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Abstract: We investigate the existence of solutions for a system of m-singular sum fractional q-
differential equations in this work under some integral boundary conditions in the sense of Caputo
fractional q-derivatives. By means of a fixed point Arzelá–Ascoli theorem, the existence of positive
solutions is obtained. By providing examples involving graphs, tables, and algorithms, our funda-
mental result about the endpoint is illustrated with some given computational results. In general,
symmetry and q-difference equations have a common correlation between each other. In Lie algebra,
q-deformations can be constructed with the help of the symmetry concept.

Keywords: Caputo q-derivative; singular sum fractional q-differential; fixed point; equations;
Riemann–Liouville q-integral

MSC: 34A08; 34B16; 39A13

1. Introduction

There are many definitions of fractional derivatives that have been formulated ac-
cording to two basic conceptions: one of a global (classical) nature and the other of a local
nature. Under the first formulation, the fractional derivative is defined as an integral,
Fourier, or Mellin transformation, which provides its non-local property with memory. The
second conception is based on a local definition through certain incremental ratios. This
global conception is associated with the appearance of the fractional calculus itself and
dates back to the pioneering works of important mathematicians, such as Euler, Laplace,
Lacroix, Fourier, Abel, and Liouville, until the establishment of the classical definitions of
Riemann–Liouville and Caputo.

Until relatively recently, the study of these fractional integrals and derivatives was
limited to a purely mathematical context; however, in recent decades, their applications in
various fields of natural Sciences and technology, such as fluid mechanics, biology, physics,
image processing, or entropy theory, have revealed the great potential of these fractional
integrals and derivatives [1–9]. Furthermore, the study from the theoretical and practical
point of view of the elements of fractional differential equations has become a focus for
interested researchers [10–15].
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The q-difference equations (qDifEqs) were first proposed by Jackson in 1910 [16].
After that, qDifEqs were investigated in various studies [17–24]. On the contrary, integro-
differential equations (InDifEqs) have been recently studied via various fractional deriva-
tives and formulations based on the original idea of qDifEqs (see [25–32]). The concept
of symmetry and q-difference equations are connected to each other while theoretically
investigating the differential equation symmetries.

The solution existence and uniqueness for the fractional qDifEqs were investigated in
2012 by Ahmad et al. as: cDα

q [u](t) = T(t, u(t)) with boundary conditions (B.Cs):

α1u(0)− β1Dq[u](0) = γ1u(η1), α2u(1)− β2Dq[u](1) = γ2u(η2),

where α ∈ (1, 2], αi, βi, γi, ηi are real numbers, for i = 1, 2 and T ∈ C(J ×R,R) [20]. The
q-integral problem was studied in in 2013 by Zhao et al. as:

Dα
q [u](t) + f (t, u(t)) = 0,

with B.Cs: u(1) = µIβ
q [u](η) and u(0) = 0 almost ∀ t ∈ (0, 1), where q ∈ (0, 1), α ∈ (1, 2],

β ∈ (0, 2], η ∈ (0, 1), µ is positive real number, and Dα
q is the q-derivative of Riemann–

Liouville (RL) and the real values continuous map u defined on I × [0, ∞) [24]. The
problem:

cDβ
q (

cDγ
q + λ)[u](t) = p f (t, u(t)) + kIξ

q [g](t, u(t))

was investigated in 2014 by Ahmad et al. with B.Cs:

α1u(0)− β1(t(1−γ)Dq[u](0))
∣∣
t=0 = σ1u(η1)

and
α2u(1) + β2Dq[u](1) = σ2u(η2),

where t, q ∈ [0, 1], cDβ
q is the Caputo fractional q-derivative (CpFqDr), 0 < β, γ ≤ 1, Iξ

q (.)
represents the RL integral with ξ ∈ (0, 1), f and g are given continuous functions, λ and
p, k are real constants, αi, βi, σi ∈ R and ηi ∈ (0, 1) for i = 1, 2 [19]. The solutions’ existence
was studied in 2019 by Samei et al. for some multi-term q-integro-differential equations
with non-separated and initial B.Cs ([23]).

Inspired by all previous works, we investigate in this work the positive solutions for
the singular fractional q-differential equation (SFqDEqs) as follows:

cDα
q [u](t) + h(t, u(t)) = 0, (1)

with the B.Cs: u(0) = 0, cu(1) = Iγ
q [u](1) and u′′(0) = · · · = u(n−1)(0) = 0, where

t ∈ J = (0, 1), Iγ
q [u] is the RL q-integral of order γ for the given function: u, here q ∈ J,

c ≥ 1, n = [α] + 1, α ≥ 3, γ ∈ [1, ∞), 2Γq(γ) ≥ Γq(α), h : (0, 1] × [0, ∞) → [0, ∞) is
continuous, limt→0+ h(t, .) = +∞ that is, h is singular at t = 0, and cDα

q represents the
CpFqDr of order α, q ∈ J.

This work is divided into the following: some essential notions and basic results of
q-calculus are reviewed in Section 2. Our original important results are stated in Section 3.
In Section 4, illustrative numerical examples are provided to validate the applicability of
our main results.

2. Essential Preliminaries

Assume that q ∈ (0, 1) and a ∈ R. Define [a]q = 1−qa

1−q [16]. The power function:
(x− y)n

q with n ∈ N0 is written as:

(x− y)(n)q =
n−1

∏
k=0

(x− yqk)
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for n ≥ 1 and (x− y)(0)q = 1, where x and y are real numbers and N0 := {0} ∪N ([17]). In
addition, for σ ∈ R and a 6= 0, we obtain:

(x− y)(σ)q = xσ
∞

∏
k=0

x− yqk

x− yqσ+k .

