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Abstract: The paper discusses a method for obtaining a matrix of individual and group composition
of a hydrotreated heavy gasoline fraction in industrial conditions based on the fractional composition
obtained by the distillation method according to the ASTM D86 (the Russian analogue of such a
standard is GOST 2177). A method for bounds estimation of the retention index (RI) change is
considered on the basis of the symmetry of the RI change range relative to its arithmetic mean.
Implementation of this method is performed by simulation of individual composition of C6–C12
feedstock of the catalytic reforming unit in the software package. For this purpose, the boiling curve
of individual composition of hydrocarbon mixture is converted into the corresponding curve of
fractional composition. The presented technique of creating a virtual soft sensor makes it possible to
establish a correct relationship between the fractional composition and the individual hydrocarbon
composition obtained according to the IFP 9301 (GOST R 52714) (Russian GOST R 52714 and
international IFP 9301 standards for the determination of individual and group composition of
hydrocarbon mixtures by capillary gas chromatography). The virtual soft sensor is based on chemical
and mathematical principles. The application of this technique on the data of a real oil refinery is
shown. Obtaining accurate data by means of a virtual soft sensor on the individual composition
of feedstock will make it possible to optimize the catalytic reforming process and thus indirectly
improve its environmental friendliness and enrichment efficiency.

Keywords: virtual soft sensor; naphtha; composition model; method of pseudo-components; frac-
tional composition; simulated distillation; boiling point; gas chromatography

1. Introduction

Digitalization of the economy in general [1] and industry in particular [2] is a top
national priority of the Russian Federation. Digitalization of technological processes in this
case is associated with their advancement [3]. Currently, development of technological
processes of oil refining is carried out with the help of improvement of technology [4,5]
and control systems and control principles of these technological processes [6]. In this case,
technological development means everything that is related to technology: advancement
of apparatus design, replacement of equipment, reagents, etc. Improvement of control
systems and principles means creation of new control algorithms and principally new by
structure and functionality automated control systems. The development of primary oil
refining processes is mainly due to the introduction of so-called advanced control systems
(APC), which have already been proven to bring substantial profits to oil refineries [3].

However, secondary oil refining processes are directly related to improvements in
technology [7,8]. For example, moving bed catalyst reactors are used instead of a fixed bed
reactor or development of new types of catalysts that increase conversion and efficiency of
processes in chemical reactors [5]. Meanwhile, improving the control systems and control
principles of secondary oil refining processes is not considered a priority task. This is due
to several reasons: (1) Significant profit from technological advances overshadows the
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profit from system advances. (2) New techniques do not allow the formation of signifi-
cant experience in the automation of these processes, and therefore decisions concerning
advancements of systems can be considered hasty and lacking adequate substantiation.
(3) Low flexibility of the process, most parts of which can rather be perceived as a black
box with no chance to change the contents. (This is due to the peculiarity of reactor pro-
cesses. As a rule, the controls are made in such a way that those control actions that are
applied to the reactor input give their result at the output of the apparatus. We can only
change something with a loss of quality for a period of time. The change occurs intuitively,
because there are no control actions while the substance is in the apparatus; however, there
are many influencing factors: coke formation, reduction of the reactivity of the catalyst,
etc. Therefore, from the point of view of control, the apparatus is a black box, since it
is impossible to monitor the state of the substances inside the unit.) (4) The complexity
of chemical processes that are difficult to determine. (5) High cost of equipment for the
study of these processes, etc. However, taking into account these issues, the use of APC
algorithms along with technological developments will certainly increase the efficiency of
secondary oil refining processes, as well as bring additional profit to oil refineries [9,10].
Although advanced control systems are based upon mathematical models, it is difficult
to obtain accurate mathematical models describing a process in petroleum or a related
field [11]. This applies to both mathematical kinetic and empirical models. For kinetic
models, it is difficult to obtain a complete list of reactions of the process. For empirical
models, it is insufficient information about the process, which makes it complicated to
accumulate data to build empirical models. In this regard, the work aimed at improving
the information component of the system is relevant.

