result, control and stabilization are needed in chaotic systems [13,14]. The regulation of
chaotic processes has been one of the most significant issues in the control engineering
field after Ott, Grebogi, and Yorke (1990) successfully controlled a chaotic system [15]. To
date, different approaches for dealing with chaotic processes have been suggested and
tested [16–18].

Among all control schemes that have been used to control the actions of complex
systems over the last few decades, sliding mode control (SMC), as the most common robust
controller, has received a lot of attention because of its features, including ease of execution,
guaranteed stability, and resistance to parameter variations [19–21]. In addition, numerous
experiments have recently been conducted on the use of sliding mode control in the control
of chaotic systems. However, SMC has some drawbacks [22–25]. For instance, SMC does
not guarantee convergence in finite time. To this end, terminal sliding mode control (TSMC)
was developed to overcome the issue of finite-time convergence [26,27].

As mentioned, a significant challenge in this field is designing control and manage-
ment approaches that ensure the systems’ appropriate performance. Control theory has
established a firm foundation for handling nonlinear dynamics [28–34]. Hence, the appli-
cation of control theory can provide luminating results in managing supply chains with
nonlinear dynamics [35]. Numerous methods developed in the control literature have
been applied to supply chains over the last half-century [36]. Model predictive control
(MPC) and neuro-dynamic programming are examples of increasingly advanced control
methodologies applied to supply chain systems [37,38]. Despite a lot of efforts made by
researchers, some issues still require more attention. For instance, no study in the litera-
ture considers finite-time convergence and limitations in control inputs in the control of
supply chains.

Most financial processes possess nonlinear dynamics subjected to disturbances and
control input limitations [39,40]. Hence, many studies have proposed robust techniques
to control economic and financial systems [41]. Since the external disturbance cannot be
directly evaluated in a nonlinear environment, nonlinear observers should be utilized to de-
tect their dynamics [21,42]. On the other hand, input saturation, a nonsmooth nonlinearity,
should be considered in real-world applications [43,44].

The abovementioned issues have motivated the current study. The present research
proposes a new control scheme. The suggested scheme includes a fixed time disturbance
observer to minimize the negative consequences of uncertainties and disruptions. Then,
an uncertain, symmetric chaotic supply chain system has been considered with limited
control inputs, and the performance of the designed control scheme has been assessed by
presenting some numerical simulation results.

It is noteworthy that the proposed control technique improves some issues which
occur in its counterparts. Compared to its state-of-the-art counterparts, the suggested
controller has important advantages. For example, Chen et al. [45] have proposed a TSMC
which is equipped with a finite time observer. Although their study was a breakthrough in
this field of study, it suffers from several critical disadvantages. For instance, chattering
was not investigated in their controller, and in some situations, that control scheme can
result in severe vibration in systems. Huang has offered a fast TSMC with a novel fuzzy
disturbance observer [46], in which the error of disturbance observation in that method
converges asymptotically, and in real applications, it may take a long time to estimate
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unknown functions. In 2018, Liu et al. [47] proposed a disturbance observer-based fuzzy
TSMC for a hypersonic vehicle. Although the finite-time convergence of the disturbance
observer and the closed-loop system was proven in their study, the existence of control
input saturation and chattering was ignored, which lowers the performance of that control
scheme considerably. On the contrary, the super-twisting sliding surface we propose
in the current research is chatter-free and takes the effects of control input saturation
into account. More recently, an observer-based fuzzy TSMC has been offered by Vahidi-
Moghaddam et al. [48] for MIMO systems. Convergence time is, however, a considerable
drawback in their controller. They have only demonstrated the disturbance observer’s
finite-time convergence; nonetheless, the closed-loop system is exponentially stable, and
the convergence of the closed-loop system in fixed time is not guaranteed. As a result,
convergence time may be extremely long in some circumstances. On the other hand, in the
current study, we prove the fixed-time convergence of the disturbance observer and the
closed-loop system simultaneously.

