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Abstract: Reinforcement Learning (RL) enables an agent to learn control policies for achieving its
long-term goals. One key parameter of RL algorithms is a discount factor that scales down future cost
in the state’s current value estimate. This study introduces and analyses a transition-based discount
factor in two model-free reinforcement learning algorithms: Q-learning and SARSA, and shows their
convergence using the theory of stochastic approximation for finite state and action spaces. This
causes an asymmetric discounting, favouring some transitions over others, which allows (1) faster
convergence than constant discount factor variant of these algorithms, which is demonstrated by
experiments on the Taxi domain and MountainCar environments; (2) provides better control over the
RL agents to learn risk-averse or risk-taking policy, as demonstrated in a Cliff Walking experiment.

Keywords: model free algorithms; Q-learning; reinforcement learning; SARSA; transition dependent
discount factor

1. Introduction

RL algorithms train a software agent to determine a policy, which can solve an RL
problem in the most efficient way possible. Such a policy is termed an optimal policy.
The problem is considered solved when the RL agent achieves its desired goal, which
varies as per the problem [1]. An RL agent’s objective is generally to minimize its expected
long-term costs (or maximize its expected long-term rewards) of problems that can be
categorized as episodic and non-episodic depending upon whether a set of goal states
exists. Episodic tasks have at least one winning state, such as games like Atari and Chess.
An agent maintaining a power plant’s critical temperature is an example of non-episodic RL
problems as there is no fixed goal state [2]. Algorithms solving RL problems have potential
applications in various domains like games [3,4], robotics [5,6], wireless networks [7,8],
self-driving cars [9–11]. Two such examples are shown in Figures 1 and 2.

Many RL algorithms like Q-learning [12], SARSA [13], and Deep Q-learning [14]
use a scaling parameter called the discount factor. This parameter exponentially scales
down the effect of future costs in the current estimate of the value of a state [15]. This
scaling makes the RL algorithms mathematically tractable in case of infinite horizon prob-
lems [16]. For the sake of simplicity, in most applications, the discount factor is generally
assumed as constant [17]. However, Vincent et al. [18] show that increasing the discount
factor, as the training progresses, may result in faster convergence in Atari Games. Later,
Edwards et al. [19] show that adjusting the discount factors can be used for reward engineer-
ing, which prevents the agent from being stuck in Positive or Negative Reward Hallways
(reward loops). These results garner our attention to non-constant discount factors.

One possible way to construct a non-constant discount factor is to take it as a function
of iterations itself [20]. Some studies show that a discount factor as a function makes more
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sense than a constant discount factor in specific settings [21]. For example, incorporating
a state-dependent discount factor is a natural setting to model interest rates in financial
systems [22]. This use case is based on intuitions from studies on animals. It is common
to observe animals show delaying and impulsive behaviour in different tasks [23] which
might be because of discounting they use in their brain neurons depending upon the
situations [24].

Figure 1. RL agents beats human benchmark in Atari Games [25].

Figure 2. RL agent as controller for autonomous traffic control system [26].

In RL algorithms, contrary to the general belief of choosing a discount factor value
close to one, Tutsoy et al. [27] show that the discount factor should be chosen proportional
to the inverse of the dominant pole. In other work [28], the author considers the role
of the discount factor on both learning and control in a model-free approach. It was
suggested by Pitis [20] that the discount factor can exceed one for some transitions if the
overall discount is less than one so that the returns are bounded. Hence, the discount
factors do not need to be equal for all transitions. Optimality has been studied in Markov
Decision Processes (MDP) for unbounded costs using state-dependent discount factor [22]
and randomized discount factor [29]. Inspired by Wei [22], Yoshida gave the convergence
results of the Q-learning algorithm for the state-dependent discount factor [30]. These
studies directly investigate a discount factor’s role for various cases by using both a test
problem approach and a general function approximation case. Recently, a state-dependent
discount factor model is introduced for infinite horizon case [31]. Other studies utilize
state or transition dependent discount factors for better control over the RL agents [31–34].
This work establishes that the asymmetric discounting of Q-values in a systematic way
results in more robust and efficient learning by RL agents. However, breakthrough work in
discount factor as a function is done by White [35].

