
symmetryS S

Article

Connectivity of Semiring Valued Graphs

Shyam Sundar Santra 1 , Prabhakaran Victor 2, Mahadevan Chandramouleeswaran 3,
Rami Ahmad El-Nabulsi 4,5,*, Khaled Mohamed Khedher 6,7 and Vediyappan Govindan 8

����������
�������

Citation: Santra, S.S.; Prabhakaran,

V.; Chandramouleeswaran, C.;

El-Nabulsi, R.A.; Khedher, K.M.;

Vediyappan, G. Connectivity of

Semiring Valued Graphs. Symmetry

2021, 13, 1227. https://doi.org/

10.3390/sym13071227

Academic Editor: Manuel Lafond and

Juan Luis García Guirao

Received: 14 May 2021

Accepted: 6 July 2021

Published: 8 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, JIS College of Engineering, Kalyani, West Bengal 741235, India;
shyamsundar.santra@jiscollege.ac.in

2 Department of Mathematics, Karpagam Academy of Higher Education, Coimbatore 641021, India;
victor.p@kahedu.edu.in

3 Department of Mathematics, Sri Ramanas College of Arts and Science for Women,
Aruppukottai 626134, India; moulee59@gmail.com

4 Research Center for Quantum Technology, Faculty of Science, Chiang Mai University,
Chiang Mai 50200, Thailand

5 Athens Institute for Education and Research, Mathematics and Physics Divisions, 8 Valaoritou Street,
Kolonaki, 10671 Athens, Greece

6 Department of Civil Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
kkhedher@kku.edu.sa

7 Department of Civil Engineering, High Institute of Technological Studies, Mrezgua University Campus,
Nabeul 8000, Tunisia

8 Department of Mathematics, Dmi St John The Baptist University, Mangochi P.O. Box 406, Malawi;
govindoviya@gmail.com

* Correspondence: el-nabulsi@atiner.gr or nabulsiahmadrami@yahoo.fr

Abstract: Graph connectivity theory is important in network implementations, transportation, net-
work routing and network tolerance, among other things. Separation edges and vertices refer to
single points of failure in a network, and so they are often sought-after. Chandramouleeswaran et al.
introduced the principle of semiring valued graphs, also known as S-valued symmetry graphs, in
2015. Since then, works on S-valued symmetry graphs such as vertex dominating set, edge dominat-
ing set, regularity, etc. have been done. However, the connectivity of S-valued graphs has not been
studied. Motivated by this, in this paper, the concept of connectivity in S-valued graphs has been
studied. We have introduced the term vertex S-connectivity and edge S-connectivity and arrived
some results for connectivity of a complete S-valued symmetry graph, S-path and S-star. Unlike the
graph theory, we have observed that the inequality for connectivity κ(G) ≤ κ′(G) ≤ δ(G) holds in
the case of S-valued graphs only when there is a symmetry of the graph as seen in Examples 3–5.

Keywords: semiring; S-valued graphs; connectivity of a graph; S-connected

1. Introduction

Connectivity of graphs plays an important role in network connections, network
transportation, and network tolerance, etc. Critical vertices and edges correspond to single
points of failure in every network, and thus we regularly want to spot them. The connectiv-
ity based on edges provides an additional stable form of a graph than a vertex based one.
This happens because of every vertex of a connected graph that may be connected to at
least one or additional edges. The removal of that vertex has an equivalent impact with the
removal of all these attached edges. As a result, a graph that is one edge connected is one
vertex connected too. Separation edges are also known as bridges and separation vertices
are known as articulation points as shown in the figure within the Example 1. Algebraic
graph theory is one of the main extensions of graph theory in which algebraic methods
can be viewed in terms of graph theoretical concepts [1]. Chandramouleeswaran et al. [2]
introduced the new graph theoretical concept known as semiring valued graphs (simply
S-valued graphs). Since then, many works have been done in semiring valued graphs,
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such as regularity, degree-regular and connectedness of S-valued graphs [3–5]. In this
article, the notions, the vertex S-connectivity and the edge S-connectivity in semiring
valued graphs have been studied. Further, basic results on connectivity of few special
graphs such as, S-complete, S-path and S-star have been proved. Symmetry of graphs
has been measured and characterized by the automorphisms of graphs. This topic has
been extensively studied over the past fifty years where automorphisms of graphs and
group theory have played an important role, and promising and interesting results have
been obtained, see for examples, [6,7]. The study of symmetry graph homomorphisms
is over forty years old. It was pioneered by Sabidussi [8], and Hedrlin and Pultr [9] and
other papers of these authors. Hahn and Tardif [10] gave a survey on symmetry graph
homomorphisms. There is a chapter homomorphisms’ in the book [1] by Godsil and Royle.
The special book [11] on graph homomorphisms by Hell and Nesetril appeared in 2004.

