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Abstract: Andrews gave a remarkable interpretation of the Rogers–Ramanujan identities with the
polynomials ρe(N, y, x, q), and it was noted that ρe(∞,−1, 1, q) is the generation of the fifth-order
mock theta functions. In the present investigation, several interesting types of generating functions for
this q-polynomial using q-difference equations is deduced. Besides that, a generalization of Andrew’s
result in form of a multilinear generating function for q-polynomials is also given. Moreover, we build
a transformation identity involving the q-polynomials and Bailey transformation. As an application,
we give some new Hecke-type identities. We observe that most of the parameters involved in our
results are symmetric to each other. Our results are shown to be connected with several earlier works
related to the field of our present investigation.

Keywords: q-difference equations; q-polynomial; generating function; Hecke-type series; Bailey
transformation

MSC: Primary 30C45; 30C50; 30C80; Secondary 11B65; 47B38

1. Introduction and Motivation

Andrews [1,2] established and found a nice relationship of the fifth mock theta function
with the q-Jacobi polynomials. To improve the development of Hecke-type series for the
fifth order mock theta function, Andrews systematically considered the series:

∞

∑
n=0

qn2
xn fn(y; q)
(q2; q2)n

.

where
fn(0; q) = 1 and fn(1; q) = (−q; q)n

and (α; q)n stands for the q-shifted factorial.
If we take different choices for f , we obtain a variety of alternating parity questions

connected with classical partition identities of Euler, Rogers, Ramanujan and Gordan.
Furthermore, Andrews [2] also gave a new natural interpretation of the fifth-order

mock theta functions along with a new proof of the Hecke-type series representation. Re-
cently, several well-known mathematicians and physicists studied these types of celebrated
Hecke-type series from different mathematical view-points and perspectives. See, for
example, [3–6] and the references cited therein.

Basic (or q-) polynomials and q-series, especially the q-hypergeometric polynomials,
play an important rule in many diverse areas of mathematics and physics. Particularly,
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in the Theory of Partitions, Quantum Mechanics, Lie Theory, Mechanical Engineering,
Combinatorial Analysis, Theory of Heat Conduction, Cosmology, Non-Linear Electric
Circuit Theory, Particle Physics, Finite Vector Spaces and Statistics (see, for example, [7]
(pp. 350, 351); see also [8–16]).

In this paper, motivated by Srivastava et al.’s published paper in Symmetry (see [17]),
by using the method of q-difference equations, we consider and generalize the polynomials

ρe(N, y, x, q) =
N

∑
k=0

[
N
k

]
q2

qk2
(−yq; q)kxk, (1)

and Lm̄,n̄(α, x, z, a). We also give some new applications for these polynomials.
Throughout this paper, we use the following standard q-notations (see [1,18]). For

|q| < 1, we define the q-shifted factorials as:

(a; q)0 = 1, (a; q)n =
n−1

∏
k=0

(1− aqk), (a; q)∞ =
∞

∏
k=0

(1− aqk).

For convenience, we also adopt the following compact notation for the multiple
q-shifted factorial:

(a1, a2, . . ., am; q)n = (a1; q)n(a2; q)n. . .(am; q)n,

where n is an integer or ∞. The basic hypergeometric series rφs is defined as:

rφs

(
a1, a2, . . ., ar
b1, b2, . . ., bs

; q, z
)
=

∞

∑
n=0

(a1, a2, . . ., ar; q)n

(q, b1, b2, . . ., bs; q)n

(
(−1)nqn(n−1)/2

)1+s−r
zn.

The q-binomial theorem is stated as:

∞

∑
n=0

(a; q)n

(q; q)n
zn =

(az; q)∞

(z; q)∞
.

One can see that, the following Euler identities:

∞

∑
n=0

zn

(q; q)n
=

1
(z; q)∞

and
∞

∑
n=0

(−z)nq(
n
2)

(q; q)n
= (z; q)∞.

are the two important special and limiting cases of the q-binomial theorem.
In upcoming parts of this investigation, we need an important transformation formula

for 2φ1, which is given by:

2φ1

(
a, b
c

; q, c/ab
)
=

(c/a, c/b; q)∞

(c, c/ab; q)∞
. (2)

Another useful formula is (see [19]):

2φ1

(
a, b
cq

; q, c/ab
)
=

(cq/a, cq/b; q)∞

(cq, cq/ab; q)∞

[
ab(1 + c)− c(a + b)

ab− c

]
. (3)

We also need the q-Pfaff-Saalschütz summation formula:

3φ2

(
q−n, a, b

c, abq1−n/c
; q, q

)
=

(c/a, c/b; q)n

(c, c/ab; q)n
. (4)
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Many researcher used the following beautiful transformation formula of Liu [20]:

3φ2

(
q/a, q/b, v

c, d
; q, uab/q

)
=

(ua, ub; q)∞

(uq, uab/q; q)∞

×
∞

∑
n=0

(u, q/a, q/b; q)n(1− uq2n)

(q, , ua, ub; q)n(1− u)
(−uab)n

× qn2−2n
3φ2

(
q−n, uqn, v

c, d
; q, q

)
(5)

to obtain some kind of Hecke equation. In Section 6, we also get a transformation identity
involving Hecke-type series for the generalized q-polynomials based on Bailey transformation.

Furthermore, the q-binomial coefficients are defined by:[
n
k

]
q
=

(q; q)n

(q; q)k(q; q)n−k
,
[

α

k

]
−q

=
(−q; q)α

(−q; q)k(−q; q)α−k
,
[

n
k

]
q2

=
(q2; q2)n

(q2; q2)k(q2; q2)n−k
.

Next, for any function f (x), the q-derivative of f (x) with respect to x, is defined as:

Dq,x{ f (x)} = f (x)− f (qx)
(1− q)x

.