Data about the hydrocarbon components contained in naphtha is used to monitor the
catalytic reforming process, assess product quality, and control composition. Extended
hydrocarbon composition can be obtained by chromatography. If chromatography is used
to identify compounds, the retention time should be independent of the amount of sample
and the chromatographic peaks should be symmetrical to ensure correct identification of the
compounds. The extended hydrocarbon composition is also used as input for mathematical
modeling of the process. It should be kept in mind that data obtained by chromatography
cannot be extracted in real time. Usually, they are received in the laboratory over a period
of at least two hours with human participation. Soft-sensing technology is used in various
industries and technological facilities. The application, algorithmic and mathematical bases
for these sensors are very diverse and are mainly based on neural networks, regression
methods, and composition prediction. The paper by Tian et al. (2021) [12] presents soft
sensor applied in the monitoring system of a typical 330 MW CHP plant. This approach
uses the turbine’s Flugel formula as a static model, the turbine’s heat balance characteristic
to correct the coefficient in the model and the butterfly valve characteristic to realize
dynamic compensation to realize the soft sensor. The work Niño-Adan and colleagues
(2021) [13] discusses soft-sensor for class prediction of the percentage of pentanes in butane
at a debutanizer column. It includes the autoML approach that selects among different
normalization and feature weighting preprocessing techniques and various well-known
machine learning (ML) algorithms. The article by Winkler et al. (2021) [14] presents
soft sensor for real-time process monitoring of multidimensional fractionation in tubular
centrifuges. Reference [15] describes Soft sensor for industrial distillation column. The
authors Hsiao et al. (2021) propose soft sensor development methodology combining
first-principle simulations, and transfer learning was used to address these problems.

One of the elements of advanced control systems is the virtual sensor [16]. Virtual
sensors calculate parameter values using statistical dependencies (a polynomial), a neural
network, or other mathematical tools to determine correlation between variables [17,18].
This method involves the accumulation of a large volume of data and its further processing
using various approaches [19] including those mentioned earlier. For a catalytic reformer,
various variables can act as deterministic parameters for the virtual sensor. However, in
some cases, the creation and implementation of virtual sensors for some variable process is
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highly difficult and even impossible. This is due to the fact that the large sample of data
history for this segment does not exist, or their synchronization is troublesome. In particular,
to be more specific, the process of creating a virtual soft sensor of the feedstock composition
is a challenging task. The reason for this is the mismatch between the company’s capabilities
to measure individual hydrocarbon composition in a number of industrial processes and
the data requirements of the virtual sensor. In this case, data obtained on the individual
hydrocarbon composition of the feedstock in real time is an effective tool for optimizing
technological processes that take place in a catalytic reforming unit. The need to optimize
technological processes in this matter is caused by tough requirements for environment
protection [20] and the influence of the modern trends in the development of the global
energy sector [21,22].

It is important to reduce the uncertainty arising from infrequent composition control
in processes such as catalytic reforming where the individual and group composition of
the feedstock determines the target performance of the unit and the catalyst lifespan. Such
uncertainty in the feedstock composition can complicate the application of mathematical
models in the loop of an advanced control system or as an advisor to the operator [23],
which can result to fluctuations in product target performance over the specification limits
in the absence of the advanced control system. Studies of naphtha catalytic reforming
process have been carried out for a long period of time [24]. During this period, a large
number of [25] complex, highly precise, and detailed mathematical models of the catalytic
reforming process, simulating different naphthas with various amount of detail, have been
developed. The following steps were highlighted in the study of research and work: the
effect of changes in feedstock composition at the naphtha catalytic reforming unit is consid-
ered [26]; consider the parameters of the working process of coke combustion, comparing
the results with industrial data [27]; conduct a comprehensive sensitivity analysis of the
quality and quantity of the product [28] without taking into account the impact of changes
in the composition of raw materials of the process; the influence of the design parameters
of a catalytic reforming reactor, the molar flow rate on the hydrodealkylation side, the
molar ratio of hydrogen to hydrocarbons, the impact of catalyst deactivation on the system
performance are subjected to the research [29]; the modes of incoming and outgoing flows
in reactors with thermal coupling are analyzed [30].