If y = 0, then it is obvious that x(σ) = xσ. The q-Gamma function is expressed by

Γq(z) =
(1− q)(z−1)

(1− q)z−1 ,

where z ∈ R\{0,−1,−2, · · · } ([16]). We know that Γq(z + 1) = [z]qΓq(z). The value of the
q-Gamma function, Γq(z), for input values q and z with counting the sentences’ number
n in summation by simplification analysis. A pseudo-code is constructed for estimating
q-Gamma function of order n. The q-derivative of function w, is expressed as:

Dq[w](x) =
(

d
dx

)
q
w(x) =

w(x)− w(qx)
(1− q)x

and Dq[w](0) = limx→0Dq[w](x) ([17]). In addition, the higher order q-derivative of a
function w is defined by Dn

q [w](x) = DqDn−1
q [w](x) for all n ≥ 1, where D0

q [w](x) = w(x)
([17,18]). The q-integral of a function f defined on [0, b] is expressed as:

Iq[w](x) =
∫ x

0
w(s)dqs = x(1− q)

∞

∑
k=0

qkw(xqk),

for 0 ≤ x ≤ b, provided that the series is absolutely convergent ([17,18]). If a in [0, b], then
we have:∫ b

a
w(u)dqu = Iq[w](b)− Iq[w](a) = (1− q)

∞

∑
k=0

qk
[
bw(bqk)− aw(aqk)

]
,

if the series exists. The operator In
q is given by I0

q [w](x) = w(x) and In
q [w](x) =

IqIn−1
q [w](x) for n ≥ 1 and g ∈ C([0, b]) ([17,18]). It is proven that DqIq[w](x) = w(x)

and IqDq[w](x) = w(x)−w(0) whenever w is continuous at x = 0 ([17,18]). The fractional
RL type q-integral of the function w on J for σ ≥ 0 is defined by I0

q [w](t) = w(t), and

Iα
q [w](t) =

1
Γq(σ)

∫ t

0
(t− qs)(σ−1)w(s)dqs

= tσ(1− q)σ
∞

∑
k=0

qk ∏k−1
i=1

(
1− qσ+i)

∏k−1
i=1

(
1− qi+1

)w(tqk),

for t ∈ J and σ > 0 ([22,33]). In addition, the CpFqDr of a function w is expressed as:

cDσ
q [w](t) = I [σ]−σ

q

[
cD[σ]

q [w]
]
(t)

=
1

Γq([σ]− α)

∫ t

0
(t− qs)([σ]−σ−1) cD[σ]

q [w](s)dqs

=
1

tσ(1− q)σ

∞

∑
k=0

qk ∏k−1
i=1

(
1− qi−σ

)
∏k−1

i=1

(
1− qi+1

)w(tqk), (2)

where t ∈ J and σ > 0 ([22]). It is proven that

Iβ
q

[
Iσ

q [w]
]
(x) = Iσ+β

q [w](x) and cDσ
q

[
Iσ

q [w]
]
(x) = w(x),
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where σ, β ≥ 0 ([22]).

Some essential notions and lemmas are now presented as follows: In our work, L1(J)
and CR(J) are denoted by L and B, respectively, where J = [0, 1].

Lemma 1 ([34]). If x ∈ B ∩ L with Dα
q x ∈ B ∩ L, then

Iα
qDα

q x(t) = x(t) +
n

∑
i=1

citα−i,

where n is the smallest integer ≥ α, and ci is some real number.

Here, we restate the well-known Arzelá–Ascoli theorem. Assume that S = {sn}n≥1
is a sequence of bounded and equicontinuous real valued functions on [a, b]. Then, S has
a uniformly convergent subsequence. We need the following fixed point theorem in our
main result:

Lemma 2 ([35]). Assume thatA is a Banach space, P ⊆ A is a cone, andO1, O2 are two bounded
open balls of A centered at the origin with O1 ⊂ O2. Assume that Ω : P ∩ (O2\O1) → P
is a completely continuous operator such that either ‖Ω(a)‖ ≤ ‖a‖ for all a ∈ P ∩ ∂O1 and
‖Ω(a)‖ ≥ ‖a‖ for all a ∈ P ∩ ∂O2, or ‖Ω(a)‖ ≥ ‖a‖ for each a ∈ P ∩ ∂O1 and ‖Ωa‖ ≤ ‖a‖
for a ∈ P ∩ ∂O2. Then, Ω has a fixed point in P ∩ (O2\O1).

3. Main Results
Differential Equation

Let us now present our fundamental lemma as follows:

Lemma 3. The u0 is a solution for the q-differential equation Dα
q [u](t) + g(t) = 0 with the B.Cs:

u(0) = 0, cu(1) = Iγ
q u(1) and u′′(0) = · · · = u(n−1)(0) = 0 if u0 is a solution for the q-integral

equation

u(t) =
∫ 1

0
Gq(t, s) f (s)dqs,

where

Gq(t, s) =



−(t− qs)(α−1)

Γq(α)
s ≤ t,

+t2
Γq(γ + 3)

[
aΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs)(c+γ−1)

]
Γq(α)Γq(α + γ)

[
cΓq(γ + 3)− 2Γq(γ)

] ,

t2
Γq(γ + 3)

[
cΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs)(c+γ−1)

]
Γq(α)Γq(α + γ)

[
cΓq(γ + 3)− 2Γq(γ)

] , t ≤ s,

(3)

for s, t ∈ J, n = [α] + 1, the function g ∈ B, α ≥ 3 and γ ∈ [1, ∞) with 2Γq(γ) ≥ Γq(α).

Proof. Let us first assume that u0 is a solution for the equation Dα
q u(t) + g(t) = 0 with the

B.Cs. By using Lemma 1, we obtain:

u0(t) = −Iα
q [g](t) + c0 + c1t + c2t2 + . . . cn−1tn−1

and by using the condition u0(0) = u′′0 (0) = · · · = u(n−1)
0 (0) = 0, we have

u0(t) = −Iα
q [g](t) + c2t2.
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Indeed,

Iγ
q [u0](t) = −Iα+γ

q [g](t) + c2
2Γq(γ)

Γq(γ + 3)
tγ+2,

and thus

Iγ
q [u0](1) = −I

(α+γ)
q [g](t) + c2

2Γq(γ)

Γq(γ + 3)
.

Note that cu0(1) = −cIα
q [g](1) + cc2 and

c2

(
c−

2Γq(γ)

Γq(γ + 3)

)
= cIα

q g(1)− Iα+γ
q g(1)

=
cΓq(α + γ)

Γq(α + γ)
Iα

q [g](1)−
Γq(α)

Γq(α)
Iα+γ

q [g](1)

=
∫ 1

0

cΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs(α+γ−1))

Γq(α)Γq(α + γ)
g(s)dqs.