White gave a framework in which the author discussed the use of transition based
discounting, that is, a discount factor which is a function of the current state, action,
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and next state, and proved contraction for generalized Bellman operator [35]. White
demonstrated that both non-episodic and episodic tasks could be specified with the help of
a transition-based discount. Hence, there is a benefit of using transition-based discount
over constant one as the former provides a general unified theory for both episodic and non-
episodic tasks. This setting of the discount factor has not been studied yet for Q-learning
and SARSA algorithms.

The novelty of our work is the introduction of discount factor as a function of tran-
sition variables (current state, action and next state) to the two model-free reinforcement
learning algorithms mentioned above and provide convergence results for the same. Exper-
imental results show improvement in the performance of algorithms after using transition
dependent discount factor. We have also provided a way to set the discount factor, which
can be used in tasks where there are finite state and action spaces, and a positive reward
is provided at the goal state. This is fundamentally different from White’s work which
proposed to bridge the gap between episodic and non-episodic tasks. In addition, we
propose an application of transition dependent discounting to learn risk-averse policies
that can prevent frequent high-cost actions by an agent.

Our main contributions are as follows:

1. Introduction of transition based discounts in Q-Learning and SARSA algorithms.
2. Demonstration of optimal policies in these algorithms with the proposed discount

factor setting using stochastic approximation theory to present a generalized result
for the convergence of these algorithms.

3. Comparison of transition based discount factor with the constant discount factor in
Q-learning and SARSA on simulated Taxi domain, MountainCar and cliff-walking en-
vironments.

The rest of the paper is organized as follows: Section 2 describes Q-learning and
SARSA algorithms. Section 3 introduces the proposed model and Section 4 explains the
algorithms and their convergence. Section 5 provides the experimental results against other
algorithms. Conclusions are drawn in Section 6.

2. Background

RL algorithms’ objective is to find a mapping for all possible states to actions (also
known as policy) that minimizes the agent’s long-term cost in an environment. Reinforce-
ment Learning problems are often modelled as Markov Decision Process (MDP), which
is a tuple < S, U, T, c, β >. Here, S is a set of finite states on which an MDP is defined,
U(i) is a finite set of all the possible control actions associated with a state i ∈ S. T is the
transition probability matrix, ciu ∈ R is the cost associated with action u in-state i with
finite variance and β is the discount parameter. We have considered the sets S and U to be
finite sets. The algorithms discussed are model-free, that is, the class of algorithms which
do not require model (state transition probabilities) of the environment. In both SARSA
and Q-learning algorithms, agents generally follow some Greedy in Limit with Infinite
Exploration (GLIE) policy (such as ε-greedy in which each action is taken greedily with
probability 1− ε and randomly otherwise). This policy explores the environment and
iteratively calculates its estimate of the Q values for possible state-action pairs.

Q-learning and SARSA try to find an optimum policy π∗, which, if followed, mini-
mizes the total expected cost. This is achieved by defining an action-value function Qπ

iu(t)
which denotes total expected discounted cost at time t after taking action u in-state i and
following policy π thereafter. Under the influence of π∗ the action value function gives an
optimal value Qπ∗

iu which is unique in an MDP and independent of t for a given (i, u).

Q∗iu = min
π∈Π

Qπ
iu. (1)

As we are not looking for any particular optimal policy, we denote Qπ∗
iu as simply Q∗.

For convenience, we denote Qπ
iu(t) as Qiu(t). Let Q-values are stored in a lookup table

and all state-action pairs are visited infinitely often.
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2.1. Q-Learning

Q-learning algorithm [12] iteratively updates the action-value function or Q-function
(Qiu(t)) which takes state and action as arguments. The algorithm starts with a random
table of Q-values for each state-action pair and follows a GLIE policy to choose action.
Every action causes a transition from state i to next state u and returns a cost ciu. This
cost and the Q-value of the most optimal next state-action pair are used to calculate an
estimate. This estimate is then used to update the Q-value of the present state-action pair.
The update equation for Q-learning algorithms is given by