Furthermore, we define
D0

q,x{ f (x)} = f (x),

and
Dn

q,x{ f (x)} = Dq{Dn−1
q,x { f (x)}} (n ≥ 1).

The Rogers–Szegö polynomials are given by (see [21]):

hn(z, x|q) =
n

∑
k=0

[
n
k

]
zkxn−k (6)

and

gn(z, x|q) =
n

∑
k=0

[
n
k

]
qn(k−n)zkxn−k. (7)

Chen, Fu and Zhang [22] introduced the following homogeneous Rogers–Szegö
polynomials:

hn(x, y|q) =
n

∑
k=0

[
n
k

]
pk(x, y)

and
pk(x, y) = (x− y)(x− yq) . . . (x− yqk−1).

Furthermore, Chen et al. [22] consider some remarkable results for these polynomials.
Motivated by Liu [20] and Cigler [23], Cao and Niu [24] studied the extension of

Cigler’s polynomials by the q-difference equations:

C(α)
n (x, b) =

n

∑
k=0

[
n + α

k

][
n
k

]
(−1)kq(

k
2)(q; q)kxn−kbk

and

D(α)
n (x, b) =

n

∑
k=0

[
n + α

k

][
n
k

]
(−1)kqk2−kn(q; q)kxn−kbk.
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Based on Andrews [2] results, we now give a new q-polynomial as follows:

Lm̄,n̄(α, x, z, a) =
n

∑
k=0

[
n
k

]
q

[
α

k

]
−q

qτ(m̄,n̄)+(k
2)(a; q)kzkxn−k, (8)

where τ(m̄, n̄) = m̄(k
2)− n̄(k+1

2 ) and m̄, n̄ are real numbers.

Remark 1. First of all, it is easy to see that, if in (8), we take

α = n ∈ Z, m̄ = 0, n̄ = −1, a = −yq, x = 1 and z→ x,

then we obtain (1). Secondly, for

α = ∞, m̄ = −1, n̄ = 0 and a = −q

in (8), we recover (6). Thirdly, if we put

α = ∞, m̄ = −1, n̄ = 0, x = xq−n and a = −q

in (8), then we have (7). Finally, if

α = n = ∞, x = 1 and a = −q

in (8), we have the following results:

∞

∑
j=0

qj2

(q2; q2)j
(−q; q)j =

∞

∑
j=0

qj2

(q; q)j
=

1
(q, q4; q5)∞

(z = 1)

and
∞

∑
j=0

qj2+j

(q2; q2)j
(−q; q)j =

∞

∑
j=0

qj2+j

(q; q)j
=

1
(q2, q3; q5)∞

( z = q)

By using analytic function, Liu [25] established and considered the key relation be-
tween the q-exponential operator and q-difference equations. While using the homogeneous
q-difference equations Cao [26] gave the generating functions for q-hypergeometric poly-
nomials. Recently, Cao et al. [27] also deduced the generalized q-difference equations for
general Al-Salam–Carlitz polynomials. It was observed that the method of q-difference
operator is effective in solving generating functions for certain q-orthogonal polynomials
(see for example [22,28–31]).

Liu [20] obtained several important results on Rogers–Szegö polynomials by q-difference
equations with two variables as describe in Proposition 1. Furthermore, Liu and Zeng [32]
further studied the relations between the q-difference equations and Rogers–Szegö poly-
nomials. Indeed, they studied if an analytic function in several variables satisfies a sys-
tem of q-difference equations, then it can be expanded in terms of the product of some
polynomials.

Proposition 1. Let f (a, b) be a two-variable analytic function at (0, 0) ∈ C2, then

(A) f can be expanded in terms of hn(a, b|q) if and only if f satisfies the functional equation

b f (aq, b)− a f (a, bq) = (b− a) f (a, b).

(B) f can be expanded in terms of gn(a, b|q) if and only if f satisfies the functional equation

a f (aq, b)− b f (a, bq) = (a− b) f (aq, bq).
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Our further investigation is organized as follows. In Section 2, we obtain the gener-
alization of the q-polynomials (8). In Section 3, we give the generating functions for the
generalized q-polynomials with six parameters by the method of q-difference equations.
In Section 4, we gain a mixed generating functions for the generalized q-polynomials. In
Section 5, we deduce a multilinear generating function for the generalized q-2D Hermite
polynomials as a generalization of Andrews’s result. In Section 6, we build a transfor-
mation identity involving the generalized q-polynomials by using our transformation via
Bailey transform. As applications, a transformational identity is given in regard to some
Hecke-type identities. We note that the parameters involved in the results of this section
are symmetric to each other.

2. A Main Result

Theorem 1. Let f (a, b, c, d, e, f ) be a 6-variable analytic function at (0, 0, 0, 0, 0, 0) ∈ C6, then f
can be expanded in terms of Lm̄,n̄(α, x, z, a) if and only if f satisfies the functional equation

x
[

f (α, x, a, z, m̄, n̄)− f (α, x, a, zq2, m̄, n̄)
]

= qα−n̄z(1− f q1−α)[ f (α, x, a, zqm̄−n̄, m̄, n̄)

− f (α, xq, a, zqm̄−n̄, m̄, n̄)] + zq−n̄(1− f qα+1−2n̄)

× [ f (α, x, a, zq1+m̄−n̄, m̄, n̄)− f (α, xq, a, zq1+m̄−n̄, m̄, n̄)]

− azq1−n̄[ f (α, x, a, zqm̄−n̄+2, m̄, n̄)− f (α, xq, a, zqm̄−n̄+2, m̄, n̄)]. (9)

Proof. From the theory of several complex variables, we assume that:

f (α, x, a, z, m̄, n̄) =
∞

∑
k=0

Ak(α, x, a, m̄, n̄)zk. (10)