2. Preliminaries

In this Section, we will give some definitions that need for our main results.

Definition 1. A vertex cut V′ [12] of a graph G = (V, E) is the subset of the vertex set V such
that the removal of the set V′ from G will disconnect the graph. That is, G−V′ is disconnected.
Similarly, we can define the edge cut E′ of the graph G = (V, E).

Definition 2. A k−vertex cut [12] of the graph G is a vertex cut that contains k elements. A k-edge
cut [12] is an edge cut of graph G that contains k elements.

Definition 3. The vertex connectivity of the graph G [12] is the minimum k for which G has a
k-vertex cut. It is denoted by κ(G). Similarly, the edge connectivity is defined by the minimum k
such that G has a k-edge cut, and it is denoted by κ′(G).

Definition 4. A non-empty set S, together with two binary operations, addition and multiplication,
is said to be a semiring [13] if (S,+, 0) is a monoid and (S, ·) is a semigroup. Furthermore,
multiplication distributes over addition from both sides.

Definition 5. The canonical pre-order� [13] is a relation in a semiring (S,+, ·) defined as follows:
For any two elements s1, s2 ∈ S, s1 � s2 iff there exists an element s3 ∈ S such that s1 + s3 = s2.

Definition 6. To compare the elements of S×N, we define � as follows:

1. (s1, n) � (s2, m) ⇔ s1 � s2 and n ≤ m.
2. If s1 � s2 and n ≥ m, that is, the comparision only with corresponding S-values

for all s1, s2 ∈ S and n, m ∈ N,

Definition 7. The semiring valued graph [2] of a given graph G = (V, E) is a graph GS =
(V, E, σ, ψ) with two S-valued functions, σ and ψ defined by σ : V → S and ψ : E→ S by for all
edges

(
(x, y)

)
∈ E,

ψ
(
(x, y)

)
=

{
min{σ(x), σ(y)} i f σ(y) � σ(x) or σ(x) � σ(y)

0 otherwise
.

Definition 8. The S-path PS(uv) [14] of a semiring valued graph GS is a path between the
two vertices u and v in given graph G, along with S-values in vertices and edges. Furthermore,
wt
(

PS(uv)
)
= Σ

e∈PS(uv)
ψ(e) is the weight of the S- path in GS = (V, E, σ, ψ).

Definition 9. The semiring valued graph GS = (V, E, σ, ψ) is said to be S-connected [4], if for
every pair of vertices in GS have a S-path between them.
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Definition 10. The vertex degree [3] of the semiring valued graph GS, is defined as:

degS(vi) =
(

∑
vj∈NS(vi)

ψ(vivj), l
)

,

where l is the number of incident edges of vi. Therefore, the minimum degree of GS is defined to be
δS(GS) = min

vi∈V
degS(vi), and the maximum degree of GS is defined by ∆S(GS) = max

vi∈V
degS(vi).

Definition 11. pS = (Σvs.∈Vσ(v), n) and qS =
(

Σ(u,v)∈Eψ(u, v), m
)

is defined as the order

and size [5] of the semiring valued graph GS = (V, E, σ, ψ), respectively, where n and m is the
number of vertices and edges of the given graph G = (V, E).

3. Vertex S-Connectivity of Semiring Valued Graphs

In this Section, we have a tendency to discuss the vertex S-connectivity of semiring
valued graphs and prove some straightforward results.

Definition 12. Let GS = (V, E, σ, ψ) be a semiring valued graph and let BGS = {Bi | 1 ≤ i ≤ k}
be the collection of S-connected components of GS. Then Bi = (Pi, Fi), Pi ⊆ V, Fi ⊆ E, 1 ≤ i ≤ k.
Therefore |BGS | = k and the graph GS is said to have k connected components. If k = 1, then GS is
said to be a S-connected graph in which every pair of vertices has an S-path.