Qiu(t + 1) = Qiu(t)+αi(t)
[
ciu −Qiu(t) + β min

v∈U(j)
Qjv(t)

]
. (2)

Here, αi(t) ∈ (0, 1) is the step size parameter, j ∈ S(i, u) is a successor state in which
the agent arrives after taking action u in-state i. β ∈ [0, 1] is a scalar constant discount
factor. The algorithm draws all the random samples independently. Note that because
the estimate is calculated independent of the GLIE policy, it is termed as off-policy. This
process is repeated for every state-action pair. The algorithms converge when the change
in values are within some threshold. The theoretical convergence result of this algorithm is
given in Tsitsiklis et al. [36] and Jaakkola et al. [37].

2.2. SARSA

SARSA, which is State Action Reward State Action for short [38], is an on-policy
reinforcement learning algorithm. Here, the estimated return for the state-action pairs is
calculated based on the GLIE policy, which the learner is following. This algorithm is very
similar to Q-learning except for the way it updates its Q-values. When the agent is in state
i, first, it takes action as per the policy it is following (say π) and move to state j ∈ S(i, u).
Then, the agent selects action v as per the policy π and update previous states’ Q-value
according to this equation:

Qiu(t + 1) = Qiu(t) + αi(t)
[
ciu −Qiu(t) + βQjv(t)

]
. (3)

This step differentiates SARSA from Q-learning. As in Equation (2), the agent chooses
the next state with minimum Q-value, which can be different from the actual next state,
whereas, in SARSA, only the next states’ Q-value is considered in the update as in Equation (3).
The convergence of this algorithm was given by Singh et al. [39].

3. Transition Dependent Discount Factor

As the name suggests, the parameter discount factor is modelled as function of
transition, that is, current state i, action u and next state j. It is denoted by β(i, u, j) such
that 0 ≤ β(i, u, j) < 1 ∀ i, u, j, β(i, u, j) : S × U × S → R. Hence, different transitions
can have different discount factor values. This allows the emphasis of costs from certain
transitions and the suppression of others. It can benefit training by avoiding reward loops,
much like reward shaping [19]. It is assumed that the values of β(i, u, j) are stored in a
finite length table.

Now with transition dependent discount factor, the update rule for Q-learning is
given by:

Qiu(t + 1) = Qiu(t) + αi(t)
[
ciu −Qiu(t) + β(i, u, j) min

v∈U(j)
Qjv(t)

]
. (4)

Similarly, the update equation for SARSA with transition dependent discount is
given by:

Qiu(t + 1) = Qiu(t) + αi(t)
[
ciu −Qiu(t) + β(i, u, j)Qjv(t)

]
. (5)

The Q-learning and SARSA algorithms with the transition dependent discount factor
are shown in Algorithms 1 and 2, respectively. Flowcharts of the algorithms are given in
Figure 3.
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(a) QL-TDD Algorithm (b) SARSA-TDD Algorithm

Figure 3. Flowchart of the proposed algorithms.

Algorithm 1 Q-Learning with transition dependent discount

1: procedure Q-LEARNING WITH TRANSITION DEPENDENT DISCOUNT
2: for each state i ∈ S and action u ∈ A do
3: Initialize Qiu randomly.
4: t← 0
5: for each episode do
6: Initialize i.
7: for each step of episode do
8: Choose action u at state i using a ε-greedy policy.
9: Take action u, observe cost ciu and next state i′.

10: Update Qiu(t)

Qiu(t)← Qiu(t− 1) + α[ciu −Qiu(t− 1)

+ β(i, u, i′)min
u′

Qi′u′(t− 1)]

11: i← i′

Intuition behind Transition Dependent Discount Factor

To understand the intuition of transition dependent discount factor, consider the
following finite-state episodic scenario.