On the other hand,

c−
2Γq(γ)

Γq(γ + 3)
=

cΓq(γ + 3)− 2Γq(γ)

Γq(γ + 3)
.

Hence,

c2 =
∫ 1

0

Γq(γ + 3)
[
cΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs)(α+γ−1)

]
Γq(α)Γq(α + γ)

[
cΓq(γ + 3)− 2Γq(γ)

] g(s)dqs.

Therefore, we have

u0(t) = −Iα
q [g](t)

+ t2
∫ 1

0

Γ(γ + 3)
[
cΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs)(α+γ−1)

]
Γq(α)Γq(α + γ)

[
cΓq(γ + 3)− 2Γq(γ)

] g(s)dqs

=
∫ 1

0
Gq(s, t)g(s)dqs,

where

Gq(t, s) =
−(t− qs)(α−1)

Γq(α)

+ t2
Γq(γ + 3)

[
cΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs)c+γ−1

]
Γq(α)Γq(α + γ)

[
cΓq(γ + 3)− 2Γq(γ)

] ,

whenever 0 ≤ s ≤ t ≤ 1 and

t2
Γq(γ + 3)

[
cΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs)(c+γ−1)

]
Γq(α)Γq(α + γ)

[
cΓq(γ + 3)− 2Γq(γ)

]
whenever 0 ≤ t ≤ s ≤ 1. Hence, u0 is an integral equation’s solution. By simple review, we
can see that u0 is a solution for the equation Dα

q u(t) + g(t) = 0 with the B.Cs whenever u0
is an integral equation’s solution.
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Remark 1. By applying some simple calculations, one can show that Gq(t, s) ≥ 0 for each s, t ∈ J.
Now, let us define the operator Ω on the Banach space B by

Ω(u(t)) =
∫ 1

0
Gq(t, s)h(s, u(s))dqs.

It is easy to check that u0 is a fixed point of the operator Ω if u0 is a solution for Equation (1).

Consider B together the supremum norm and cone, P is the set of all u ∈ B such that
u(t) ≥ 0 ∀ t ∈ J. Suppose that h : (0, 1]× [0, ∞)→ [0, ∞) is the singular function at t = 0
in the Equation (1) and Gq(t, s) is the q-Green function in Lemma 3. Now, define the self
operator Ω on P by

Ω(u(t)) =
∫ 1

0
Gq(t, s)h(s, u(s))dqs,

for all t ∈ J. At present, we can provide our first main result on the solution’s existence for
problem (1) under some assumptions.

Theorem 1. Problem (1) has a unique solution if the following conditions hold.

I. There exists a continuous function h : (0, 1]× [0, ∞)→ [0, ∞) such that

lim
t→0+

h(t, s) = ∞,

for s ∈ [0, ∞).
II. There exists L > 0, β ∈ J and positive constant k such that

kcΓq(γ + 3) < (cΓq(γ + 3)− 2Γq(γ)),

|tβh(t, 0)| ≤ L for each t ∈ J and

|tβh(t, u(t))− tβh(t, v(t))| ≤ k‖u− v‖,

for each u, v belang to P.

Proof. Note that,

|Ω(u(t))| ≤ t2 cΓq(γ + 3)
cΓq(γ + 3)− 2Γq(γ)

Iα
q [h](1, u(1))

for all t ∈ J. Now, put

` = L
cΓq(γ + 3)Γq(1− β)

cΓq(γ + 3)− 2Γq(γ)

and define B = {u ∈ P : ‖u‖ ≤ `}. Clearly, B is a bounded and closed subset of A, and
thus B is complete. If u ∈ B, then we obtain:

|Ω(u(t))| ≤
cΓq(γ + 3)

Γq(α)
[
cΓ(γ + 3)− 2Γq(γ)

] ∫ 1

0
(1− qs)(α−1)s−βsβh(s, u(s))dqs

∀ t ∈ J and thus

|F(x(t))| ≤
cΓq(γ + 3)

Γq(α)
[
cΓq(γ + 3)− 2Γq(γ)

]
×
∫ 1

0
(1− qs)(α−1)s−βsβ(|h(s, u(s)− h(s, 0)|+ |h(s, 0)|)dqs

≤ (k`+ L)
cΓq(γ + 3)

Γq(α)
[
cΓq(γ + 3)− 2Γq(γ)

]Bq(1− β, α)
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= (k`+ L)
cΓ(γ + 3)Γq(1− β)[

cΓq(γ + 3)− 2Γq(γ)
]
Γq(α− β + 1)

≤
[
cΓq(γ + 3)− 2Γq(γ)

]
`

cΓq(γ + s)Γq(1− β)

[
cΓq(γ + 3)Γq(1− β)

(cΓq(γ + 3)− 2Γq(γ))Γq(α− β + 1)

]
+ L

cΓq(γ + 3)Γq(1− β)[
cΓq(γ + 3)− 2Γq(γ)

]
Γq(α− β + 1)

=
`

Γq(α− β + 1)
+

`

Γq(α− β + 1)

<
`

Γq(α)
+

`

Γq(α)
≤ `

2
+

`

2
= `.

Indeed, Ω(B) ⊆ B, and therefore a restriction of Ω on B is an operator on B. Let u,
v ∈ B. Then, we obtain

‖Ω(u(t))−Ω(v(t))‖ ≤ 1
Γq(α)

∫ 1

0
(t− qs)(α−1)|h(s, u(s))− h(s, v(s)|dqs

+
ct2Γq(γ + 3)

Γq(α)
[
cΓq(γ + 3)− 2Γq(γ)

]
×
∫ 1

0
(1− qs)(α−1)s−βsβ‖h(s, u(s))− h(s, v(s))‖dqs

≤ k‖u− v‖

×
[

Γq(1− β)

Γq(α− β + 1)
+

cΓq(γ + 3)Γq(1− β)[
cΓq(γ + 3)− 2Γq(γ)

]
Γq(α− β + 1)

]

≤
[

cΓq(γ + 3)− 2Γq(γ)

cΓq(γ + 3)Γq(α− β + 1)
+

1
Γq(α− β + 1)

]
‖u− v‖

<

[
cΓq(γ + 3)− 2Γq(γ)

cΓq(γ + 3)Γq(α)
+

1
Γq(α)

]
‖u− v‖

for all t ∈ J. Take

λ =
cΓq(ω + 3)− 2Γq(ω)

cΓq(ω + 3)Γq(α)
+

1
Γq(α)

.