Definition 13. The vertex strength of a semiring valued graph GS is the sum of the S-values of
each vertices of GS. That is, StV(GS) = Σ

vi∈V
σ(vi) =| V |S .

Definition 14. A subset P ⊆ V of a semiring valued graph GS = (V, E, σ, ψ) is said to be vertex
separating set if the removal of the set P from GS reduces the vertex strength of the graph GS and
splits the graph into components. That is, StV(GS − P) � StV(GS) and |BGS−P| > |BGS |. In
other words, |V − P|S � |V|S and |BGS−P| > |BGS |.

Definition 15. The vertex S-connectivity of GS denoted by κS
V(G

S) is defined as the κS
V =

min
P⊆V
{(|P|S, |P|)}, where P ⊆ V such that StV(GS − P) � StV(GS), and |BGS−P| > |BGS |.

From the definition, we observe that, κS
V � pS, where pS is the order of the graph GS.

Example 1. Take the semiring S = ({0, l, m, n},+, ·) with the binary operations ’+’ and ’·’,
outlined by the subsequent Cayley tables.

+ 0 l m n
0 0 m m n
l l l m n
m m m m m
n n n m n

· 0 l m n
0 0 0 0 0
l 0 0 l n
m 0 l m n
n 0 0 n n

� Elements
0 0, l, m, n
l l, m, n
n n, m
m m

Consider the graph G given in Figure 1
Define σ : V → S by σ(v1) = n, σ(v2) = l, σ(v3) = m, σ(v4) = n, σ(v5) = l.
Then by definition of an S-valued graph, the edge valued function ψ : E → S is given by

ψ(e1) = l, ψ(e2) = l, ψ(e3) = l, ψ(e4) = n. Thus, we obtained the corresponding S-valued
graph GS as in Figure 1
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Figure 1. Graph G and its S-valued Graph GS.

Using the definition for vertex strength of the semiring valued graph
we obtained, StV(GS) = n + l + m + l + n = m.
Next, we consider the set, P1 = {v3(m)}. The graph GS − P1 has the following three compo-

nents:

(1) HS
1 = ({v1(n), v2(l)},

{
e2

1(l)
}
)

(2) HS
2 = ({v5(l)}, φ)

(3) HS
3 = ({v4(n)}, φ).

Therefore, StV(GS− P1) = StV(HS
1 ) + StV(HS

2 ) + StV(HS
3 ) = (l + n) + l + n = n. Since

StV(GS − P1) � StV(GS), P1 is a vertex separating set such that |P1|S = m, |P1| = 1.
Similarly, we obtain the following sets are vertex separating sets of GS.

(1) P2 = {v2(l)};
(2) P3 = {v2(l), v3(m)};
(3) P4 = {v2(l), v5(l)};
(4) P5 = {v2(l), v4(n)}
(5) P6 = {v3(m), v4(n)};
(6) P7 = {v3(m), v5(l)};
(7) P8 = {v3(m), v1(n)}.

Then, by the definition of vertex S-connectivity, we have

κS
V = min

P⊂V
{(|P|S, |P|)} = (l, 1),

which corresponds to the vertex separating set P2 = {v2(l)}.

Theorem 1. Consider an S-valued graph GS = (VS, ES). Let HS = (PS, FS) be a subgraph of GS

obtained by deleting a vertex v in V. Then, StV(HS) � StV(GS).

Proof. Let GS = (VS, ES) be an S-valued graph with VS = {(vi, σ(vi)) | i = 1, · · · , n} and
ES =

{(
(vivj) = ej

i , ψ(ej
i)
)
| i, j = 1, · · · , n

}
. Then for any (vi, σ(vi)) ∈ VS,

let HS =
(

PS =
(
VS−{(vi, σ(vi))}

)
, FS

)
be a vertex deleted subgraph of GS. Then, |V| = n

and |P| = n− 1. By the definition of vertex strength of S-valued graph, we get
StV(GS) = Σ

vi∈V
σ(vi) = σ(v1) + · · · + σ(vn) and StV(HS) = Σ

vi∈P
σ(vi) = σ(v1) + · · · +

σ(vn−1). Thus, StV(GS) = StV(HS) + σ(vn). This implies that StV(HS) � StV(GS). This
completes the proof.

The following corollaries can be easily proven by using the above theorem.

Corollary 1. If HS = (P, F, σP, ψF) be a subgraph of GS; then κS
V(HS) � κS

V(G
S).