Let s1 be the start state and st be the terminal state with many states in between them.
Let each transition results in a cost of one unit except for transition to terminal state, which
results in a cost of −1 unit. Consider the last two transitions in path from s1 to st. Let Φ be
the set of states which are neighbors of terminal state st and Θ be the set of states which
are neighbors to the states of set Φ but not with st. Thus if an agent goes from state s1 to st,
the last two visited states are from set Θ and Φ respectively. Note that, the case where last
two states are from set Φ does not add value here and does not contradict later arguments.
Assume that the states si, sj be in set Θ and sk, sl belongs to set Φ and R is an action required
for transition from left to right in Figure 4. Let the discount factor for each transition is β,
except for those transitions from states in Θ to states in Φ which are caused by the action R.
In those transitions, the discount factor value is β + ζ, where ζ ∈ [0, 1]. Then, the Q-value
update for the transition from si to sk by action R with transition dependent discount factor
β(si, R, sk) = β + ζ is given by:
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Qsi ,R(t + 1) = Qsi ,R(t) + α
[
csi ,sk −Qsi ,R(t) + β(si, R, sk) min

v∈U(sk)
Qsk ,v(t)

]
(6)

Algorithm 2 SARSA with transition dependent discount

1: procedure SARSA WITH TRANSITION DEPENDENT DISCOUNT
2: for each state i ∈ S and action u ∈ A do
3: Initialize Qiu randomly.
4: Initialize β(i, u, i′) with β0.
5: t← 0
6: for each episode do
7: Initialize i.
8: Select a random action u valid state i.
9: for each step of episode do

10: Take action u, observe cost ciu and next state i′.
11: Choose action u′ valid in state i′ using a ε-greedy policy.
12: For Qiu(t)

Qiu(t)← Qiu(t− 1)+α[ciu −Qiu(t− 1)

+ β(i, u, i′)Qi′u′(t− 1)]

13: i← i′; u← u′

Now, for a vanilla Q-learning algorithm, this update would use a constant discount β
in place of β(si, R, sk), that is:

Qsi ,R(t + 1) = Qsi ,R(t) + α
[
csi ,sk −Qsi ,R(t) + β min

v∈U(sk)
Qsk ,v(t)

]
. (7)

Similarly, transitions from Θ to Φ with action R involving si, sj, sk and sl follow
similar update rules for transition dependent discounting and and vanilla Q-learning as
in Equations (6) and (7). Remaining all other transitions update Q-values using discount
factor β.

It is clear that as β(si, R, sk) ≥ β, hence, the Q-value in Equation (6) is less than or
equal to the Q-value in Equation (7) (as final cost is negative). Thus, it propagates a lower
Q value to previous states in later iterations. Therefore, the updates propagate at a faster
rate leading to a shorter learning duration. This argument is valid for all transitions from
state set Θ to state set Φ which are due to action R.

Hence, the use of a transition dependent discount factor eventually reduces training
time. Similar arguments can be given for SARSA with transition-based discounting.

Figure 4. Simplistic state transition diagram.

4. Convergence of Algorithms

Let < S, U, T, c, β > be the MDP under consideration. Let t be a non-negative integer
denoting time. The mapping from state to action is denoted by policy π such that π ∈ Π
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where Π is the set of all policies and action U(i) = π(i) ∀ i ∈ S. It is assumed that every
action is taken by following some policy. We have defined discount factor as, β(i, u, j),
satisfying the assumption that 0 ≤ β(i, u, j) < 1, ∀ i, j ∈ S, u ∈ U(i). As long as this
assumption is satisfied, our analysis shows that discount factor can be any function.

Let P = {(i, u)|i ∈ S, u ∈ U(i)} be the set of all possible state-action pairs and let N be
its cardinality(finite). Let, (Ω,F , Pr) be the probability space on which Qiu(t), αi(t), wiu(t)
are defined as random variables and F (t) to be an increasing sequence of σ - fields which
represents the history of algorithm till time t.

On successful completion of both Q-learning and SARSA, the Q values approach Q∗

for all state-action pairs, and the algorithm is said to converge to optimal. Next, we will
present the formal proof for the convergence of these algorithms.