A certain technological level of the unit that meets the requirement of the mathematical
model for the size of the input matrix is needed to introduce the developed mathematical
models in the existing production facilities. The model input matrix can be obtained
from the results of analytical control of the individual hydrocarbon composition of raw
materials, but inline control is not applied at all refineries. This raises the question of how
to provide the mathematical model with up-to-date input information about changes in
the composition of the workflow under operating production conditions, and whether this
control of the feedstock composition of a catalytic reforming unit can be performed more
frequently at an operating production facility.

A review Ren and colleagues (2019) [31] of methods for converting individual com-
position into fractional composition and vice versa showed several approaches. Most of
the approaches are formed on a multidimensional base for controlling several parameters
besides composition, which implies a preparatory stage of model development. Incomplete
data and checking their correctness results in the use of data processing and recovery
methods. The researchers consider the dependences of the mixture properties on the
compound identification parameters [32–34], individual constants, and characteristics of
the compound [35], which is an important and necessary basis for this study.

The paper discusses a method for obtaining a matrix of the carbon number and group
composition of the feedstock of a catalytic reforming unit in industrial conditions. A group
composition of petroleum fractions during an oil refining processes is the most important
factor influencing in the yield and composition of products, as well as an efficiency of the
catalysts. The fuels ASTM D86 distillation temperature distribution is divided into equal-
volume pseudo-component cuts, each of which is assigned a property volume blending
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index the aggregation of which provides an accurate estimation of the global property of
the whole petroleum fuel, or portions thereof. The list of these pseudo-components is the
group composition of petroleum fractions [36]. It is envisaged that it is possible to find
a matrix of carbon number and group composition of hydrotreated catalytic reforming
naphtha close to the experimental one by expressing [37] the desired composition through
close fractions of known individual hydrocarbon compositions. The evaluation of the
fraction proximity is determined by the associated boiling points. This is known due to the
fact that the heavier in molecular weight individual components that make up the fractions
have higher boiling points than the lighter ones.

The retention index is a common type of data used to identify chemical compounds
by gas chromatography. The retention index system is a widely used and recognized
system in gas chromatography for the identification of compounds. The paper by Yan et al.
(2015) [38] describes that the database retention indices of over 300 aroma compounds
that were determined on three capillary columns of different polarity can be used for
qualitative identification. The work [39] shows that retention indices of 28 polychlorinated
biphenyls in capillary gas chromatography referred to 2,4,6-trichlorophenyl alkyl ethers as
RI-standards. The paper by Morosini and Ballschmiter (1994) [39] presents that on the basis
of the TCPE, the retention indices of 28 polychlorinated biphenyls were determined using
the ECD, a 95% dimethyl 5% phenyl polysiloxane phase and six different temperature
programs. In addition, there are a number of studies in practice that have generated a
system of retention indices in different ways [40–42].

2. Materials and Methods

The development of a model for a virtual soft sensor of the feedstock composition
can be divided into two stages: preparatory and computational. The preparatory stage
includes the analysis and processing of the obtained data, determination of the method
of obtaining fractions from the individual composition, and the formation of a database
of individual components and associated boiling points of fractions. The description of
the preparatory stage is formed on the lack of information on the chromatographic system
and the fractional composition control system based only on the available measurement
data. A chromatographic system is defined as a set of hardware and methods that allow
chromatography to be performed. The need of these operations at each stage will be
discussed further.

According to the technological regulations of the enterprise, the individual and group
composition is controlled according to the IFP 9301 standard, which recommends the use
of gas chromatography with a 100 m long fused-silica capillary column with an inner
diameter of 0.25 mm. According to the standard, the capillary column is coated with
methylsilicone elastomer or dimethylsiloxane, 0.5 µm thick, and has to be equivalent to at
least 6000 theoretical plates/m; a linear retention index (n-alkane) is used to identify the
components. The fractional composition is controlled according to the ASTM D86 method.