Corollary 2. Let GS = (VS, ES) be a given S-valued graph. If CS is a clique of GS, then
StV(CS) � StV(GS).

Figure 1. Graph G and its S-valued Graph GS.

Using the definition for vertex strength of the semiring valued graph
we obtained, StV(GS) = n + l + m + l + n = m.
Next, we consider the set, P1 = {v3(m)}. The graph GS − P1 has the following three compo-

nents:

(1) HS
1 = ({v1(n), v2(l)},

{
e2

1(l)
}
)

(2) HS
2 = ({v5(l)}, φ)

(3) HS
3 = ({v4(n)}, φ).

Therefore, StV(GS− P1) = StV(HS
1 ) + StV(HS

2 ) + StV(HS
3 ) = (l + n) + l + n = n. Since

StV(GS − P1) � StV(GS), P1 is a vertex separating set such that |P1|S = m, |P1| = 1.
Similarly, we obtain the following sets are vertex separating sets of GS.

(1) P2 = {v2(l)};
(2) P3 = {v2(l), v3(m)};
(3) P4 = {v2(l), v5(l)};
(4) P5 = {v2(l), v4(n)}
(5) P6 = {v3(m), v4(n)};
(6) P7 = {v3(m), v5(l)};
(7) P8 = {v3(m), v1(n)}.

Then, by the definition of vertex S-connectivity, we have

κS
V = min

P⊂V
{(|P|S, |P|)} = (l, 1),

which corresponds to the vertex separating set P2 = {v2(l)}.

Theorem 1. Consider an S-valued graph GS = (VS, ES). Let HS = (PS, FS) be a subgraph of GS

obtained by deleting a vertex v in V. Then, StV(HS) � StV(GS).

Proof. Let GS = (VS, ES) be an S-valued graph with VS = {(vi, σ(vi)) | i = 1, · · · , n} and
ES =

{(
(vivj) = ej

i , ψ(ej
i)
)
| i, j = 1, · · · , n

}
. Then for any (vi, σ(vi)) ∈ VS,

let HS =
(

PS =
(
VS−{(vi, σ(vi))}

)
, FS

)
be a vertex deleted subgraph of GS. Then, |V| = n

and |P| = n− 1. By the definition of vertex strength of S-valued graph, we get
StV(GS) = Σ

vi∈V
σ(vi) = σ(v1) + · · · + σ(vn) and StV(HS) = Σ

vi∈P
σ(vi) = σ(v1) + · · · +

σ(vn−1). Thus, StV(GS) = StV(HS) + σ(vn). This implies that StV(HS) � StV(GS). This
completes the proof.

The following corollaries can be easily proven by using the above theorem.

Corollary 1. If HS = (P, F, σP, ψF) be a subgraph of GS; then κS
V(HS) � κS

V(G
S).

Corollary 2. Let GS = (VS, ES) be a given S-valued graph. If CS is a clique of GS, then
StV(CS) � StV(GS).
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Proof. Let CS be a clique of GS. Then, CS = (PS, FS) ⊆ (VS, ES) is a maximal subgraph of
GS. Then, by the above theorem, StV(CS) � StV(GS).

Theorem 2. If GS = (VS, ES) is a complete S-valued graph with n−vertices, then κS
V(G

S) =

min
P⊆V

(
Σ

vi∈P
σ(vi), n− 1

)
, where P is the vertex separating set of GS.

Proof. Let GS = (VS, ES) be a complete S-valued graph with n vertices. Clearly, GS is
a connected S-valued graph. Deletion of one vertex (v1, σ(v1)) keeps the graph GS

1 =
GS −

(
v1, σ(v1)

)
connected. Clearly, GS

1 has n − 1 vertices. Deleting one vertex, say v2

from GS
1 , gives a graph GS

2 = GS − {(v1, σ(v1), (v2, σ(v2))}, which is again connected.
Continuing this process, we observe that the graph

GS
n−1 = GS −

{
(v1, σ(v1)), (v2, σ(v2)), · · · ,

(
vn−1, σ(vn−1)

)}

leaves us only one vertex of GS. These (n − 1) vertices can be removed in nC1 = n
ways. Therefore, the vertex separating set P can have n choices, so that |P|S = Σ

vi∈P
σ(vi),

|P| = n− 1. Hence, we have κS
V(G

S) = min
P⊆V

(
|P|S, |P|

)
= min

P⊆V

(
Σ

vi∈P
σ(vi), |P|

)
.