Substituting (10) into (9), we have

x

{
∞

∑
k=0

Ak(α, x, a, m̄, n̄)zk −
∞

∑
k=0

Ak(α, x, a, m̄, n̄)(zq2)k

}

= qα−n̄z
∞

∑
k=0

{
Ak(α, x, a, m̄, n̄)(zqm̄−n̄)

k − Ak(α, xq, a, m̄, n̄)(zqm̄−n̄)
k
}

+ (−azqα+1−n̄)
∞

∑
k=0

{
Ak(α, x, a, m̄, n̄)(zq1+m̄−n̄)

k − Ak(α, xq, a, m̄, n̄)(zq1+m̄−n̄)
k}

+ q−n̄z
∞

∑
k=0

{
Ak(α, x, a, m̄, n̄)(zq1+m̄−n̄)

k − Ak(α, xq, a, m̄, n̄)(zq1+m̄−n̄)
k}

+ (−aq1−n̄)z
∞

∑
k=0

{
Ak(α, x, a, m̄, n̄)(zq2+m̄−n̄)

k − Ak(α, xq, a, m̄, n̄)(zq2+m̄−n̄)
k}

. (11)

By direct calculation, equating coefficients of zk on both sides of (11), we obtain

Ak(α, x, a, m̄, n̄) =
(qα + qk−1)(1− aqk)

(1− qk)(1 + qk)
qm̄(k−1)−n̄kDq,x{Ak−1(α, x, a, m̄, n̄)}.

Repeating this process, we have

Ak(α, x, a, m̄, n̄) =
qαk(−q−α; q)k(a; q)k

(q2; q2)k
qm̄(k

2)−n̄(k+1
2 )Dk

q,x{A0(α, x, a, m̄, n̄)}.
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Setting

f (α, 0, x, a, m̄, n̄) = A0(α, x, a, m̄, n̄) =
∞

∑
n=0

µnxn,

we have

Ak(α, x, a, m̄, n̄) =
qαk(−q−α; q)k(a; q)k

(q2; q2)k
qm̄(k

2)−n̄(k+1
2 )(Dk

q,x){A0(α, x, a, m̄, n̄)}

=
qαk(−q−α; q)k(a; q)k

(q2; q2)k
qm̄(k

2)−n̄(k+1
2 )

∞

∑
n=0

µn

{
Dk

q,x(xn)
}

=
qαk(−q−α; q)k(a; q)k

(q2; q2)k
qm̄(k

2)−n̄(k+1
2 )

∞

∑
n=k

µn

[
n
k

]
(q; q)kxn−k. (12)

By using (10), we have

f (α, z, x, a, m̄, n̄)

=
∞

∑
k=0

qαk(−q−α; q)k(a; q)k
(q2; q2)k

qm̄(k
2)−n̄(k+1

2 )
∞

∑
n=k

µn{Dk
q,x(xn)}zk

=
∞

∑
n=0

n

∑
k=0

µn

[
n
k

]
q

[
α

k

]
−q

qτ(m̄,n̄)+(k
2)(a; q)kzkxn−k

=
∞

∑
n=0

µnLm̄,n̄(α, x, z, a). (13)

Which completes the proof of Theorem 1.

3. Generating Function for the Generalized q-Polynomials

Al-Salam and Carlitz [21] gave the generating function by using q-transformation as
stated by Theorem 2. In this section, we give the generating function of the generalized
q-polynomials by using q-difference equation.

Theorem 2 (see [21]). If hn(z, x) is Rogers–Szegö polynomials, then we have

∞

∑
n=0

hn(z, x)
tn

(q; q)n
=

1
(zt, xt; q)∞

(max{|zt|, |xt|} < 1) (14)

Theorem 3. For max{|z|, |t|} < 1 , we have

∞

∑
n=0

Lm̄,n̄(α, x, z, a)
tn

(q; q)n

=
1

(tx; q)∞

∞

∑
k=0

(−q−α, a; q)k
(q2; q2)k

qm̄(k
2)−n̄(k+1

2 )+αk(zt)k (15)

Proof. Denoting the right hand side of (15) by f (α, z, x, a, m̄, n̄), we verify that f (α, z, x, a, m̄, n̄)
satisfies (9) as given below:

f (α, z, x, a, m̄, n̄) =
1

(tx; q)∞

∞

∑
k=0

(−q−α, a; q)k
(q2; q2)k

qm̄(k
2)−n̄(k+1

2 )+αk(zt)k

=
∞

∑
k=0

[
α

k

]
−q

qτ(m̄,n̄)+(k
2)
(a; q)k
(q; q)k

(tz)k
∞

∑
s=0

(xt)s

(q; q)s

=
∞

∑
n=0

tn

(q; q)n

n

∑
k=0

[
α

k

]
−q

qτ(m̄,n̄)+(k
2)
(a; q)k
(q; q)k

(z)k(Dq,x)
k(xn),
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so we have

f (α, z, x, a, m̄, n̄) =
∞

∑
n=0

µnLm̄,n̄(α, x, z, a)

and

f (α, 0, x, a, m̄, n̄) =
∞

∑
n=0

µnxn =
1

(xt; q)∞
=

∞

∑
n=0

(xt)n

(q; q)n
.

Thus, we have

f (α, z, x, a, m̄, n̄) =
∞

∑
n=0

Lm̄,n̄(α, x, z, a)
tn

(q; q)n
,

which completes the proof.

Remark 2. For α→ ∞, m̄ = −1, n̄ = 0 and a = −q in Theorem 3, Equation (15) reduces to (14).

4. A Mixed Generating Function for the Generalized q-Polynomials

Using the q-binomial theorem, we have the following proposition.

Proposition 2. If |x| < 1, we have

∞

∑
n=0

pn(t, s|q) xn

(q; q)n
=

(sx; q)∞

(xt; q)∞
. (16)

In this section, we obtain the following mixed generating function for the generalized
q-polynomials.