2.1. Preparatory Stage

Check the presence and repeatability of the distribution law in the IFPi homologous
series. If the data obey the distribution law, then composition models based on these laws
can be used. Determine the retention time of non-absorbent substance and possible param-
eters of the chromatographic system for the identification of compounds [37]. However,
reference sources on retention indices provide single values for individual substances and
there are no confidence interval limits of their measurement, which leads to uncertainty
in identification [43]. If the report on the control of individual and group composition of
raw materials records the given time, then calculate the matrix of minimum ∆RI from all
reports for each homologous group by carbon number by Equation (1):

∆RI = RIi − RIi-1, (1)
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where ∆RI is the difference in the retention indices of adjacent compounds in the report, RIi
is the retention index of the i-th compound, and RIi-1 is the retention index of the previous
compound to the i-th. The chromatographic system identifies a component by its retention
index, and therefore it is important that the maximum deviation from the mean in the
retention index of each compound in different reports does not exceed the ∆RI value for the
corresponding homologous group of a matrix of minimum ∆RI. If the value of deviation
of the retention index exceeds the corresponding ∆RI, then this indicates that the data
are incorrect, and that compound cannot be correctly identified. Moreover, the matrix of
minimum ∆RI and average values of the retention indices can be used as an indicator of
the chromatographic system performance, automatically checking the deviations of the
new composition measurement, since visual assessment of the chromatogram allows for
human error.

For identified compounds with unknown boiling point the experimental values of
the parameter are taken from the reference sources [35]. Construct the function between
the normal boiling point of a compound and its retention index within one homologous
series [33,44]. For unidentified compounds, determine its boiling point according to the
constructed mathematical relation.

Determine actual ASTM boiling point intervals (min and max) for a given period of
unit operation. In this case, the period of operation of the unit should be representative (his-
torical data should cover the entire range of variation in the feedstock composition). This
will allow for assessment of the range of change in the fractional feedstock composition.

Construct theoretical curves [45] corresponding to the mixture distillation simulated
curves. The obtained simulated distillation curves are set in the Hysys/Pro II simulation
program, specifying the composition of the mixture, which is the beginning of its boiling.
Calculate the D86 boiling curve and enter the obtained values into the database as an
associated fractional composition with an individual and group composition.

Theoretical curves are derived from the characteristic boiling points of the mixture
from the individual hydrocarbon composition of the feedstock. The characteristic boiling
points of a mixture are close values to the boiling points of the mixture at the correspond-
ing cumulative fractions of the mixture. They uniquely characterize the entire mixture
fraction taken in the interval of the corresponding cumulative fractions of the mixture
by considering the boiling point of each compound of the fraction in accordance with
the fraction occupied by this component in the given fraction of the given hydrocarbon
com-position. Cumulative fractions are calculated in accordance with the principle of
additivity of fractions of mixture components. The fraction taken from the individual
hydrocarbon composition is considered separated from the rest of the mixture, and equated
to 100%, the fractions of individual components in it are recalculated and used as weight
coefficients when adding temperatures of each compound in the taken fraction. Thus, we
obtain a unique temperature characterizing the fraction through the temperatures of the
compounds of its constituents and close to the experimental boiling point of the mixture
at the corresponding cumulative fraction of the mixture. The beginning of boiling of the
mixture is determined on the basis of the algorithm of finding the experimental boiling
points of the mixture. The obtained characteristic boiling points of a mixture of individual
hydrocarbon composition are taken as a simulated distillation curve (SD) and, using the
procedure 3A.3.2 API-TDB 1997 [46], convert them to an ASTM fractional boiling curve.
We estimate the belonging of the obtained ASTM boiling curve according to the available
actual boiling point ranges according to ASTM.

The prepared IFPi and their corresponding boiling points of the fractional composition
are recorded in the non-relational database as the key value. The key in this case is the date
of chromatography, associating the data of the two compositions, and the values are the
report of the individual hydrocarbon composition and the corresponding boiling curve.
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2.2. Computational Stage

Compare each point of the measured D86 boiling curve with the corresponding point
by volume fraction point of the boiling curve from the prepared database. For comparison,
we use the module of the difference between the measured and associated boiling point
from the prepared database. A reference book with the keys of delta temperatures and
values of chromatography dates with a length equal to the number of keys in the prepared
database is created in the operating memory of the computer.

In the temperature delta reference book, search for the minimum temperature delta
for each boiling point of the hydrocarbon mixture. As a result, one obtains a list consisting
of an ordered sequence of dates and the corresponding boundary cumulative fraction of
the hydrocarbon mixture.