Since α ≥ 3, we obtain λ ∈ J, and therefore Ω : B→ B is a contraction. Thus, Ω has a
unique fixed point in B. By employing Lemma 3, the problem (1) has a unique solution
in B.

Lemma 4. Suppose that there exists β ∈ J such that the map tβg(t) is a continuous map on J. If
Gq(t, s) is the q-Green function (3) in Lemma 3, then

Ω(t) =
∫ 1

0
Gq(t, s)g(s)dqs,

is also a continuous map on J. The self-operator Ω is completely continuous whenever there exists
β ∈ J such that the map tβg(t) is a continuous map on J.

Proof. Since the map tβg(t) is continuous and Ω(t) =
∫ t

0 Gq(t, s)s−βsβg(s)dqs, we obtain

|Ω(t)| ≤ sup
s∈δ

∣∣∣Gq(t, s)sβg(s)
∣∣∣ ∫ t

0
s−β ds =

mt1−β

1− β
,

where δ = [0, t],
m = sup

s∈δ

∣∣∣Gq(t, s)sβg(s)
∣∣∣ < ∞.
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Indeed, Ω(0) = 0. Note that, Gq(t, s) is continuous in J2. First, suppose that t1 = 0
and t2 ∈ (0, 1]. By continuity tβg(t), there exists L > 0 such that

sup
t∈J

∣∣∣tβg(t)
∣∣∣ ≤ L.

Thus, we have:

|Ω(t2)−Ω(t1)| = |Ω(t2)| ≤
∫ t2

0

(1− qs)(α−1)

Γq(α)
s−βsβg(s)dqs

+ t2
2

∫ 1

0

Γq(γ + 3)
[
cΓq(α + γ) + Γq(α)

]
Γq(α)

[
cΓq(γ + 3)− 2Γq(γ)

] (1− qs)(α−1)s−βsβg(s)dqs

≤ L
Γq(α)

Bq(1− β, α)tα−β
2

+ Lt2
2

Γq(γ + 3)
[
cΓq(α + γ) + Γq(α)

]
Γq(α)

[
cΓq(γ + 3)− 2Γq(γ)

] Bq(1− β, α)

=
LΓq(1− β)

Γq(α− β + 1)
tα−β
2

+ L
Γq(γ + 3)Γq(1− β)

[
cΓq(α + γ) + Γq(α)

][
cΓq(γ + 3)− 2Γq(γ)

]
Γq(α− β + 1)

t2
2.

This implies that limt2→t1 |Ω(t2)−Ω(t1)| = 0. At present, in the next case, we assume
that t1 ∈ J and t2 ∈ (t1, 1]. Thus, we obtain:

|Ω(t2)−Ω(t1) ≤
1

Γq(α)

∣∣∣∣− ∫ t2

0
(t2 − qs)(α−1)s−βsβg(s)dqs

+
∫ t1

0
(t1 − qs)(α−1)s−βsβg(s)dqs

∣∣∣∣
+
∣∣t2

2 − t2
1
∣∣Γq(γ + 3)

[
cΓq(γ + 3) + Γq(α)

]
Γq(α)

[
cΓ(γ + 3)− 2Γq(γ)

]
×
∫ 1

0
(1− qs)(α−1)s−βsβg(s)dqs.

On the other hand,

1
Γq(α)

∣∣∣∣− ∫ t2

0
(t2 − qs)(α−1)s−βsβg(s)dqs +

∫ 1

0
(t1 − qs)(α−1)s−βsβg(s)dqs

∣∣∣∣
≤ 1

Γq(α)

∣∣∣∣ ∫ t1

0
(t2 − qs)α−1s−βsβg(s)dqs

−
∫ t2

0
(t2 − qs)(α−1)s−βsβg(s)dqs

∣∣∣∣
=

1
Γq(α)

∣∣∣∣ ∫ t1

t2

(t2 − qs)(α−1)s−βsβg(s)dqs
∣∣∣∣

≤ L
Γq(α)

∫ t2

t1

(t2 − qs)(α−1)s−β dqs

≤ L
Γq(α)

sup
s∈[t2,t2]

(t2 − qs)(α−1)
∫ t2

t1

s−β dqs

=
L

Γq(α)
(t2 − t1)

α−1 t1−β
2 − t1−β

1
1− β
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and therefore limt2→t1 |Ω(t2)−Ω(t1)| = 0. By applying in a similar way, we conclude that

lim
t2→t1

|Ω(t2)−Ω(t1)| = 0,

whenever t1 ∈ J and t2 ∈ [0, t1). Now, we prove that the self-operator Ω is completely
continuous. Assume that ε > 0. Since the function tβh(t, u(t)) is continuous, there exist
δ > 0 such that

|tβh(t, u(t))− tβh(t, v(t))| < ε,

for each u, v ∈ P with ‖u− v‖ < δ. Thus, we obtain

‖Ω(u)−Ω(v)‖ = sup
t∈J
|Ω(u(t))−Ω(v(t))|

= sup
t∈J

∣∣∣∣ ∫ t

0

−(t− qs)(α−1)

Γq(α)
s−β(sβh(s, u(s))− sαh(s, v(s))dqs

+ t2
∫ 1

0

Γq(γ + 3)
[
cΓq(γ + α)(1− qs)(α−1) − Γq(α)(1− qs)(α+γ−1)

]
Γq(α)Γq(α + γ)

[
cΓq(γ + 3)− 2Γq(γ)

]
× s−β

[
sβh(s, u(s))− sβh(s, u(s))

]
dqs
∣∣∣∣

≤ sup
t∈J

[
ε
∫ t

0

(t− qs)(α−1)

Γq(α)
dqs

+ εt2
∫ 1

0

Γq(γ + 3)
[
cΓq(γ + α) + Γq(α)

]
Γq(α)Γq(α + γ)

[
cΓq(γ + 3)− 2Γq(γ)

] (1− qs)(α−1)s−β dqs
]

≤ sup
t∈J

εtα−β Γq(1− β)

Γq(α− β + 1)

+ sup
t∈J

εt2 Γq(γ + 3)Γq(1− β)
[
cΓq(γ + α) + Γq(α)

]
Γq(α + γ)Γq(α− β + 1)

[
cΓq(γ + 3)− 2Γq(γ)

]
=

[
Γq(1− β)

Γq(α− β + 1)
+

Γq(γ + 3)Γq(1− β)
[
cΓq(α + γ) + Γq(α)

]
Γq(α + γ)Γq(α− β + 1)

[
cΓq(γ + 3)− 2Γq(γ)

]]ε.