Theorem 4. For max{|z|, |x|, |t|} < 1 , we have

∞

∑
n=0

pn(t, s)
(q; q)n

Lm̄,n̄(α, x, z, a)

=
(sx; q)∞

(xt; q)∞

∞

∑
k=0

[
α

k

]
−q

qτ(m̄,n̄)+(k
2)
(a, s/t; q)k
(q, xs; q)k

(zt)k (17)

Proof. Denoting the right hand side of (17) as f (α, x, a, z, m̄, n̄), we have

f (α, x, a, z, m̄, n̄) =
(sx; q)∞

(xt; q)∞

∞

∑
k=0

[
α

k

]
−q

qτ(m̄,n̄)+(k
2)
(a, s/t; q)k
(q, xs; q)k

(tz)k

=
∞

∑
k=0

[
α

k

]
−q

qτ(m̄,n̄)+(k
2)
(a; q)k
(q; q)k

zk (xsqk; q)∞

(xt; q)∞
tk(s/t; q)k

=
∞

∑
k=0

∞

∑
n=k

[
α

k

]
−q

qτ(m̄,n̄)+(k
2)
(a; q)k
(q; q)k

zkxn−k pn(t, s)
(q; q)n(q; q)n−k

. (18)

It is verified that (18) satisfies (9) and so, we have

f (α, x, a, z, m̄, n̄) =
∞

∑
n=0

µnLm̄,n̄(α, x, z, a)

and

f (α, x, a, 0, m̄, n̄) =
(sx; q)∞

(xt; q)∞
=

∞

∑
n=0

(x)n(s/t; q)n

(q; q)n
=

∞

∑
n=0

pn(t, s)xn

(q; q)n
.
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Thus, we have

f (α, x, a, z, m̄, n̄) =
∞

∑
n=0

pn(t, s)
(q; q)n

Lm̄,n̄(α, x, z, a).

This completes the proof.

Remark 3. For z = 0 in Theorem 4, Equation (17) reduces to (16).

If we take
α→ ∞, m̄ = −1, n̄ = 0 and a = −q,

Theorem 4 yields the following corollary.

Corollary 1. For max{|z|, |x|, |t|} < 1 , we have

∞

∑
n=0

pn(t, s)hn(x, z)xn

(q; q)n
=

(xs; q)∞

(xt; q)∞

∞

∑
k=0

(tz)k(s/t; q)k
(q, sx; q)k

As a special case of Theorem 4, if we take m̄ = n̄ = 0, we have the following corollary.

Corollary 2. For max{|z|, |x|, |t|} < 1, we have

∞

∑
n=0

pn(t, s)
(q; q)n

n

∑
k=0

[
n
k

]
q

[
α

k

]
−q

q(
k
2)(a; q)kzkxn−k

=
(xs; q)∞

(xt; q)∞
3φ2

(
−q−α, a, s/t,
−q, xs

; q,−ztqα

)
5. A Multilinear Generating Function for the Generalized q-Polynomials

Andrews [2] proved that the coefficient of qnxmyj in

∞

∑
n1,n2 ...nk−1=0

yN1
1 yN2

2 . . . yNk
k qN2

1+N2
2+...N2

k Hn1 Hn2 . . . Hnk−1

(q2; q2)n1(q2; q2)n2 . . . (q2; q2)nk−1

(19)

is the number of partitions enumerated with exactly m parts and exactly j different even
parts that appear an odd number of times (k = 2 or 3). The generalized q-Hermite
polynomials, which is also the generalization of Andrews’s result (19) due to Kursungoz, is
given by

Hn =
n

∑
j=0

yjqj
[

n
j

]
q2

, (20)

also as Ni = ni + ni+1 + . . . + nk−1. if x = 1, α = n, m̄ = 0, n̄ = 1. Therefore, we have

L0̄,1̄(n, 1, y, 0) =
n

∑
j=0

[
n
k

]
q2

qjyj = Hn.

In this section, we first give a multilinear generating function for certain q-polynomials.
We then obtain some results for this multilinear generating function by using the ho-
mogeneous q-difference equation. Andrews [21] proved the following formula for the
q-Lauricella function.
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Proposition 3 (see [21]). For max{|α|, |r|, |y1| . . . |yk|} < 1 , we have

∞

∑
n1,n2 ...nk=0

(α; q)n1+n2 ...+nk

(r; q)n1+n2 ...+nk

(β1; q)n1(β2; q)n2 . . . (βk; q)nk

(q; q)n1(q; q)n2 . . . (q; q)nk

yn1
1 yn2

2 . . . ynk
k

=
(α, β1y1, β2y2, . . . βkyk; q)∞

(r, y1, y2, . . . yk; q)∞
k+1φk

(
r/α, y1, y2, . . . yk

β1y1, β2y2 . . . βkyk
; q, α

)
. (21)

In the following, we obtain our main results about the multilinear generating function
by using the q-difference equation.

Theorem 5. For max{|α|, |y1| . . . |yk|, |z1| . . . |zk|} < 1 and αi is any positive integer, we have

∞

∑
n1,n2 ...nk=0

(α; q)n1+n2 ...+nk

(r; q)n1+n2 ...+nk

σ1(q; L)
(q; q)n1(q; q)n2 . . . (q; q)nk

× (β1; q)n1(β2; q)n2 . . . (βk; q)nk

=
(α, β1y1, β2y2, . . . βkyk; q)∞

(r, y1, y2, . . . yk; q)∞

∞

∑
s=0

(r/α, y1, y2, . . . yk; q)s

(β1y1, β2y2 . . . βkyk; q)s
(α)s

×
k

∏
i=1

∞

∑
ni=0

[
α

ni

]
−q

qτ(m̄i ,n̄i)+(
ni
2 )
(ai; q)ni

(q; q)ni

zni
i qsni

(βi; q)ni

(βiyiqs; q)ni

, (22)

where

σ1(q; L) = Lm̄1,n̄1(α1, y1, z1, a1)Lm̄2,n̄2(α2, y2, z2, a2) . . . Lm̄k ,n̄k (αk, yk, zk, ak) (23)