The rest of the current paper is organized as follows: In Section 2, the design procedure
of the proposed scheme, including effects of uncertainties and limitation in control input,
fixed-time disturbance observer, and super-twisting SMC, are delineated. Additionally,
the stability of the closed-loop system is proven through the Lyapunov stability theorem.
Then, in Section 3, the chaotic behavior symmetric supply chain system is described. In
Section 4, the proposed control scheme is applied to control the chaotic behavior of the
symmetric supply chain system, and various numerical simulations are presented. Finally,
in Section 5, concluding remarks are given.

2. Controller Design

In this paper, we investigate the control of MIMO nonlinear supply chains. Let the
state space of the MIMO system be as described below:

.
x(t) = f (x) + ∆ f (x) + (g(x) + ∆g(x))u + d0(t) (1)

where x = [ x1, x2, . . . , xn ]T is the state vector, f and g are nonlinear functions. The
structural variation and uncertainty that there are in the dynamics of the system are
represented by ∆ f and ∆g. Additionally, d0 = [ d1, d2, . . . , dn ]T stands for the external
disturbance. In addition, u = [ u1, u2, . . . , un ]T denotes the control input.

2.1. Effects of Uncertainties and Limitation in Control Input

The whole unknown terms produced by structural variations, uncertainties, and
disturbances, i.e., ∆ f , ∆g, and the external disturbance (d0), are considered as a single
disturbance term d (t) as follows:

d (t) = ∆ f (x) + ∆g (x) u + d0 (t) (2)

Furthermore, control input limitations that may occur in many real systems act like
nonsmooth nonlinearities. Since control input limitations are common to most systems,
ignoring them in the design of control schemes for real-world applications could dramati-
cally ruin the performance of the systems. To tackle this problem in the current study, we
consider the effects of control limitations and saturation in the designed control. Under the
control input constraints, the limited control input u is given by

u =


umax i f uc > umax

uc
umin i f uc < umin

(3)
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where uc is designed control command, and u denotes the limited control input applied to
the system. umin and umax are the bounds of the control input. Defining u = u− uc and
substituting Equations (2) and (3) into Equation (1) result in

.
x(t) = f (x) + g(x)uc + D

D (t ) = g(x)u + d (t) = g(x)u + ∆ f (q ) + ∆g(q )u + d0 (t)
(4)

where D is the compound disturbance imposed on the system.

2.2. Fixed-Time Disturbance Observer

Lemmas 1 and 2 are used in the design process of the fixed-time disturbance observer.

Lemma 1. Let V(t) be a continuous positive definite function satisfying the following inequal-
ity [49]

.
V(t) + ϑV(t) + ξVχ ≤ 0, ∀t > t0 (5)

As a result, V(t) converges to its equilibrium point in the finite time ts which is given by

ts ≤ t0 +
1

ϑ(1 + χ)
ln

ϑV1−χ(t0) + ξ

ξ
(6)

where ϑ > ξ > 0, and 0 < χ < 1.

Lemma 2. Based on the triangle inequality, if 0 < n < 1 and a∆ > 0, ∆ = 1, 2, . . . , m, then(
m

∑
∆=1

a∆

)n

≤
m

∑
∆=1

an
∆ (7)

The following auxiliary variables are defined for the disturbance observer

s = z− x (8)

where z is given by

z = −ks− βsign(s)− εs
p0
q0 − | f (x)|sign(s) + g(x)uc (9)

In which β > D1. Additionally, p0 < q0 and both p0 and q0 are odd positive integers.
Furthermore, k and ε are positive constants. The fixed-time disturbance observerD̂ is designed
as [45,48]

D̂ = −ks− βsign(s)− εsp0/q0 − | f (x)|sign(s)− f (x) (10)

Taking the derivative of (10) and considering (8), (9), and (4) give

.
s =

.
z− .

x = −ks− βsign(s)− εsp0/q0 − | f (x)|sign(s)− f (x)− D (11)

Based on Equations (3), (10), and (11), the following equation is reached

D = D̂− D = −ks− βsign(s)− εs
p0
q0 − | f (x)|sign(s)− f (x)− D

= −ks− βsign(s)− εs
p0
q0 − | f (x)|sign(s)− f (x)− .

x + f (x) + g(x)uC

= −ks− βsign(s)− εs
p0
q0 − | f (x)|sign(s) + g(x)uc −

.
x =

.
z− .

x =
.
s.