Therefore, Ω is continuous. Let Q ⊂ P be bounded. Choose k > 0 such that ‖u‖ ≤ k
for each u ∈ Q. Since the function tβh(t, u) is continuous on J × [0, ∞), the function:
tβh(t, u) is also continuous on J × [0, k]. Select r ≥ 0 such that |tβh(t, u)| ≤ r for all u ∈ Q,
and t belongs to J. Thus,

|Ω(u(t))| ≤
∫ 1

0
Gq(t, s)s−β|sβh(s, u(s))|dqs

≤ r
[ ∫ t

0

(t− qs)(α−1)

Γq(α)
s−β dqs

+ t2 Γq(γ + 3)
[
cΓq(α + γ) + Γq(α)

]
Γq(α + γ)

[
cΓq(γ + 3)− 2Γq(γ)

] ∫ 1

0
(1− qs)(α−1)s−β dqs

]
,

for each t ∈ J, and thus

‖Ω(x(t))‖ = sup
t∈J
|Ω(x(t))|

≤
Γq(1− β)

Γq(α− β + 1)
+

Γq(γ + 3)Γq(1− β)
[
cΓq(α + γ)− Γq(α)

]
Γq(α + γ)Γq(α− β + 1)

[
cΓq(γ + 3)− 2Γq(γ)

]
< ∞.
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This implies that Ω(Q) is bounded. Assume that u ∈ Q and t1, t2 ∈ J with t1 < t2.
Then, we obtain

|Ω(u(t2))−Ω(u(t1))| ≤
∣∣∣∣ ∫ t2

0

(t2 − qs)(α−1)

Γq(α)
h(s, u(s))dqs

−
∫ t1

0

(t1 − qs)(α−1)

Γq(α)
h(s, u(s))dqs

∣∣∣∣
+ |t2

2 − t2
1|

Γq(γ + 3)
[
cΓq(α + γ) + Γq(α)

]
Γq(α)

[
cΓq(γ + 3)− 2Γq(γ)

] ∫ 1

0
h(s, u(s)dqs

≤ r
∫ t2

t1

(t2 − qs)(α−1)

Γq(α)
s−β dqs

+ r|t2
2 − t2

1|
∫ 1

0

Γq(γ + 3)
[
cΓq(α + γ) + Γq(α)

]
Γq(α)

[
cΓq(γ + 3)− 2Γq(γ)

] s−β dqs

≤ r
Γq(α)

sup
s∈[t1,t2]

(t2 − qs)(α−1) t1−β
2 − t1−β

1
1− β

+ r(t2
2 − t2

1)
Γq(γ + 3)

[
cΓq(α + γ) + Γq(α)

]
Γq(1− β)

Γq(α)Γq(α− γ + 1)
[
cΓq(γ + 3)− 2Γq(γ)

] .

Thus,
lim

t2→t1
|Ω(u()t2))−Ω(u(t1))| = 0.

In other cases, one can prove a similar result. Hence, Ω(Q) is equicontinuous. Now,
by applying the Arzelà–Ascoli theorem, Ω(Q) is compact, and therefore Ω is completely
continuous.

Theorem 2. The problem (1) has at least one positive solution whenever the hypothesis as follows holds:

I. There exists β ∈ J such that the map tβg(t) is a continuous map on J.
II. There exists r′1 > 0 and r′2 > 0 with r′2 < r′1 such that tβh(t, u) ≤ r′1 and tβh(t, u) ≤ r′2 for

each (t, u) ∈ J × [0, r1] and (t, u) ∈ J × [0, r2], respectively, where

r1 >
Γq(γ + 3)Γq(1− β)

[
cΓq(α + γ) + Γq(α)

]
Γq(α + γ)Γ(α− σ + 1)

[
cΓq(γ + 3)− 2Γq(γ)

] r′1

> r2

>

[
2Γq(γ)Γq(α + γ)− Γq(γ + 3)Γq(α)

]
Γq(1− β)

Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

]
Γq(α− γ + 1)

r′2.

Proof. We take the set X1 and X2 of all u ∈ P such that

‖u‖ <
[
2Γq(γ)Γq(α + γ)− Γq(γ + 3)Γq(α)

]
Γq(1− β)

Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

]
Γq(α− β + 1)

r′2

and

‖u‖ <
Γq(γ + 3)Γq(1− β)

[
cΓq(α + γ) + Γq(α)

]
Γq(α + γ)Γq(α− β + 1)

[
cΓq(γ + 3)− 2Γq(γ)

] r′1,

respectively. Since 2Γq(γ) > Γq(α) and Γq(α + γ) > Γq(γ + 3), we have:

2Γq(γ)Γq(α + γ)− Γq(γ + 3)Γq(α)

Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

] > 0.
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Since γ ∈ [1, ∞) and r′1 > r′2, 2Γq(γ) < Γq(γ + 3) and

Γq(γ + 3)
[
cΓq(α + γ) + Γq(α)

]
r′1

Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

] >
2Γq(γ)Γq(α + γ)− Γq(γ + 3)Γq(α)r′2

Γq(c + γ)
[
cΓq(γ + 3)− 2Γq(γ)

] ,

therefore, X1 ⊂ X2. If u ∈ P ∩ ∂X1, then

0 ≤ u(t) ≤
[
2Γq(γ)Γq(α + γ)− Γq(γ + 3)Γq(α)

]
Γq(1− β)

Γq(α + γ)Γq(α− β + 1)
[
cΓq(γ + 3)− 2Γq(γ)

] r′2

∀ t ∈ J, and also

Ω(u(1)) = −
∫ 1

0

(1− qs)(α−1)