4.1. Q-Learning with Transition-Based Discounts

In Q-learning, instead of using a constant discount factor during Q-values update,
a transition-based discount factor is used, which is maintained in a table as mentioned
above. With β(i, u, j) ∈ [0, 1), the update equation of Q-learning (Equation (2)) can be
re-written as

Qiu(t + 1) = Qiu(t) + αi(t)
[
ciu −Qiu(t)

+ β(i, u, j) min
v∈U(j)

Qjv(t)
]

Let Fiu be the expected cost of a state i which is optimal after action u. We define F to
be the mapping from Rn into itself. Its component Fiu is given by

Fiu(Q) = E[ciu] +E
[

β(i, u, j) min
v∈U(j)

Qjv

]
. (8)

Here, the expectations are w.r.t. action u. Re-writing Equation (8) using Equation (8) gives:

Qiu(t + 1) = Qiu(t) + αiu(t)[Fiu(Q(t))−Qiu(t) + wiu(t)], (9)

where

wiu(t) =ciu −E
[

β(i, u, j) min
v∈U(j)

Qjv(t) | F (t)
]

+ β(i, u, j) min
v∈U(j)

Qjv(t)−E[ciu]

After defining everything necessary about Q-learning with the adaptive discount
factor, we now present the convergence of this algorithm.

Consider the following result of stochastic approximation equation from Tsitsiklis et al. [36]:

Theorem 1. Let xi(t), wi(t), αi(t) are random variables defined on the probability space (ω,F,P)
which satisfies this iterative equation:

xi(t + 1) = xi(t) + αi(t)(Fi(xi(t))− xi(t) + wi(t)). (10)

Then, if following assumptions I, II and III hold, then x(t) will converge to x∗ with probability 1.

Assumption I. Consider the following:

1. x(0) is F (0)-measurable;
2. wi(t) is F (t + 1)-measurable.
3. αi(t) is F (t)-measurable for every i, t.
4. We have E[wi(t)|F (t)] = 0 for every i and t.
5. There exist (deterministic) constants A and B ∀ i, t such that

E[w2
i (t)|F (t)] ≤ A + B max

j
max
τ≤t
|xj(τ)|2.

Assumption II.



Symmetry 2021, 13, 1197 8 of 16

1. For every i with probability 1,
∞

∑
t=0

αi(t) = ∞,

2. There exists some (deterministic) constant C such that for every i with probability 1,
∞

∑
t=0

α2
i (t) ≤ C,

Assumption III. There exists a vector x∗ ∈ Rn, a positive vector v, and a scalar β ∈ [0, 1), such that

‖F(x)− x∗‖v ≤ β‖x− x∗‖v ∀x ∈ Rn (11)

for some vector v where all elements are equal to 1.

Next, we satisfy all the assumptions of Lemma 1 on Q-learning with a transition based
discount factor to prove its convergence.

It can be noted that Equation (9) has the same form as Equation (10).

Proof. Before we begin, for the sake of simplicity, we assume that v in assumption (III) is
a vector of ones. This assumption is valid as we can get it from coordinate scaling of any
general positive weight vector. We now discuss each assumption one by one in Q-learning
with transition dependent discount factor setting:

Assumption I: This assumption implies that given the past history, it is possible to
update Qiu at time t. As F (t) represents history till time t by definition, hence Qi0u0 and
wiu(t) are F (0)-measurable and F (t+ 1)-measurable respectively. Thus part (1) and (2) are
satisfied. Part (3) follows from the design of Q-learning as it assumes that the requirement
of samples is fulfilled by following a simulated trajectory. Updates is dependent on the
decision of agent, as it controls which states to visit. Part (4) is inferred from Equation (10)
by taking expectations w.r.t. action u on both sides, thus canceling out everything. For
Part (5), consider the variance of wiu(t) which is given by:

Var(wiu(t)) = E[(wiu(t))2]− [E[wiu(t)]]2

= E[wiu(t)2].
(12)

So if we take variance of Equation (10):

Var[wiu(t)] = Var

[
ciu −E[ciu] + β(i, u, j) min

v∈U(j)
Qjv(t)

−E
[

β(i, u, j) min
v∈U(j)

Qjv(t)
]]

.

(13)

Using Equation (12) and the property of expectations that Var[E(X)] = 0 for some
random variable X, we can write the above equation as

E[w2
iu(t)] = Var[ciu] + Var[β(i, u, j) min

v∈U(j)
Qjv(t)]

≤ Var[ciu] + max
j∈S,u∈U(j)

Q2
jv(t).