The IFPi fractions sequence is determined from the list of dates. To obtain a sequence of
fractions, we use the algorithm for obtaining a fraction from IFPi by cumulative fractions of
the mixture by referring by date to the IFPi in the prepared IFPi database and the boundary
cumulative fraction of the hydrocarbon mixture. We obtain a list of sequences of individual
mixture components expressed from the nearest IFPi fractions. The resulting sequence
is recorded in the database of estimated compositions for the possibility of performing
analysis and statistical assessment of changes in the composition over time.

Obtaining the MTHS matrix (MTHS—molecular type and homologous series). We
find the scoring matrix of the carbon number and group composition of the mixture.
The method used to assess the proximity of the sought individual composition and the
experimentally obtained composition requires reducing the IFPi to a matrix form. This
covers the cases of repeating the dates at step 2 and possible duplicates of the names of the
boundary components of the IFPi fractions. In this case, the values of the fractions of the
components, for which the individual composition was incremented, are not repeated for
the duplicate names, and do not violate the additivity principle of the mixture.

The Figure 1 shows the block diagram of the model for assessing MTHS composition
by the ASTMi boiling.

The measured ASTMi boiling curve of size 1 × 7 is fed to the input to the model.
On the basis of the minimum temperature difference, the model determines the closest
associated boiling point for each ASTMi boiling point fed to the input. According to the
mixing rule, the MTHS matrix of the hydrocarbon mixture composition is calculated on the
basis of the nearest boiling points of fractions found in the BPi virtual soft sensor database.

The presented virtual model of the soft sensor can be verified using four available
reports of individual and group composition of the hydrocarbon mixture. These reports
were created by monitoring the composition of the hydrotreated heavy gasoline fraction
of a catalytic reforming unit (CCR) in different months of different years according to
IFP 9301.

Let us conduct an experiment with the model, taking one of the four IFPi as unknown,
and feeding the associated ASTMi boiling curve, taken as unknown associated IFPi, to the
input to the model. As a result of the experiment with the model, we obtain the estimated
MTHS matrix of the unit feedstock composition, taken as unknown. The estimated matrix is
compared with the experimental matrix via reducing to the PIONA (paraffins, iso-paraffins,
olefins, naphthenes, aromatics) vector, obtained by adding the respective fractions of
compounds belonging to one of the five types of compound groups.

IFPi are represented by adsorption sequences of various lengths without repeating
names, consisting of a list of individual components with diverse fractions of compounds
in the mixture, with different boiling points. The various lengths of the reports and the
difference in the positions of the same compound complicate assessing the proximity of
the compositions in this form. However, the report on the considered raw materials can be
reduced to an 11 × 5 matrix. The columns are the homological series, while the rows are the
carbon numbers of the compound or several compounds of the same group. This approach
will allow us to quantitatively assess the proximity of compositions by the components of
the vector PIONA.
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Figure 1. Block diagram of the model for assessing MTHS composition by the ASTMi boiling curve.
BPi Database is a list of associated boiling curves; sorting rules—sorting rules used to obtain the
desired elements; IFPi Database—list of associated reports on the individual hydrocarbon compo-
sition of the mixture; built-in-mixing rule—incrementing the fractions of individual components
is performed only with the corresponding fractions according to the principle of additivity of the
mixture fractions; measured ASTMi (1 × 7)—boiling points (minimum 7 boiling points of a mixture),
obtained during the in-process control of the fractional composition of the hydrocarbon mixture;
compare BPi—calculation of deltas of measured and prepared boiling points of the hydrocarbon
mixture; BPi selection—determination of the minimum deltas for each boundary value of the cumu-
lative fraction of the mixture; obtaining fractions sequence—generation of a sequence of fractions
of individual components; MTHS matrix calculation—calculation of the estimated MTHS matrix;
estimated composition (11 × 5)—the resulting estimated MTHS matrix.

The accuracy of the data taken is determined by the accuracy of the DCS (distributed
control system) and LIMS (laboratory information management system) systems operating
on the unit, as well as by the accuracy of the sensor equipment used.

In addition, when describing the experiment, it is worth noting that the enterprise
has internal standards that describe the required accuracy of the system operation and the
laboratory tests carried out, which indirectly indicates the sufficient reliability of the data
obtained in this manner.