This completes the proof.

Theorem 3. If GS is an S-path, then κS
V(G

S) = min
vi∈V

(
σ(vi), 1

)
.

Proof. Let GS = (V, E, σ, ψ) = (VS, ES) be a S-path with VS =
{(

vi, σ(vi)
)
| i = 1, 2, · · · , n

}

and ES =
{(

e2
1, ψ(e2

1)
)
, · · · ,

(
en

n−1, ψ(en
n−1)

)}
. Deletion of any vertex

(
vi, σ(vi)

)
, i = 2, · · · ,

n− 1 from GS disconnects the graph. Thus, each vertex vi, i = 2, · · · , n− 1 is a vertex
separting set Pi of GS such that |Pi|S = σ(vi) and |Pi| = 1. Hence, we have

κS
V(G

S) = min
P⊆V

(
|P|S, |P|

)
= min

P⊆V

(
σ(vi), 1

)
.

This completes the proof.

Theorem 4. If KS
m,n is a complete bipartite S-valued graph with two bipartition sets V1 and V2

such that |V1| = m; |V2| = n, then we have

κS
V(G

S) = min
{
( Σ

vi∈V1
σ(vi), m), ( Σ

vi∈V2
σ(vi), n)

}
.

Proof. Let KS
m,n be a complete bipartite S-valued graph with two bipartition sets V1 and

V2. Since it is complete bipartite S-valued graph removal of all vertices from V1 or V2 will
make the graph disconnected. Hence, the vertex separating set P is either V1 or V2, which
is minimum. Thus, |P|S = min{|V1|S, |V2|S} and |P| = min{|V1|, |V2|}. Then, from the
definition of vertex connectivity,

κS
V(G

S) = min
{
( Σ

vi∈V1
σ(vi), m), ( Σ

vi∈V2
σ(vi), n)

}
.

This completes the proof.

The star graph can be realized as a complete bipartite graph KS
1,n, removing the pole

leaves the graph disconnected. Hence, by using the above theorem, we obtain the following:

Corollary 3. For a S-star KS
1,n with pole v, κS

V(K
S
1,n) = (σ(v), 1).
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4. Edge S-Connectivity of Semiring Valued Graphs

Here, we have a tendency to introduce the notion of edge S-connectivity on S-valued
graphs and prove some easy, however elegant, results.

Definition 16. Consider the semiring valued graph GS = (V, E, σ, ψ)with V = {vi, | i = 1, · · · , n}
and E =

{
(vivj) = ej

i | i, j = 1, · · · , n
}

. Then, the edge strength of GS is the sum of the S-values

of edges of GS. That is,
StE(GS) = Σ

ej
i∈E

ψ(ej
i) =| E |S .

Definition 17. An edge separating set of a semiring valued graph GS = (V, E, σ, ψ) is a subset
F ⊆ E whose removal from GS reduces the edge strength of the graph GS and increases the number
of components in GS. That is,

StE(GS − F) � StE(GS) and |BGS−F| > |BGS |.

In other words, |E− F|S � |E|S and |BGS−F| > |BGS |.

Definition 18. The edge S-connectivity of GS, denoted by κS
E(G

S), is defined as the κS
E =

min
F⊆E
{(|F|S, |F|)}, where F ⊆ E such that StE(GS − F) � StE(GS), and |BGS−F| > |BGS |.

From the definition, we observe that, κS
E � qS, where qS is the size of the graph

GS = (V, E, σ, ψ).

Example 2. Take the semiring S = ({0, l, m, n},+, ·) as in the Example 1.
The edge strength of the graph GS given in Figure 2 is StE(GS) = m + m + l + l + n = m.

Consider the set, F1 =
{

e5
1(n)

}
. The graph GS − F1 has two components:

(1) HS
1 = ({v1(m), v2(m), v3(l), v4(m)},

{
e2

1(m), e3
2(l), e4

3(l), e1
4(m)

}
);

(2) HS
2 = ({v5(n)}, φ).
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Since StE(GS − F1) � StE(GS), F1 is an edge-separating set such that |F1|S = n, |F1| = 1.