Proof. Rewrite the Proposition 3 as:

∞

∑
n1,n2 ...nk=0

(α; q)n1+n2 ...+nk

(r; q)n1+n2 ...+nk

(β1; q)n1(β2; q)n2 . . . (βk; q)nk

(q; q)n1(q; q)n2 . . . (q; q)nk

yn1
1 yn2

2 . . . ynk
k

=
(α; q)∞

(r; q)∞

∞

∑
l=0

(r/α; q)l
(q; q)l

(β1y1ql , β2y2ql , . . . βkykql ; q)∞

(y1ql , y2ql , . . . ykql ; q)∞
αl . (24)

If we use f (σ2(Y)) where σ2(Y) is given by

σ2(Y) = y1, y2, . . . , yk, z1, z2, . . . , zk, a1, a2, . . . ,

ak, m̄1, m̄2, . . . , m̄k, n̄1, n̄2, . . . , n̄k, α1, α2, . . . , αk,

which denote the right hand side of (22), then, by direct computation, we can verify that f
satisfies (9) and so:

f (σ2(Y)) =
(α; q)∞

(r; q)∞

∞

∑
l=0

(r/α; q)l
(q; q)l

∞

∑
n1=0

[
α

n1

]
−q

qτ(m̄1,n̄1)+(
n1
2 )

× (a1; q)n1

(q; q)n1

zn1
1
{

Dq,y1

}n1

{
(β1y1ql , ; q)∞

(y1ql , y2ql ; q)∞

}

×
∞

∑
n2=0

[
α

n2

]
−q

qτ(m̄2,n̄2)+(
n2
2 )
(a2; q)n2

(q; q)n2

zn2
2 {Dq,y2}n2

×
{
(β2y2ql ; q)∞

(y2ql ; q)∞

}
. . .

∞

∑
nk=0

[
α

nk

]
−q

qτ(m̄k ,n̄k)+(
nk
2 )

×
(ak; q)nk

(q; q)nk

znk
k {Dq,yk}

nk

{
(βkykql ; q)∞

(ykql ; q)∞

}
.
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By using Theorem 1, there exists a sequence λn1,...nk independent of σ2(Y) and that:

f (σ2(Y)) =
∞

∑
n1,n2 ...nk=0

λn1,...nk σ1(q; L). (25)

Setting z1 = z2 . . . zk = 0 in (25) and using (24), we have

f (σ3(Y)) =
∞

∑
n1,n2 ...nk=0

λn1,...nk yn1
1 yn2

2 . . . ynk
k

=
(α, β1y1, β2y2, . . . βkyk; q)∞

(r, y1, y2, . . . yk; q)∞

×
∞

∑
l=0

(r/a, y1, y2, . . . yk; q)l
(q, β1y1, β2y2, . . . βkyk; q)l

αl

=
∞

∑
n1,n2 ...nk=0

(α; q)n1+n2 ...+nk

(r; q)n1+n2 ...+nk

(β1; q)n1(β2; q)n2 . . . (βk; q)nk

(q; q)n1(q; q)n2 . . . (q; q)nk

yn1
1 yn2

2 . . . ynk
k ,

where

(σ3(Y)) = y1, y2, . . . , yk, 0, 0, . . . , 0, a1, a2, . . . ,

ak, m̄1, m̄2, . . . , m̄k, n̄1, n̄2, . . . , n̄k, α1, α2, . . . , αk.

We deduce that f (σ2(Y)) is equal to the left hand side of (22), so we have

f (σ2(Y)) =
∞

∑
n1,n2 ...n2k=0

(α; q)n1+n2 ...+n2k

(r; q)n1+n2 ...+n2k

×
(β1; q)n1(β2; q)n2 . . . (βk; q)n2k

(q; q)n1(q; q)n2 . . . (q; q)nk

σ1(q; L),

where σ1(q; L) is given by (23).
Thus, we have

∞

∑
n1,n2 ...nk=0

(α; q)n1+n2 ...+nk

(r; q)n1+n2 ...+nk

σ1(q; L)
(q; q)n1(q; q)n2 . . . (q; q)nk

× (β1; q)n1(β2; q)n2 . . . (βk; q)nk

=
(α, β1y1, β2y2, . . . βkyk; q)∞

(r, y1, y2, . . . yk; q)∞
k+1φk

(
r/α, y1, y2, . . . yk

β1y1, β2y2 . . . βkyk
; q, α

)
×

k

∏
i=1

∞

∑
ni=0

[
αi
ni

]
−q

qτ(m̄i ,n̄i)+(
ni
2 )
(ai; q)ni

(q; q)ni

zni
i qkni

(βi; q)ni

(βiyiqk)ni

.

Which completes the proof.

Remark 4. When we take zi = 0, (22) can reduce to (21).

If we take
αi = ∞, m̄i = −1, n̄i = 0 and ai = −q

in Theorem 5, we have the following result.
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Corollary 3. For max{|α|, |r|, |y1| . . . |yk|, |z1| . . . |zk|} < 1 , we have

∞

∑
n1,n2 ...nk=0

(α; q)n1+n2 ...+nk

(r; q)n1+n2 ...+nk

hn1(y1, z1|q)hn2(y2, z2|q) . . . hnk (yk, zk|q)
(q; q)n1(q; q)n2 . . . (q; q)nk

× (β1; q)n1(β2; q)n2 . . . (βk; q)nk

=
(α, β1y1, β2y2, . . . βkyk; q)∞

(r, y1, y2, . . . yk; q)∞

∞

∑
s=0

(r/α, y1, y2, . . . yk; q)s

(β1y1, β2y2 . . . βkyk; q)s
(α)s

×
k

∏
i=1

∞

∑
ni=0

zni
i qsni

(βi; q)ni

(q, βiyiqs; q)ni

.