3. Results
3.1. Statistical Descriptive Analysis of the Samples

Before developing the model, we subjected the IFPi data obtained at the enterprise
to statistical analysis. In particular, for each homologous series, a distribution histogram
was constructed for four samples of the same catalytic reforming feedstock process stream,
tested by the IFP 9301 method at different times (Figure 2a–e).
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As can be seen from the graphs, the distribution within each homologous group
(paraffins, iso-paraffins, olefins, naphthenes, and aromatics) did not statistically obey any
distribution function. This made it impossible to apply known models [9,47–50] based
on the assumption of a change in composition in accordance with the known statistical
distribution within the homologous group. The unevenness in the composition of raw
materials and distribution by homologous groups can also be seen. At the same time,
the low frequency of analysis of raw materials was associated with a stable composition;
however, Figure 2 shows a contradiction. This fact additionally indicates the relevance of
this work.
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3.2. Retention Indices as a Marker for Component Identification in Homologous Groups

It was not possible to set the time for non-adsorbent compound, because the report
recorded the adjusted retention time. When determining the matrix of minimum ∆RI, the
values given in Table 1 were obtained.

Table 1. Matrix ∆RImin for homologous groups of IFP1–IFP4.

I O N A

C6 3.8 - 32.37 -

C7 1.47 2.99 0.8 -

C8 0.48 50.26 0.8 1.13

C9 0.97 1.06 0.47 1.95

C10 0.7 1.12 0.96 1.07

C11 1.47 - 19.36 0.92

C12 35.79 - - 0.91

C13 - - - 42.46

The first column of the table contains the numbers of carbon atoms; the title of the
table contains the name of the homologous group. The least values of ∆RI from Table 1 are
contained in I8 and N9. These and other cases are shown in Figure 3.
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Figure 3 shows the RI range from its arithmetic mean for each identified compound
present in each IFPi. The RI ranges of the retention indices of the different compounds in
the various homologous groups show the differentiation in the ranges of the RI retention
indices of each compound and the inferred RI limits for the compounds. A symmetry with
respect to the arithmetic mean RI can be observed. The deviation values show a tendency
towards an increase in the spread of RI for light and heavy compound. The reason for
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this may be the methods and algorithms used to calculate the RI, as well as methods and
instructions for performing the composition control procedure in production.

Let us consider the case of I8 with RI in the range of mean values from 724.503 to
777.97, where the maximum upper and lower boundaries for this group were reached at
point 777.97 and its value was 0.27, which was less than 0.48 from Table 1. In the case of
N9 with RI in the range of mean values from 830.515 to 936.827, the maximum upper and
lower boundaries for this group were reached at point 902.905, with the value of maximum
deviations of 0.34, which was less than 0.47 from Table 1. The inequality was valid for all
PIONA corresponding pairs of RI values of all homologous series with the exception of a
few aromatics and one olefin. Thus, the retention index is considered a reliable parameter
for model development, therefore the reported data are valid. The retention index of
the identified components were close and coincided with the retention index obtained
in [51–53].

3.3. Identifying Components with “Drifting” RIs

The Figure 4 shows the search algorithm for component with “drifting” RI.
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Figure 4. Search algorithm for component with “drifting” RI. ∆RIUi—difference between the retention
index of the current component and the retention index of the next component, ∆RIBi—difference
between the retention index of the current component and the retention index of the previous
component, RILi—list of retention indices of the current component, maxRILi—the maximum value
of the retention index of the current component, min∆RILi—the minimum value of the retention
index of the current component, ∆mmRILi—delta between the maximum and minimum value of
the retention index of the current component (∆mmRILi = max∆RILi-min∆RILi), min∆RIBi—the
minimum difference between the retention indices of the current compound name and the previous
value in all reports, min∆RIui—the minimum difference between the retention indices of the current
compound name and the next value in all reports.
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Table 2 shows the result of the algorithm for finding drifting retention indices on
experimental data. Components with drifting retention indices were identified. They all
belonged to groups A10, A11, A12, and O11.

Table 2. Search result for components with “drifting” RI.