(12)

Theorem 1. Using the proposed fixed-time disturbance observer (8)–(10), the disturbance estima-
tion error (12) converges to zero.
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Proof. Let a Lyapunov function be

V0 =
1
2

sTs (13)

By taking the time derivative of V0, we reach

.
V0 = sT .

s = sT
(
−ks− βsign(s)− εs

p0
q0 − f (x)1sign(s)− f (x)− d

)
≤ −ksTs− βsTsign(s)− εsTs

p0
q0 − f (x)1 sTsgn(s)

−sT f (x)− sTd

≤ −ksTs− βsT
1 − εsTs

p0
q0 − f (x)1sT

1 − sT f (x)

+sT
1d1 ≤ −ksTs− εsTs

p0
q0

≤ −2kV0 − 2(p0+q0)/2q0 εV(p0+q0)/2q0
0

(14)

The last line of the equation above has been calculated through Lemma 3. �

Lemma 3.
V0 = 1

2 sTs = 1
2
(
s2

1 + s2
2 + . . . + s2

n
)

V(p0+q0)/2q0
0 =

(
1
2
(
s2

1 + s2
2 + . . . + s2

n
))(p0+q0)/2q0

≤ 1
2(p0+q0)/2q0

(
s(p0+q0)/q0

1 + s(p0+q0)/q0
2 + . . . + s(p0+q0)/q0

n

) (15)

Thus, we have

2(p0+q0)/2q0 V(p0+q0)/2q0
0 ≤ s(p0+q0)/q0

1 + s(p0+q0)/q0
2 + . . . + s(p0+q0)/q0

n (16)

As is evident, s(p0+q0)/q0
1 + s(p0+q0)/q0

2 + . . .+ s(p0+q0)/q0
n =sTsp0/q0 , consequently, we have

2(p0+q0)/2q0V(p0+q0)/2q0
0 ≤ sTs

p0
q0

yields→ −εsTsp0/q0 ≤ −ε2(p0+q0)/2q0V(p0+q0)/2q0
0

(17)

Therefore, following Lemmas 1, 2, and 3 as well as Equations (17) and (12), the auxiliary
vector s and the disturbance approximation error D converge to zero in the fixed time.

Remark 1. Based on Lemma 1, the convergence time of disturbance approximation is as follows:

ts∆ < t0∆ +
q0

k(p0 + 3q0)
ln

(
ks(q0−p0)/ q0

0∆ t0∆

ε
+ 1

)
∆ = 1, 2, 3 . . . , m (18)

where t0∆ denotes the initial time; hence, by choosing parameters of the disturbance and considering
Equation (18), we could reach a fixed-time disturbance observer.

2.3. Super-Twisting SMC

The super-twisting algorithm is a well-known second-order sliding mode algorithm
introduced in [50], and it has been widely used for control and observation. In the literature,
the effectiveness of super-twisting sliding mode controllers in terms of the accuracy of the
control scheme and reducing chattering has been proven. Using the disturbance observer
developed in Section 2.1, the fixed-time super-twisting TSMC is designed for system (1).
The tracking error of the system is given by

e(t) = [e1(t), e2(t), . . . , en(t)]
T = x(t)− xd(t) (19)
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where xd (t) is the required value for the state x(t). We define the sliding surface as follows.

st(t) = τe(t) + s(t), (20)

In which sd (t) is the auxiliary variable, given in Equation (8), and τ is an appositive
use defined constant. Finally, we propose the disturbance observer-based fixed-time super-
twisting for system (1) as

uc = −g−1(x)
(

f (x)− .
xd + ust1 + D̂

)
,

ust1 = −k1|st|
1
2 sign(st) + ust2

.
ust2 = −k2sign(st)

(21)

where parameters k1 and k2 are positive.