If we take
βi = 0, yi = xi and zi = xi,

in Theorem 5, we get the generalized Andrew’s result as follows, which is also derived by
Liu [20].

Corollary 4. For max{|α|, |r|, |x1| . . . |xk|, |y1| . . . |yk|} < 1, we have

∞

∑
n1,n2 ...nk=0

(α; q)n1+n2 ...+nk

(r; q)n1+n2 ...+nk

hn1(x1, y1|q)hn2(x2, y2|q) . . . hnk (xk, yk|q)
(q; q)n1(q; q)n2 . . . (q; q)nk

=
(α; q)∞

(r, x1, y1, x2, y2, . . . xk, yk; q)∞
2k+1φ2k

(
r/α, x1, y1, x2, y2, . . . xk, yk

0, 0 . . . 0
; q, α

)
.

In an application of Theorem 5, we proved the multilinear summation by using some
special variable substitution. The following notation and substitutions are systematically
adopted.

For i = 1 . . . k− 1, we have
Ti = y1y2 . . . yi,

Si = N1 + N2 + . . . + Ni,

and
Ni = ni + ni+1 + . . . + nk−1.

Theorem 6. For max{|y1| . . . |yk−1|, |z1|, |z2|, . . . , |zk−1|} < 1 , we have

∞

∑
n1,n2 ...nk−1=0

yN1
1 yN2

2 . . . yNk−1
k qN2

1+N2
2+...N2

k−1 Hn1 Hn2 . . . Hnk−1

(q2; q2)n1(q2; q2)n2 . . . (q2; q2)nk−1

=
k

∏
i=1

1
(TiqSi , TiziqSi+1; q2)∞

.

Proof. In Theorem 5, taking βi = 0, α = γ and nk = 0, we have

∞

∑
n1,n2 ...nk−1=0

ςq(L; n)
(q; q)n1(q; q)n2 . . . (q; q)nk−1

=
k−1

∏
i=1

∞

∑
ni=0

[
α

ni

]
−q

qτ(m̄i ,n̄i)+(
ni
2 )
(ai; q)ni

(q; q)ni

zni
i

1
(yi; q)∞

. (26)

where

ςq(L; n) = Lm̄1,n̄1(α1, y1, z1, a1)Lm̄2,n̄2(α2, y2, z2, a2) . . . Lm̄k−1,n̄k−1(αk−1, yk−1, zk−1, ak−1)
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Making the following substations

αi = ∞, ai = −q, m̄i = −3/2, n̄i = −1/2, and zi → ziyi

in (26), we obtain

∞

∑
n1,n2 ...nk−1=0

yn1
1 yn2

2 . . . ynk−1
k−1

(q; q)n1(q; q)n2 . . . (q; q)nk−1

n1

∑
s1=0

zs1
1 q

s1
2

[
n1

s1

]
n2

∑
s2=0

zs2
2 q

s2
2

[
n2

s2

]
. . .

nk−1

∑
sk−1=0

zsk−1
k−1 q

sk−1
2

[
nk−1
sk−1

]

=
k−1

∏
i=1

∞

∑
ni=0

1
(yi; q)∞

(ziyi)
ni q

ni
2

(q; q)ni

=
k

∏
i=1

1
(yi, ziyiq1/2; q)∞

. (27)

We need to specialize some variables in (27) as:

y1 → y1qN1/2

y2 → y1qN1/2y2qN2/2

y3 −→ y1qN1/2y2qN2/2y3qN3/2

and
yk−1 −→ y1qN1/2y2qN2/2 . . . yk−1qNk−1/2.

Hence, we have

q
N1n1+...N1nk−1

2 = qN2
1 /2

q
Nk−1nk−1

2 = qN2
k−1/2

and
yn1

1 yn2
2 . . . ynk−1

k−1 → yN1
1 yN2

2 . . . yNk−1
k−1 q[N

2
1+N2

2 ...N2
k−1]/2.

Then, setting q→ q2, we have

∞

∑
n1,n2 ...nk−1=0

yN1
1 yN2

2 . . . yNk−1
k qN2

1+N2
2+...N2

k−1 Hn1 Hn2 . . . Hnk−1

(q2; q2)n1(q2; q2)n2 . . . (q2; q2)nk−1

=
k

∏
i=1

1
(TiqSi , TiziqSi+1; q2)∞

.

The proof of our theorem is now completed.

Further, replacing βi = 0, α = γ, αi = ∞,ai = −q, m̄i = −3/2, n̄i = −1/2 zi = y2
i and

q→ q2 in Theorem 5, we have the following corollary.

Corollary 5. For max{|x1| . . . |xk|, |y1| . . . |yk|} < 1 , we have

∞

∑
n1,n2 ...nk=0

yn1
1 yn2

2 . . . ynk
k Hn1 Hn2 . . . Hnk

(q2; q2)n1(q2; q2)n2 . . . (q2; q2)nk

=
1

(y1, . . . , yk, y2
1q, . . . , y2

kq; q2)∞
.
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6. A Transformation Identity Involving Hecke-Type Series for the Generalized
q-Polynomials

The following general expansion formula in Askey–Wilson polynomials, by using
Bailey transform and Bressoud inversion, is proved in [33].

Proposition 4 (see [33]). We have the following

∞

∑
n=0

βnδn =
∞

∑
n=0

(1− aq2n)(a, a/b; q)n(b/a)n

(1− a)(bq, q; q)n

×
n

∑
k=0

(1− bq2k)(aqn, q−n; q)k
(1− b)(bqn+1, bq1−n/a; q)k

qkβk

∞

∑
r=0

(b/a; q)r(b; q)r+2n

(q; q)r(aq; q)r+2n
δr+n (28)

As the application, we can get the following results directly.