Component Group Report ∆mmRILi min∆RIui min∆RIBi

1,2-Dimethyl-4-ethylbenzene A10 IFP4 0.81 0.85 0.79

Undecene-1 O11 IFP4 1.02 1.28 0.98

1,2-Dimethyl-3-ethylbenzene A10 IFP4 1.61 1.28 1.42

1,2,3,5-Tetramethylbenzene A10 IFP4 2.24 1.27 1.83

1,2-Ethyl-n-propylbenzene A11 IFP4 1.83 1.7 1.62

4-Methylindan A10 IFP4 1.89 1.62 1.86

n-Hexylbenzene A12 IFP4 2.44 1.76 14.79

3.4. Evaluation of a Chromatographic System

The change in the properties of the column during aging was assessed by the change
in the retention index and the capacity factor k of benzene. Experimental methods were
also used with a previously known composition of the mixture. Since the retention index
is a reproducible parameter within a single chromatographic system, it can be used to
evaluate a chromatographic system and change its properties over time. The Figure 5
shows the algorithm for evaluating the chromatographic system.
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reports on the control of the composition were submitted to the entrance.
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3.5. Predicting Normal Boiling Points from RIs

In order to use the retention index as a parameter for assessing the normal boiling
points of compounds, we carried out an analysis of the reports. The IFPi analysis iden-
tified three categories of data: unidentified compounds with unknown boiling points,
unidentified compounds with known boiling points, and identified compounds with un-
known boiling points. The component contribution to the mixture by category is shown in
Tables 3–5.

Table 3. Unidentified C7-C13 compounds with unknown boiling point.

IFPi Numb.
Summarized Unidentified (numb.|wt %)

I O N A Summarized

IFP1 245 31|3.3334 4|0.0128 39|4.7344 7|0.0565 81|8.1371

IFP2 246 31|3.3705 3|0.0552 40|5.9527 11|0.0637 85|9.4421

IFP3 256 34|3.4353 2|0.0044 38|4.6287 16|0.0948 90|8.1632

IFP4 247 34|3.9115 4|0.0434 38|6.0251 10|0.0632 86|10.0432

Numb.—the number of components.

Table 4. Unidentified C9-C13 compounds with known boiling point.

IFPi
Summarized Unidentified with Known Temperature (numb.|wt %)

I O N A Summarized

IFP1 4|0.6811 1|0.0018 15|1.3249 14|0.1695 34|2.1773

IFP2 5|0.9755 0|0 17|1.9265 12|0.188 34|3.09

IFP3 5|0.6672 0|0 14|1.3254 17|0.2039 36|2.1965

IFP4 5|0.7675 0|0 14|1.442 11|0.1745 30|2.384

Table 5. Identified C9-C12 compounds with unknown boiling point.

IFPi
Summarized Identified with Unknown Temperature (numb.|wt %)

I O N A Summarized

IFP1 1|0.0665 7|0.1991 1|0.3499 6|0.0093 15|0.6248

IFP2 2|0.0998 6|0.1927 3|0.5018 5|0.0084 16|0.8027

IFP3 2|0.1599 7|0.2405 1|0.367 10|0.0208 20|0.7882

IFP4 2|0.1161 8|0.2675 2|0.3968 7|0.01 19|0.7904

These tables show the estimated normal boiling points contribution to the theoretical
curves shown in Figures 6 and 7.

The restored theoretical curves are shown in the Figure 6. In the Figure 7, the D86
boiling curves obtained from the theoretical curves by the pseudo-component method
are shown as solid lines. The triangular marker indicates the points of the D86 boiling
curves obtained by the procedure 3A.3.2 from API–TDB 1997 on the basis of a sample of
experimental data. The weight and volume percent of the mixture are located along the
ordinate axis, and the temperature is located along the abscissa axis. Blue color was chosen
for IFP1, green for IFP2, yellow for IFP3, and black for IFP4. The resulting D86 boiling
curves corresponded to the D86 boiling curves obtained by the method of converting
simulated distillation according to the ASTM D86. The difference in boiling points D86
from 10% to 90% inclusively did not exceed 1 ◦C. Differences more than 1 ◦C between
curves can be observed at the beginning and end of the mixture boiling, since the correlation
error for the beginning and end of boiling is more than 1 ◦C. That is due to the accuracy
of the fractional composition measurements according to the ASTM D86 method, used
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equipment and possible way of processing data of the theoretical curve. When the sample
was tested according to the ASTM D86 method, statistically the mixture boiled off by
98 vol %. The presented D86 curves fell within the range of ASTMi boiling points obtained
during the analysis of fractional composition statistics. It was seen that three boiling curves
were located close to each other on the segment of 10–70 vol %, and the boiling points at
the points of 10 vol %, 30 vol %, and 50 vol % were repeated in different curves. Thus, it
can be assumed that reducing the sampling interval of the measurements will provide a
more accurate difference in close compositions with the use of the presented method. This
can be seen from the D86 curves obtained by the method of pseudo-components.
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During the preparatory stage, the boiling curves were analyzed for a year and a half
of the unit’s operation (see Table 6).