(14)

It, therefore, satisfies part (5).
Assumption II: This assumption for the step-size parameter is standard for stochastic

approximation algorithms. It ensures that all state-action pairs to be visited an infinite
number of times.

Assumption III: From Equation (8) we have

Fiu(Q) = E[ciu] +E
[

β(i, u, j) min
v∈U(j)

Qjv

]
. (15)
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Let the Q value of this state-action pair be Q′ when it is revisited. Then we will have:

Fiu(Q′) = E[ciu] +E
[

β(i, u, j) min
v∈U(j)

Q′ j,v

]
. (16)

From Equations (15) and (16).

|Fiu(Q)−Fiu(Q′)| =
∣∣∣∣ E[β(i, u, j) min

v∈U(j)
Qjv

]
−E

[
β(i, u, j) min

v∈U(j)
Q′ j,v

]∣∣∣∣
= E

[
β(i, u, j)

∣∣∣∣ min
v∈U(j)

Qjv − min
v∈U(j)

Q′ j,v

∣∣∣∣]
≤ E

[
β(i, u, j) max

k∈S,v∈U(k)

∣∣Qk,v −Q′k,v
∣∣]

≤ β∗ max
k∈S,v∈U(k)

∣∣(Qk,v −Q′k,v
)∣∣,

(17)

where β∗ = maxk∈S,v∈U(k) β(i, v, k). This satisfies assumption III. Therefore our model also
follows Lemma 1 and establishes convergence.

4.2. Sarsa with Transition-Based Discounts

The update equation with transition-based discount factor is given by:

Qiu(t + 1) = αi(t)
[
ciu + β(i, u, j)Qjv(t)−Qiu(t)

]
+ Qiu(t). (18)

To prove the convergence of SARSA with transition-based discounts, we use the
convergence result of SARSA [39] under GLIE policy. In GLIE, the probability of choosing
a non-greedy action decreases over time, for example, ε-greedy policy. Other assumptions,
like finite states and actions (for lookup table representation) and unlimited visits to all state-
action pairs, are similar to Q-learning. Consider the following lemma from Singh et al. [39]:

Lemma 1. For any random iterative process (∆(t), α(t), F(t)) , t ≥ 0, such that ∆(t), α(t), F(t−1)
are F (t) measurable, α(0), ∆(0) are F (0)-measurable and (∆(t), α(t), F(t) : X → R satisfies:

∆x(t + 1) = (1− αx(t))∆x(t) + αx(t)Fx(t)

x ∈ X, t = 0, 1, 2...

Then ∆(t) converge to zero w.p.1 if the following assumptions hold:

1. the set X is finite.
2. 0 ≤ αx(t) ≤ 1, ∑t αx(t) = ∞, ∑t α2

x(t) ≤ ∞ w.p.1.
3. ‖E{Fx(t)|F (t)}‖w ≤ κ‖∆(t)‖w + ct where κ ∈ [0, 1) and ct converge to zero w.p.1.
4. Var{Fx(t)|F (t)} ≤ K(1 + ‖∆(t)‖w)

2 where K is some constant.

Here F (t) is an increasing sequence of σ-fields that includes the past of the process. αt, ∆t,
Ft−1 ∈ F (t). The notation ‖.‖w refers to some fixed maximum norm.

Proof. For assumption 1, set X corresponds to the set of state S, which is assumed to
be finite; thus, this assumption is satisfied. The second assumption is for the step size
parameter for stochastic approximation algorithms and is the same as assumption II of
Q-learning. In this lemma, ∆x(t) corresponds to Qiu(t)− Q∗ as x corresponds to pair of
state i ∈ S and action u ∈ U. With this, the stochastic iterative process can be re-written as:

∆iu(t + 1) = (1− αiu(t))∆iu(t) + αiu(t)Fiu(t), (19)

where Fiu(t) is given by:
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Fiu(t) =
[

ciu + β(i, u, j) min
w∈U(i)

Qjw(t)−Q∗iu

]
+

[
β(i, u, j)Qjv(t)− β(i, u, j) min

w∈U(i)
Qjw(t)