Theorem 7. The following assertions holds true:

∞

∑
n=0

[
N
n

]
q

[
ᾱ

n

]
−q

qτ(m̄,n̄)+(n
2)xN−n(ã; q)n(α, β; q)n(aq/αβ)n

=
(aq/α, aq/α; q)∞

(aq, aq/αβ; q)∞

∞

∑
n=0

(1− aq2n)(a; q)n(−1)nq(
n
2)(aq/αβ)n(α, β; q)n

(1− a)(q, aq/α, aq/β; q)n

n

∑
k=0

[
N
k

]
q

[
α

k

]
−q

(aqn, q−n, ã; q)kqkqτ(m̄,n̄)+(k
2)xN−k

Proof. we take
b = 0,

βn =

[
N
n

]
q

[
ᾱ

n

]
−q

qτ(m̄,n̄)+(n
2)xN−n(ã; q)n,

δn = (α, β; q)n(aq/αβ)n

in (28), and

∞

∑
n=0

[
N
n

]
q

[
ᾱ

n

]
−q

qτ(m̄,n̄)+(n
2)xN−n(ã; q)n(α, β; q)n(aq/αβ)n

=
∞

∑
n=0

(1− aq2n)(a; q)n(−1)nq(
n
2)(aq/αβ)n(α, β; q)n

(1− a)(q, ; q)n(aq; q)2n

n

∑
k=0

[
N
k

]
q

[
α

k

]
−q

(aqn, q−n, ã; q)kqkqτ(m̄,n̄)+(k
2)xN−k

∞

∑
r=0

(αqn, βqn; q)r(aq/αβ)r

(q; q)r(aq2n+1; q)r

By using (2) in the third summation of the above equation, we can get this main result.

In its special case, if we let

N → ∞, ᾱ→ ∞, ã = −yq, m̄ = 0, n̄ = −1 and α, β→ ∞

in Theorem 7 and make use of (2), we obtain the following result, which is related to
ρe(∞, y, a, q) identity involving the little q-Jacobi polynomials (see [2]).
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Corollary 6. We have the following identity:

ρe(∞, y, a, q) =
∞

∑
n=0

(−yq; q)nanqn2

(q2; q2)n

=
1

(aq; q)∞

∞

∑
n=0

(−1)nanq2n2
(a2; q2)n(1− aq2n)

(q2; q2)n(1− a)
pn(y;−a/q,−1; q), (29)

where the little q-Jacobi polynomial is given by

pn(y; A, B; q) = 2φ1

(
q−n, ABqn+1

Aq
; q, qy

)
If we take

b = 0, βn →
An

(α, β; q)n
and δn = (α, β; q)n(t/αβ)n

and using (3) in the Proposition 4, we have the Zhang and Song’s result (see [6]).

Corollary 7. If An is a complex sequence, then, under suitable convergence conditions, we have

∞

∑
n=0

An(t/αβ)n =
(tq/α, tq/β; q)∞

(tq, tq/αβ; q)∞

×
∞

∑
n=0

(t, α, β; q)n(1− tq2n)(−1)nq(
n
2)

(q, tq/α, tq/β; q)n(1− t)
(t/αβ)n

×
{

αβ(1 + tq2n)− tqn(α + β)

αβ− t

} n

∑
j=0

(q−n, tqn; q)jqj

(α, β; q)j
Aj

Recently, Chan and Liu [28,29] derived some Hecke-type identities by using Liu’s
transformation formulas for q-series (5) [31]. Wang and Yee [4], essentially motivated by the
works of Liu [20], gave a double series of Hecke–Rogers type formulas. After that, Wang [3]
provided new proofs to five of Ramanujan’s intriguing identities on false functions by
using (5). Zhang and Song [6] also gave some Hecke-types identities by using two q-series
expansion formulas. In this section, we shall give some new identities of q-polynomials
which are some new Hecke-type series.

Theorem 8. The following assertions hold true:

(q; q2)∞(q; q)∞ =
∞

∑
n=0

n

∑
j=−n

(1− q4n+2)(−1)jq2n2−j2

∞

∑
n=0

q(
n
2)

(−q; q)n
=

∞

∑
n=0

n

∑
j=−n

(−1)jqn2−j2(1− qn − q4n+2 + q3n+1)

Proof. We take

b = 0, βn =
(ā; q)nmn

(q, s, x; q)n
and δn = (α, β; q)n(a/αβ)n

in the Proposition 4, we have the following result:
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3φ2

(
α, β, ā

s, x
; q, am/αβ

)
=

(aq/α, aq/β; q)∞

(aq, aq/αβ; q)∞

∞

∑
n=0

(a, α, β; q)n(1− aq2n)(−1)nq(
n
2)

(q, aq/α, aq/β; q)n(1− a)
(a/αβ)n

×
{

αβ(1 + aq2n)− aqn(α + β)

αβ− a

}
3φ2

(
q−n, aqn, ā

s, x
; q, mq

)
, (30)

where
max{|m|, |a/αβ|} < 1.