Table 6. Boiling point intervals according to the ASTMi.

IBP, vol % 10, vol % 50, vol % 90, vol % FBP, vol %

Min 93.0 100.0 109.0 135.0 156.0

Max 103.0 110.0 127.0 160.0 183.0
IBP—initial boiling point; FBP—final boiling point.

The range of variation in the feedstock composition of the catalytic reforming was finite
and corresponded to the established specification limits of the technological regulations
for the catalytic reforming unit feedstock. This fact further indicates the relevance of the
research.

Let us take for unknown composition, for example, IFP3. We can feed the correspond-
ing D86 boiling curve to the input of the developed model. The result (Table 7) obtained
is not optimal in terms of possible combinations of fractions in order to minimize the
resulting error of the composition, and the result depends on the proximity of each fraction
through which the desired composition was expressed.

Table 7. The model calculation result.

Calculation Experiment ∆

P[wt %] 18.6676 16.2217 2.4459

I[wt %] 38.3471 40.8639 −2.5168

O[wt %] 0.4319 0.3978 0.0341

N[wt %] 30.0788 30.6024 −0.5235

A[wt %] 12.4747 11.9142 0.5604

RMSE = 2.581194; R2 = 0.991234046

4. Conclusions

The presented model of the virtual soft sensor is designed to reduce production costs
by using information about the composition stored in the databases of the catalytic re-
former, with the possibility of implementing advanced control systems with high-precision
mathematical models into the control loop. The main hypothesis of this work is the hy-
pothesis about the possibility of establishing the correct relationship between the boiling
curves of ASTM D86 (GOST 2177) and the individual hydrocarbon composition of the
mixture obtained by the IFP 9301 method (GOST R 52714). In the course of the study, it
was possible to show the consistency of the hypothesis put forward, develop a method,
and convert the boiling curve of D86 into MTHS. Thus, a virtual soft sensor based on the
developed technique can evaluate the composition of the feedstock in real time from the
D86 boiling curves. The following results were obtained:

(1) The quantitative change in the individual composition of catalytic reforming naphtha
over time did not obey the distribution laws.

(2) Methods for evaluating the results of the chromatographic system operation were
presented, which made it possible to determine compounds with a large “drift” of
the retention index, which can be used when setting up and operating the chromato-
graphic system, as well as in analyzing and processing data from the reports of the
chromatographic system.

(3) The data used were correct, since the retention index (n-alkane) was reproduced for
the corresponding components of the mixture in the same chromatographic system
and was repeated in the indicated studies for such components as benzene, 2,4-
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dimethylpentane, and methylcyclopentane with a difference of no more than 0.4 units
retention index.

(4) An algorithm for evaluating the chromatographic system and changing its properties
with time was proposed.

(5) A method for converting the fractional composition into a matrix of individual and
group composition was presented.

In addition, it should be noted that the developed model requires a more thorough
test on a larger sample of IFPi to determine the sensitivity in cases of close compositions.
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IFP sample test method according to the IFP 9301 (GOST R 52714)
IFPi report/data on the sample test results according to the IFP 9301 (GOST R 52714)
ASTM sample test method according to the ASTM D86 (GOST 2177)
MTHS molecular type and homologous series
MES manufacturing execution system
ERP enterprise resource planning
PIONA paraffins, iso-paraffins, olefins, naphthenes, aromatics
IBP initial boiling point
FBP final boiling point
tm retention time of non-absorbable substance
DCS distributed control system
LIMS laboratory information management system
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