Γq(α)
h(s, u(s))dqs

+
∫ 1

0

Γq(γ + 3)
[
cΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs)(α+γ−1)

]
Γq(α)Γq(α + γ)

[
cΓq(γ + 3)− 2Γq(γ)

]
× h(s, u(s))dqs

≥
∫ 1

0

Γq(γ + 3)
[
cΓq(α + γ)− Γq(α)

]
− Γq(α + γ)

[
cΓq(γ + 3)− 2Γq(γ)

]
Γq(α)Γq(α + γ)

[
cΓq(γ + 3)− 2Γq(γ)

]
× (1− qs)(α−1)s−βsβh(s, u(s))dqs

≥ r′2
∫ 1

0

2Γq(γ)Γq(α + γ)− Γq(γ + 3)Γq(α)

Γq(α)Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

] (1− qs)(α−1)s−β dqs

= A2

[
2Γq(γ)Γq(α + γ)− Γq(γ + 3)Γq(α)

]
Γq(1− β)

Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

]
Γq(α− β + 1)

= ‖u‖.

Hence, ‖Ω(u)‖ ≥ ‖u‖ on P ∩ ∂X1. If u ∈ P ∩ ∂X2, then

Ω(u(t)) =
∫ t

0

−(t− qs)(α−1)

Γq(α)
h(s, u(s))dqs

+ t2
∫ 1

0

Γq(γ + 3)
[
cΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs)(α+γ−1)

]
Γq(α)Γq(α + γ)

[
cΓq(γ + 3)− 2Γq(γ)

]
× h(s, u(s))dqs

≤
∫ 1

0

Γq(p + 3)
[
cΓq(α + γ) + Γq(α)

]
(1− qs)(α−1)

Γq(α)Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

] s−βsβh(s, u(s))dqs

≤ r′1
Γq(γ + 3)

[
cΓq(α + γ) + Γq(α)

]
Γq(α)Γq(α + γ)

[
cΓq(γ + 3)− 2Γq(γ)

] ∫ 1

0
(1− qs)(α−1)s−β dqs

= r′01
Γq(γ + 3)Γq(1− β)

[
cΓq(α + γ) + Γq(α)

]
Γq(α + γ)Γq(α− σ + 1)

[
cΓq(γ + 3)− 2Γq(γ)

] = ‖u‖
for t ∈ J. Thus, ‖Ω(u)‖ ≤ ‖u‖ on P ∩ ∂X2. Since the self-operator Ω defined on P
is completely continuous and P ∩ (X2|X1) is a closed subset of P, the restriction Ω :
P ∩ (X2|X1) → P is completely continuous. At present, by employing Lemma 2, Ω has
a fixed point in P ∩ (X2|X1). By simple review, we can see that the fixed point of Ω is a
positive solution for problem (1).

4. Illustrative Examples with Application

Some illustrative examples are provided in this section to validate our original results.
At the same time, a computational technique is constructed for testing the problem (1) and
(2). A simplified analysis is also studied for executing the q-Gamma function’s values. As
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a result, a pseudo-code that describes our simplified method is presented for calculating
the q-Gamma function of order n in Algorithm A1 (for more details, see the following
online resources: https://en.wikipedia.org/wiki/Q-gamma_function and https://www.
dm.uniba.it/members/garrappa/software, accessed on 10 March 2021).

When the analytical solution is impossible to find for certain problems, we need to
find the numerical approximation with a tiny step h via the implicit trapezoidal PI rule,
which usually shows excellent accuracy [36]. Our numerical experiments were performed
with the help of MATLAB software. Some additional supporting information are provided
in Appendix A of this paper including some algorithms of the proposed method (see
Algorithms A1–A5), and Tables A1–A3 present various numerical experiments to provide
additional support to the validity of our results in this work.

Example 1. Consider the SFqDEq with the B.C:
cD

17
5

q [u](t) + | cos t|
t2

[
1 + (u(t))3] = 0,

15
7 u(1) = I

29
7

q [u](1),
u(0) = u′′(0) = u′′′(0) = (0) = 0,

(4)

for all t ∈ J = (0, 1) and q ∈ J.
In Problem (1), define

α =
17
5
≥ 3, n = [

17
5
] + 1 = 4, c =

15
7
≥ 1, γ =

29
7
∈ [1, ∞).

Define the continuous map:

h(t, u(t)) =
| cos t|

t2

[
1 + (u(t))3

]
,

such that
lim

t→0+
h(t, .) = +∞,

that is, h is singular at t = 0. In addition to, Table 1 shows that

2Γq(γ) ≥ Γq(α),

holds for each q.

https://en.wikipedia.org/wiki/Q-gamma_function
https://www.dm.uniba.it/members/garrappa/software
https://www.dm.uniba.it/members/garrappa/software
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Table 1. Numerical experiment for calculating Γq(α), Γq(γ) in Example 1 for q = 1
10 , 1

2 , 8
9 .

q = 1
10 q = 1

2 q = 8
9

n Γq(α) 2Γq(γ) Γq(α) 2Γq(γ) Γq(α) 2Γq(γ)

1 1.1479 2.4817 2.2951 7.2266 34.0843 265.2795
2 1.1467 2.4792 2.0569 6.414 21.5589 153.3424
3 1.1466 2.479 1.9515 6.056 15.299 101.2765
4 1.1466 2.479 1.9018 5.8876 11.7053 73.0841
...

...
...

...
...

...
...

17 1.1466 2.479 1.8539 5.7258 3.4748 16.2557
18 1.1466 2.479 1.8539 5.7258 3.3755 15.6765
19 1.1466 2.479 1.8539 5.7257 3.2907 15.1843
20 1.1466 2.479 1.8539 5.7257 3.2177 14.7638
...

...
...

...
...

...
...