]
=FQ

iu + C(t),

(20)

where FQ
iu = ciu + β(i, u, j)minw∈U(i) Qjw(t) − Q∗iu and C(t) = β(i, u, j)Qjv(t)−

β(i, u, j)minw∈U(i) Qjw(t). Now taking expectations both sides:

E[Fiu(t)] = E[FQ
iu ] +E[C(t)]. (21)

Note that E[FQ
iu ] looks similar to the left-hand side of the Equation (15) in assumption

III of Q-learning. Both Q-learning and SARSA are very similar algorithms, with the only
difference being how the action values are updated in both. Where the update in Q-
values of Q-learning follows off-policy, SARSA updates are on-policy. So assumption III of
Q-learning is valid here too. Hence,

‖E(FQ
iu )‖w ≤ β∗‖∆iu(t)‖w∀i ∈ S, u ∈ U(s), β∗ ∈ [0, 1). (22)

Thus stating the contraction mapping. Note that C(t) differentiates Fiu(t) from SARSA
with FQ

iu (t) of Q-learning. Now using this information,

‖E[Fiu(t)]‖w ≤ ‖β∗∆iu(t)‖w +E[C(t)] (23)

This looks similar to the third property of Lemma 1, with the only remaining thing
to show is E[C(t)] converge to zero with probability 1. Now, as the MDP under consider-
ation is finite, and policy is GLIE, eventually for the state j, action u = minj U(j) hence
β(i, u, j) → β∗. Rest of the arguments relating to the boundedness of Qiu(t) are same
as Singh et al. [39]. The Q values of the Q-learning algorithm, which updates the same
set of state-action pairs, in the same order as SARSA and using min in update equation
will bound the Q values of SARSA from below (similarly max will bound from above).
Furthermore, due to the similarities with the Q-learning algorithm, Q values of SARSA
are also bounded in the same way as the Q values of Q-learning. Similar arguments are
there for the boundedness of variance of Fiu(t), thus satisfying lemma’s third and fourth
assumptions.

The convergence proof for SARSA can be concluded by using the following theorem
from Singh et al. [39].

Theorem 2. Consider a finite state-action MDP and fix a GLIE learning policy π. Assume that ut
is chosen according to π and at time step t, π uses Q = Qt, where the Qt values are computed by
the SARSA (0) rule. Then Qt converge to Q∗ and the learning policy πt converge to an optimal
policy π∗ provided that the conditions on the immediate costs, state transitions and learning rates
mentioned in Section 2 and Lemma 1 hold and if the following additional conditions are satisfied:

1. The Q values are stored in a lookup table.
2. Var[ciu] < ∞.

Proof. All the necessary arguments have already been discussed in the lemma 1, hence the
proof directly follows from [39].

5. Experiments

To demonstrate transition based discounting in Q-learning and SARSA, we performed
experiments with a standard taxi domain, mountain car, and cliff walking environment.

Transition dependent discount factor for taxi domain and mountain car environments
are constructed in the following way. Every transition to the state, which results in a
positive cost, will have slightly more discount factor value than remaining transitions.
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For these two experiments, we increased the value of those transitions by 0.15, and all
other transitions have a discount value of 0.8. For these values, the algorithms performed
optimally. We found algorithms with constant discount performs best when the discount
factor’s value is 0.99. For another parameter learning rate, the value assigned is 1/tω . Here,
t is the iteration number and ω ∈ [0.5, 1] is a constant. The value of ω is chosen heuristically
as 0.7.

5.1. Taxi Domain

We have considered the Taxi domain environment as given by Dietterich [40]. It is a
5× 5 grid (Figure 5) where the agent (taxi) is allowed to perform six actions, viz. go up,
left, right, down, perform pickup, and drops. We have used the original version of this
problem, which has four coloured grids, as mentioned in Figure 5. However, the results are
comparable even after changing the positions of these coloured grids.

Figure 5. A 5 × 5 grid of Taxi domain environment.