Theorem 2. Using the control law (21), the closed-loop system states (1) converge to the desired
value in fixed time.

Proof. The time-derivative of the sliding surface (Equation (20)) is given by

.
st = ( f (x) + g(x) uc −

.
xd +

.
sd
)

=
(

f (x)−
(

f (x)− .
xd + ust1 + d̂

)
− .

xd +
.
sd

)
=
(
−, ust1,+, d,−, d̂,+,

.
sd

) (22)

Based on Equation (12), d− d̂ = −d = − .
sd, which results in

.
st = −ust1 (23)

Hence, we have
.
st = −k1|st|

1
2 sign(st) + ust2

.
ust2 = −k2sign(st)

(24)

Defining new variables as w1 = st and w2 = ust2 and rewriting the above equation,
we obtain

.
w1 = −k1|w1|

1
2 sign(w1) + w2

.
w2 = −k2sign(w1)

(25)

Equation (25) denotes a second-order super-twisting algorithm. Based on Theorem 2,
in [51] and its proof, we consider the following Lyapunov function:

V0 = ςTPς (26)

where ς = [ς1, ς2]
T =

[
|w1|

1
2 sign(w1), w2

]T
.V0 is quadratic, robust, and strict and with

symmetric and positive definite matrix P will fulfill

.
V0 = −|w1|

1
2 ςTQς (27)

for symmetric and positive definite matrix Q. In addition, the trajectory originating at w(0)
will reach the origin in a fixed time t f which is given by

t f = ts∆ +
2λmax{P}

λ
1
2
min{P}λmin{Q}

V
1
2

0 (t0) (28)
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The matrices P and Q of the Lyapunov function can be selected in accordance with
the procedure given in [51], which guarantees that the sliding variables w1 and w2 go to
zero in the fixed time. �

3. Symmetric Supply Chain System

Thus far, many researchers have tried to model supply chain systems. Among all
models proposed for supply chain systems, the nonlinear model introduced by Anne
et al. [52] has attracted a lot of attention. They introduced a nonlinear supply chain model
that covers safety stock, information distortion, and retailer order satisfaction. That model
is given by

.
x1 = m x2 − (n + 1)x1
.
x2 = r x1 − x2 − x1x3
.
x3 = x1 x2 + (k− 1)x3

(29)

where x1 is the quantity demanded by the retailer in the current period, x2 denotes the
quantity distributors can supply in the current period, and x3 indicates the quantity pro-
duced in the current period depending on the order. In addition, m is the rate of customer
demand satisfaction with the retailer. n stands for the inventory level of distributors. k is
the safety stock coefficient of the manufacturer, and r is the rate of information distortion
of products demanded by the retailer.

This system is rotation symmetric around the x3-axis, since it is invariant under the change
of coordinates (x1, x2, x3) (−x1,−x2, x3). The chaotic attractor of the supply chain system
(29) when the system parameter values are selected as follows: (m, n, r, k) =

(
12, 7, 45,− 7

3
)

as shown in Figures 1 and 2. As illustrated in these figures, the nonlinear supply chain
system shows chaotic behavior in this condition.

Figure 1. The 2D phase portraits of the symmetric three-echelon supply chain system.
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Figure 2. The 3D phase portrait of the symmetric three-echelon supply chain system.