Similarly, we obtain the following sets that are edge-separating sets of GS
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(1) F2 =
{

e2
1(m), e1

4(m)
}

;
(2) F3 =

{
e2

1(m), e3
2(l)

}
;

(3) F4 =
{

e2
1(m), e4

3(l)
}

;
(4) F5 =

{
e2

1(m), e5
1(n)

}

(5) F6 =
{

e3
2(l), e4

3(l)
}

;
(6) F7 =

{
e3

2(l), e1
4(m)

}
;

(7) F8 =
{

e3
2(l), e5

1(n)
}

;
(8) F9 =

{
e5

1(n), e1
4(m)

}
.

Then by the definition of edge S-connectivity, we have κS
E = min

P⊆E
{(|P|S, |P|)} = (l, 2).

Even though F1 =
{

e5
1(n)

}
is an edge-separating set, which has null graph as its component,

as per the definition of comparability, F6 = {e3
2(l), e4

3(l)} will be the edge-separating set with the

minimum cardinality
(
|F6|S, |F6|

)
= (l, 2).

Hence, κS
E = (l, 2).

Analogous to the Theorem 1, we will simply prove the subsequent theorem and
corollary.

Theorem 5. Consider an S-valued graph GS = (VS, ES). Let HS = (PS, FS) be a subgraph of

GS such that HS =
(

PS, FS = (ES − {(e, ψ(e))}
)

for some (e, ψ(e) ∈ ES. Then, StE(HS) �
StE(GS).

Theorem 6. Let GS = (VS, ES) be an S-valued graph and HS = (PS, FS) be a subgraph of GS

such that PS ⊆ VS and FS ⊆ ES. Then, StE(HS) � StE(GS).

Proof. Let GS = (VS, ES) = (V, E, σ, ψ) be a S-valued graph. Consider a subgraph HS =

(PS, FS) = (P, F, σP, ψF) with P ⊆ V and F ⊆ E. Since |F| ≤ |E|, |F|S = Σ
ej

i∈F
ψ(ej

i) �

Σ
ej

i∈E
ψ(ej

i) = |E|S. Thus, StE(HS) � StE(GS).

The following corollaries can be easily proved by using the above theorem.

Corollary 4. For any subgraph, we have HS = (P, F, σP, ψF) of GS, and κS
E(HS) � κS

E(G
S).

Corollary 5. Let GS = (V, E, σ, ψ) be a given S-valued graph. If CS is a clique of GS, then
StE(CS) � StE(GS) and κS

E(C
S) � κS

E(G
S).

Remark 1. In graph theory, the inequality for connectivity κ(G) ≤ κ′(G) ≤ δ(G) holds. However,
in the theory of semiring valued graphs, the analogous inequality

κS
V(G

S) � κS
E(G

S) � δS(GS) (1)

need not be true in general. It is illustrated by the following examples.

Example 3. Take the semiring S = ({0, a, b, c},+, ·) with addition and multiplication as the

+ 0 a b c
0 0 a b c
a a b c c
b b c c c
c c c c c

· 0 a b c
0 0 0 0 0
a 0 a b c
b 0 b c c
c 0 c c c

� Elements
0 0, a, b, c
a a, b, c
b b, c
c c
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The minimum degree of GS given in Figure 3, δS(GS) = (a, 1) = degS(v4). The edge S-
connectivity of GS, κS

E(G
S) = (a, 1) and the vertex S-connectivity, κS

V(G
S) = (c, 1).
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and in particular for S-vertex regular graphs, the inequality holds. We can generalize
Example 5 for any S-vertex regular graphs, yielding the following:

Theorem 7. For any S-vertex regular graph GS = (VS, ES), the inequality

κS
V(G

S) � κS
E(G

S) � δS(GS)

holds.

Proof. The proof follows from the definition of S-vertex regular, vertex S-connectivity and
edge S-connectivity of the S-valued graph.

For, in a S-vertex regular graph GS every vertex as well as edge will have the same
S-value. However, the vertex S-connectivity edge S-connectivity depends on the num-
ber of vertices and edges to be removed which cannot exceed the minimum degree of
the graph.

5. Conclusions

In this paper, we have studied the vertex S-connectivity and the edge S-connectivity of
semiring valued graphs. We observed through some examples that the inequality (1) holds
when there is some symmetry of the S-valued graph under consideration. This differs from
the theory of graphs. Further, we have established that the inequality (1) holds in the case of
S-vertex regular graphs. In the future, we have proposed to study the vertex S-connectivity
and the edge S-connectivity for different products of semiring valued graphs.
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