Furthermore, by setting

a = q, s = −q, x = 0, m = −1 and ā = 0

in (30), we have

∞

∑
n=0

(α, β; q)n

(q,−q; q)n
(
−q
αβ

)
n

=
(q2/α, q2/β; q)∞

(q2, q2/αβ; q)∞

∞

∑
n=0

(α, β; q)n(1− q2n+1)(−1)nq(
n
2)

(q2/α, q2/β; q)n(1− q)
(q/αβ)n

{
αβ(1 + q2n+1)− qn+1(α + β)

αβ− q

}
2φ1

(
q−n, qn+1

−q
; q,−q

)
(31)

Andrews [2] gave the following result concerning the little q-Jacobi polynomials.

pn(−1;−1,−1; q) = 2φ1

(
q−n, qn+1

−q
; q,−q

)
= (−1)nq(

n+1
2 )

n

∑
j=−n

(−1)jq−j2

Submitting the above transformation in (31), we obtain

∞

∑
n=0

(α, β; q)n

(q,−q; q)n
(
−q
αβ

)
n

=
(q2/α, q2/β; q)∞

(q2, q2/αβ; q)∞

∞

∑
n=0

(α, β; q)n(1− q2n+1)(−1)nq(
n
2)

(q2/α, q2/β; q)n(1− q)
(q/αβ)n

{
αβ(1 + q2n+1)− qn+1(α + β)

αβ− q

}
(−1)nq(

n+1
2 )

n

∑
j=−n

(−1)jq−j2 . (32)

We can now get the required result easily by setting

(α, β)→ (∞, ∞) and (α, β)→ (q, ∞)

in (32), respectively.

Theorem 9. The following assertion holds true:

∞

∑
n=0

(q; q2)nq2n2

(q2; q2)n(−q; q)2n+1
=

1
(q2; q2)∞

∞

∑
n=0

(−1)nq3n2
(1− q2n+1 + q4n+2 − q6n+3)
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Proof. Setting q→ q2, s→ −q2, a→ q2, x → −q3, m→ 1 and ā = q in (30), we have

∞

∑
n=0

(α, β, q; q2)n

(q2,−q2,−q3; q2)n
(q2/αβ)

n

=
(q4/α, q4/β; q2)∞

(q4, q4/αβ; q2)∞

∞

∑
n=0

(α, β; q2)n(1− q4n+2)(−1)nqn2−n

(q4/α, q4/β; q2)n(1− q2)
(q2/αβ)n

{
αβ(1 + q4n+2)− q2n+2(α + β)

αβ− q2

}
3φ2

(
q−2n, q2n+2, q
−q2,−q3 ; q2, q2

)
. (33)

By using q-Pfaff-Saalschütz (4), we have

3φ2

(
q−2n, q2n+2, q
−q2,−q3 ; q2, q2

)
=

(1 + q)qn

1 + q2n+1

Submitting the 3φ2 transformation and taking (α, β)→ (∞, ∞) in (33), we have

∞

∑
n=0

(q; q2)nq2n2

(q2; q2)n(−q; q)2n+1
=

1
(q2; q2)∞

∞

∑
n=0

(−1)nq3n2
(1− q2n+1 + q4n+2 − q6n+3)

Theorem 10. Each of the following identities holds true:

∞

∑
n=0

(q; q2)nq2n2−2n

(q2; q2)n(−q; q)2n
=

1
(q2; q2)∞

∞

∑
n=0

n

∑
j=−n

(1− q8n+4)(−1)jq2n2−2n+j2 (34)

∞

∑
n=0

(q; q2)2
n(−1)nqn2−2n

(q2; q2)n(−q; q)2n
=

(q; q2)∞

(q2; q2)∞

∞

∑
n=0

n

∑
j=−n

(1 + q6n+3)(−1)n+jqn2−2n+j2 (35)

∞

∑
n=0

(q; q2)n

(q4; q4)n
qn2−2n =

(−q; q2)∞

(q2; q2)∞

∞

∑
n=0

n

∑
j=−n

(1− q6n+3)(−1)jqn2−2n+j2 (36)

and

∞

∑
n=0

(q; q2)n(−1)nqn2−3n

(−q; q)2n
=

∞

∑
n=0

n

∑
j=−n

(1− q2n + q6n+2 − q8n+4)(−1)n+jqn2−3n−j2 (37)

Proof. Letting a = q2, s = −q, x = −q2, m = 1/q2, ā = q and q→ q2 in (30), we have

∞

∑
n=0

(α, β, q; q2)n

(q2,−q,−q2; q2)n
(

1
αβ

)
n

=
(q4/α, q4/β; q2)∞

(q4, q4/αβ; q2)∞

∞

∑
n=0

(α, β; q2)n(1− q4n+2)(−1)nqn2−n

(q4/α, q4/β; q2)n(1− q2)
(q2/αβ)n

{
αβ(1 + q4n+2)− q2n+2(α + β)

αβ− q2

}
3φ2

(
q−2n, q2n+2, q
−q,−q2 ; q2, 1

)
Wang and Yee [4] provided the following identity which is also equivalent to the

identity in Andrews’ paper [1].
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(−1)nqn(n+1)
3φ2

(
q−2n, q2+2n, q
−q,−q2 ; q2, 1

)
= 1 + 2

n

∑
j=1

(−1)jqj2

=
n

∑
j=−n

(−1)jqj2

Now letting (α, β)→ (∞, ∞), (α, β)→ (q, ∞), (α, β)→ (−q, ∞), (α, β)→ (q2, ∞) and
using the above equation, respectively, we can get (34)–(37).

7. Concluding Remarks and Observations

In our present investigation, by using the method of q-difference equations, we have
systematically deduced several types of generating functions for certain q-polynomial.
Furthermore, we have given a multilinear generating function for the q-polynomials as
a generalization of Andrew’s result. Moreover, we have built a transformation identity
involving the q-polynomials and Bailey transformation. As an application, we have to
study some new Hecke-type identities. We have also highlighted some known and new
consequences of our main results.

We have observed that the q-operator identity and q-difference equation are equivalent
with two variables, so we have focused on the expansion of a function of many variables and
on some orthogonal polynomials. Therefore we have given the expansion of six variables
(2D-hermite polynomials and Andrew’s polynomials). Beside it, we have also got the single,
double and even multiple generating functions of these polynomials. Furthermore, we
have got their new applications in Combination Theory. Next, it is believed that the works
presented here in this paper, along with the recent works cited here, will be a motivation
for further researches to study this kind of orthogonal polynomial and its applications in
many other areas of mathematics and physics.
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