4. Simulation Study by Applying Control Input

In this section, the proposed scheme is applied to the symmetric chaotic supply chain
system. In this section, it is assumed that all parameters of the system are varying by time
through unknown functions. This way, in all simulations, the effects of uncertainties on the
system are taken to account. The parameters of the system are considered as

m = 15 + ∆m, n = 7 + ∆n, r = 45 + ∆r, k = −7
3
+ ∆k. (30)

where for the simulations, we consider the unknown functions as

∆m = 5 sin(2t), ∆n = 4 cos(2t),∆r = 8 cos(t), ∆k = 2 sin(t) (31)

Additionally, the user-defined parameters of the controller are designed as

τ = [10, 10, 10]T , k1 = [20, 20, 20]T , k2 = [10, 10, 10]T ,

k = [10, 10, 10]T , β = [10, 10, 10]T , ε = [1, 1, 1]T
(32)

4.1. Stabilization without Control Input Limitations

In this part, we aim to stabilize the symmetric supply chain system. At first, we
consider no control limitation. Figure 3 shows the states of the system. As is shown in this
figure, after a very short period of time (less than 0.1 time units), the system is completely
stabilized. Additionally, the response of the systems is chatter-free. Figure 4 demonstrates
the control input that is applied to the system. The control signals are chatter-free as
well. However, now the most important issue regarding the control inputs is their large
amplitudes. For instance, as is shown in Figure 4, the maximum value of u2 is near 200,
and it could be impossible to apply such a large control input in economic systems. This
shows the importance of the proposed control input limitations. In the next subsection, we
consider the control input limitations.
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Figure 3. The states of the symmetric supply chain system under the proposed fixed-time disturbance observer-based
super-twisting sliding mode technique.
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Figure 4. The control input based on the proposed fixed-time disturbance observer-based super-twisting sliding mode
technique.

4.2. Stabilization with Limited Control Input

The bounds of the control signals are considered as

u1max = u2max = u3max = 15ux1min = ux2min = ux3min = −15 (33)

The stabilized states of the system are illustrated in Figure 5. Although the control
signals are limited, in the fixed time, the states of the system converge to zero. Figure 6
shows the limited control signals obtained through the proposed super-twisting sliding
mode technique. It is noteworthy that when we limit the control input, the convergence
time will be longer, but in this condition, the controller can be applied to practical systems.
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Figure 5. The states of the symmetric supply chain system subject to control input limitations under the proposed fixed-time
disturbance observer-based super-twisting sliding mode technique.

Figure 6. The limited control input based on the proposed fixed-time disturbance observer-based super-twisting sliding
mode technique.

4.3. Tracking Control with Limited Control Input

To investigate the performance of the proposed scheme, we consider the desired
states as

xd = 3 sin(10t), yd = 3 cos(10t), zd = 3 cos(10t), (34)

Herein, the bounds of the control signals are considered as

u1max = 50, u2max = 150, u3max = 40 (35)
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The states of the system and the limited control input are displayed in Figures 7 and 8.
As shown in the tracking control results, the proposed control scheme satisfies the ex-
pected performance.

Figure 7. The states of the symmetric supply chain system subject to control input limitations under the proposed technique
in the tracking control.

Figure 8. The limited control input based on the proposed technique in the tracking control.

5. Conclusions

In this paper, we studied stabilization and tracking control of a symmetric chaotic
supply chain system subject to control input limitations. To this end, we introduced a new
control scheme which is an extension of sliding mode control that can provide chatter-free
and fixed-time responses. In the proposed control scheme, the effects of the control input
limitation, as well as uncertainties, are taken into account. The fixed-time convergence and
stability of the system were proven through the Lyapunov stability theorem. Then, the
chaotic response of the symmetric supply chain system was demonstrated. Lastly, through
various numerical simulations, the proposed scheme’s effectiveness in different scenarios,
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including stabilization without input limitations, stabilization with input limitations, and
tracking control with input limitations, was assessed. Numerical simulations clearly
confirm all theoretical claims about the proposed control technique. The proposed scheme’s
excellent performance even when the system is in the presence of control input limitation
and time-varying uncertainties was displayed. As a feature suggestion, the proposed
controller can be promoted through self-tuning algorithms. Additionally, the proposed
method has a great potential to be customized or upgraded for various systems, including
fractional-order ones.
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