106 1.1466 2.479 1.8539 5.7257 2.709 11.8963
107 1.1466 2.479 1.8539 5.7257 2.709 11.8963
108 1.1466 2.479 1.8539 5.7257 2.709 11.8963
109 1.1466 2.479 1.8539 5.7257 2.709 11.8962
110 1.1466 2.479 1.8539 5.7257 2.709 11.8962

To numerically show our results, we consider the problem (2) as follows:

D
10
3

q [u](t) + Γq(5)t−
1
9 |u|

1
3 + Γq(4)t−

1
9 |u′|

2
5

+ Γq(6)t−
1
9 |D

4
15
q [u](t)|

3
4 + Γq(3)t−

1
9 |vu|

7
9

+
1

1 + u2(t)
+

1
1 + (u′)2 +

1

1 + (D
4
15
q [u])2

+
1

1 + (vu)2

≤ D
10
3

q [u](t) + Γq(5)t−
1
9 |u|

1
3 + Γq(4)t−

1
9 |u′|

2
5

+ Γq(6)t−
1
9 |D

4
15
q [u](t)|

3
4 + Γq(3)t−

1
9 |vu|

7
9

+ (u(t))−2 + (u′)−2 + (D
4
15
q [u])−2 + (vu)

−2 = 0.

Thus,

D
10
3

q [u](t) + Γq(5)t−
1
9 |u|

1
3 + Γq(4)t−

1
9 |u′|

2
5

+ Γq(6)t−
1
9 |D

4
15
q [u](t)|

3
4 + Γq(3)t−

1
9 |vu|

7
9

+ (u(t))−2 + (u′)−2 + (D
4

15
q [u])−2 + (vu)

−2 = 0. (5)

Table 2 shows numerically the values of x(t) in Equation (5). In addition, the curve of x(t)
w.r.t t in Figures 1–3 for q = 1

10 , 1
2 , and 6

7 , respectively (Algorithm A1).
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Table 2. Numerical experiment of Equation (5) in Example 1 for q ∈
{

1
10 , 1

2 , 6
7

}
and n = 1, · · · 20

(Algorithm A1).

n q = 1
10 q = 1

2 q = 6
7

t u(t) t u(t) t u(t)

1 n = 1

1 0 0 0 0 0 0
1 0.25 0.00172 0.25 0.00806 0.25 0.38812
1 0.5 0.01733 0.5 0.08187 0.5 4.1244
1 0.75 0.06744 0.75 0.32299 0.75 17.97576
1 1 0.17909 1 0.87607 1 56.89764
2 n = 2

2 0 0 0 0 0 0
2 0.25 0.00171 0.25 0.0071 0.25 0.21494
2 0.5 0.01731 0.5 0.07216 0.5 2.26527
2 0.75 0.06737 0.75 0.2846 0.75 9.69401
2 1 0.17891 1 0.77148 1 29.82949
...

20 n = 20

0 0 0 0 0 0
0.25 In f 0.25 In f 0.25 In f
0.5 In f 0.5 In f 0.5 In f

0.75 In f 0.75 In f 0.75 In f
1 In f 1 In f 1 In f

1.25 In f 1.25 In f 1.25 In f
1.5 In f 1.5 In f 1.5 In f

1.75 In f 1.75 In f 1.75 In f
...

...
...

...
...

...

We can see that all conditions of Theorem 2 hold. Thus, the fixed point of Ω is a positive
solution for problem (4).
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Figure 1. u(t) with respect to t in Equation (5) in Example 1 for q = 1
10 according to Table 2.

Linear motion is the most basic of all motion. According to Newton’s first law of
motion, objects that do not experience any net force will continue to move in a straight line
with a constant velocity until they are subjected to a net force. In the next example, we
consider an application to examine the validity of our theoretical results on the fractional
order representation of the motion of a particle along a straight line.
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Figure 2. u(t) with respect to t in Equation (5) in Example 1 for q = 1
2 according to Table 2.
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Figure 3. u(t) with respect to t in Equation (5) in Example 1 for 6
7 according to Table 2.

Example 2. We consider a constrained motion of a particle along a straight line restrained by
two linear springs with equal spring constants (stiffness coefficient) under an external force and
fractional damping along the t-axis (Figure 4).

The springs, unless subjected to force, are assumed to have free length (unstretched length)
and resist a change in length. The motion of the system along the t-axis is independent of the initial
spring tension. The springs are anchored on the t-axis at t = −1 and t = 1, and the vibration of
the particle in this example is restricted to the t-axis only.

The vibration of the system is represented by a system of equations with the first equation
having similar form of a simple harmonic oscillator, which cannot produce instability. Hence, the
existence solution of the system depends on the following equation represented as the SFqDEq with
the B.C: 

cD
10
3

q [u](t) + 1
8

[
2− 2L− θ2L− θ2L cos t

]
u(t) = ν sin(u(t)),

16
9 u(1) = I

23
6

q [u](1),
u(0) = u′′(0) = u′′′(0) = (0) = 0,

(6)

for all t ∈ J = (0, 1), q ∈ J. Here, θ and ν are constants, and L is the unstretched length of the
spring. In Problem (1),

α =
10
3
≥ 3, n = [

10
3
] + 1 = 4, c =

16
9
≥ 1, γ =

23
6
∈ [1, ∞).
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Define the continuous map:

h(t, u(t)) =
1
8

[
2− 2L− θ2L− θ2L cos t

]
u(t)− ν sin(u(t))

for t ∈ (0, 1), such that
lim

t→0+
h(t, .) = +∞,

that is, h is singular at t = 0. Consider particular values of the parameters L = 1.5 m, θ = 0.5. We
consider particular values of the parameter ν = 7.25. Therefore, all conditions of Theorem 2 hold.
Thus, the SFqDEq (6) has a solution.

L

F

Figure 4. A particle along a straight line restrained by two linear springs with equal spring constants.

5. Conclusions

The existence of solutions was successfully investigated for a system of m-singular
sum fractional q-differential equations under some integral B.Cs in the sense of CpFqDr.
The positive solutions’ existence was also studied with the help of a fixed point Arzelà–
Ascoli theorem. Illustrative examples and numerical experiments were provided to validate
our theoretical results.
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Appendix A. Supporting Information

Algorithm A1 The proposed method for calculating Γq(x).

1: function g = qGamma(q, x, n)
2: %q-Gamma Function
3: p=1;
4: for k=0:n
5: p=p*(1-q(̂k+1))/(1- q(̂x+k));
6: end;
7: g=p/(1-q)(̂x-1);
8: end

Algorithm A2 The proposed method for calculating (x− y)(α)q .

1: function p = qfunction1(x, y, q, sigma, n)
2: s=1;
3: if n==0
4: p=1
5: else
6: for k=1:n-1
7: s = s*(x-y*qk̂)/(x-y*q(̂sigma+k));
8: end;
9: p=xŝigma * s;

10: end;
11: end

Algorithm A3 The proposed method for calculating (Dq f )(x).

1: function g = Dq(q, x, n, fun)
2: if x==0
3: g=limit ((fun(x)-fun(q*x))/((1-q)*x),x,0);
4: else
5: g=(fun(x)-fun(q*x))/((1-q)*x);
6: end;
7: end

Algorithm A4 The proposed method for calculating (Dq f )(x).

1: function g = Iq(q, x, n, fun)
2: p=1;
3: for k=0:n
4: p=p+ qk̂*fun(x*qk̂);
5: end;
6: g=x* (1-q) * p;
7: end
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Algorithm A5 The proposed method for calculating Iα
q [x].

1: function g = Iq_alpha(q, alpha, x, n, fun)
2: p=0;
3: for k=0:n
4: s1=1;
5: for i=0:k-1
6: s1=s1*(1-q(̂alpha+i));
7: end
8: s2=1;
9: for i=0:k-1

10: s2=s2*(1-q(̂i+1));
11: end
12: p=p + qk̂*s1*eval(subs(fun, t*qk̂))/s2;
13: end;
14: g=round((tâlpha)* ((1-q)âlpha)* p, 6);
15: end

Table A1. Some numerical results for the calculation of Γq(x) with q = 1
3 that is constant,

x = 4.5, 8.4, 12.7 and n = 1, 2, . . . , 15 of Algorithm A1.

n x = 4.5 x = 8.4 x = 12.7 n x = 4.5 x = 8.4 x = 12.7

1 2.472950 11.909360 68.080769 9 2.340263 11.257158 64.351366
2 2.383247 11.468397 65.559266 10 2.340250 11.257095 64.351003
3 2.354446 11.326853 64.749894 11 2.340245 11.257074 64.350881
4 2.344963 11.280255 64.483434 12 2.340244 11.257066 64.350841
5 2.341815 11.264786 64.394980 13 2.340243 11.257064 64.350828
6 2.340767 11.259636 64.365536 14 2.340243 11.257063 64.350823
7 2.340418 11.257921 64.355725 15 2.340243 11.257063 64.350822
8 2.340301 11.257349 64.352456

Table A2. Some numerical results for the calculation of Γq(x) with q = 1
3 , 1

2 , 2
3 , x = 5 and

n = 1, 2, . . . , 35 of Algorithm A1.

n q = 1
3 q = 1

2 q = 2
3 n q = 1

3 q = 1
2 q = 2

3

1 3.016535 6.291859 18.937427 18 2.853224 4.921884 8.476643
2 2.906140 5.548726 14.154784 19 2.853224 4.921879 8.474597
3 2.870699 5.222330 11.819974 20 2.853224 4.921877 8.473234
4 2.859031 5.069033 10.537540 21 2.853224 4.921876 8.472325
5 2.855157 4.994707 9.782069 22 2.853224 4.921876 8.471719
6 2.853868 4.958107 9.317265 23 2.853224 4.921875 8.471315
7 2.853438 4.939945 9.023265 24 2.853224 4.921875 8.471046
8 2.853295 4.930899 8.833940 25 2.853224 4.921875 8.470866
9 2.853247 4.926384 8.710584 26 2.853224 4.921875 8.470747

10 2.853232 4.924129 8.629588 27 2.853224 4.921875 8.470667
11 2.853226 4.923002 8.576133 28 2.853224 4.921875 8.470614
12 2.853224 4.922438 8.540736 29 2.853224 4.921875 8.470578
13 2.853224 4.922157 8.517243 30 2.853224 4.921875 8.470555
14 2.853224 4.922016 8.501627 31 2.853224 4.921875 8.470539
15 2.853224 4.921945 8.491237 32 2.853224 4.921875 8.470529
16 2.853224 4.921910 8.484320 33 2.853224 4.921875 8.470522
17 2.853224 4.921893 8.479713 34 2.853224 4.921875 8.470517
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Table A3. Some numerical results for the calculation of Γq(x) with x = 8.4, q = 1
3 , 1

2 , 2
3 and

n = 1, 2, . . . , 40 of Algorithm A1.

n q = 1
3 q = 1

2 q = 2
3 n q = 1

3 q = 1
2 q = 2

3

1 11.909360 63.618604 664.767669 21 11.257063 49.065390 260.033372
2 11.468397 55.707508 474.800503 22 11.257063 49.065384 260.011354
3 11.326853 52.245122 384.795341 23 11.257063 49.065381 259.996678
4 11.280255 50.621828 336.326796 24 11.257063 49.065380 259.986893
5 11.264786 49.835472 308.146441 25 11.257063 49.065379 259.980371
6 11.259636 49.448420 290.958806 26 11.257063 49.065379 259.976023
7 11.257921 49.256401 280.150029 27 11.257063 49.065379 259.973124
8 11.257349 49.160766 273.216364 28 11.257063 49.065378 259.971192
9 11.257158 49.113041 268.710272 29 11.257063 49.065378 259.969903
10 11.257095 49.089202 265.756606 30 11.257063 49.065378 259.969044
11 11.257074 49.077288 263.809514 31 11.257063 49.065378 259.968472
12 11.257066 49.071333 262.521127 32 11.257063 49.065378 259.968090
13 11.257064 49.068355 261.666471 33 11.257063 49.065378 259.967836
14 11.257063 49.066867 261.098587 34 11.257063 49.065378 259.967666
15 11.257063 49.066123 260.720833 35 11.257063 49.065378 259.967553
16 11.257063 49.065751 260.469369 36 11.257063 49.065378 259.967478
17 11.257063 49.065564 260.301890 37 11.257063 49.065378 259.967427
18 11.257063 49.065471 260.190310 38 11.257063 49.065378 259.967394
19 11.257063 49.065425 260.115957 39 11.257063 49.065378 259.967371
20 11.257063 49.065402 260.066402 40 11.257063 49.065378 259.967357
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