In this problem, a passenger is waiting in a grid cell to reach a specific destination cell.
The goal is to train a taxi agent that can locate a passenger, perform a pickup operation,
navigate to the destination cell and perform drop passenger action there in the least
amount of time possible. Passenger’s pickup and drop locations are initialized randomly
among these coloured blocks when an episode begins. The taxi agent is initialized on any
random grid.

Each step results in a cost of 1 unit, successful pickup and drop-off results in a cost of
−20 units (or reward of 20). There are three walls within the grid which is marked as bold
vertical lines between columns (0, 1), (1, 2) and (2, 3). Besides, the boundary cells have
walls that prevent the agent from going overboard. Bumping into the walls does not move
the agent but induce a penalty of 1 unit (or reward of −1). After initialization, the agent
must find the passenger and move towards it using up/down/left/right actions. Then,
the agent has to perform a pickup action. A successful pickup costs −20 units, whereas an
unsuccessful pickup costs 10 units. The problem is considered solved when the average
cost of more than −7. is achieved from 100 consecutive trails.

Table 1 shows the number of episodes it took to solve this problem with vanilla
Q-learning, SARSA and Expected SARSA compared with Q-learning with transition depen-
dent discount (QL-TDD) and SARSA with transition dependent discount (SARSA-TDD).
Clearly, the proposed algorithms significantly outperforms the baselines by minimum
67 episodes.
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Table 1. Number of episodes it took for Convergence in Taxi domain environment.

Algorithm Episodes

Q-learning 563.2 ± 4.8
SARSA 683.1 ± 2.7

Expected SARSA 587.5 ± 5.9
QL-TDD 481.4 ± 2.1

SARSA-TDD 495.6 ± 2.5

5.2. Mountain Car

In this classic control problem, there is a car in a valley controlled by an RL agent,
as shown in Figure 6. The goal is to reach the top marked by a flag. The car is not powerful
enough; hence, the agent must move it back and forth to build momentum for pushing the
car towards its destination. There are only two actions: left and right. Each action costs
one unit till the agent reaches the destination. The state-space here is continuous, so it is
discretized by bins to apply the finite-state algorithms mentioned in this paper. Figure 7
shows the plot of cumulative rewards obtained versus the number of episodes that favours
QL-TDD and SARSA-TDD.

Figure 6. Mountain Car environment from OpenAi Gym [41].
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Figure 7. Expected cumulative rewards for Mountain Car environment.
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5.3. Cliff Walking

We can choose transition dependent discount factors to favour certain policy over
others. By carefully choosing the discount factor’s value, agents can be made to learn
risk-averse or risk-taking policy. This is demonstrated in the Cliff walking environment
Figure 8. Here the goal is to reach destination block (G) from the start block (S) while
avoiding cliff. Each step results in a cost of 1 unit. However, the cost is 100 if the agent
falls from the cliff and the episode terminates. The agent can take one of the four actions
in every grid (up, down, left, right). Reaching destination also terminates episode after
returning a cost of one unit. Therefore, in order to maximize the expected return, the agent
has to reach the destination block in the least number of steps.

Figure 8. A 4× 12 grid of Cliff walking environment. S and G represents source and Goal respectively.

In Q-learning, if all the transitions have same discount (α = 0.99) then the learned
optimal path obtained is depicted in Figure 9 in orange-coloured arrow. In this path,
a single mistake can result in a cost of 100 units. On the other hand, in Q-learning with
transition dependent discount factor, the discount factor values for the transitions from left
to right in the light blue coloured region is set to 0.7. This setting makes the path along with
the light blue coloured tiles more favourable due to the increase in Q-values’ value. This
new optimal path is depicted in dark blue colour in Figure 9. Note that transitions towards
left and down in the light blue coloured cells and all transitions in white coloured cells
have a discount value of 0.99. The observed results are similar for SARSA with transition
dependent discount factor. This new path is safer than the orange coloured path.

Figure 9. Light blue tiles are states where discount factor values are changed for transitions to-
wards right.
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Thus this experiment demonstrates that by having transition dependent discount values,
the agent’s policy can be controlled to behave in either a risk-averse or risk-taking manner.

6. Discussion and Conclusions

The gist of transition dependent discount factor is: we push the signal from goal-states
more “intensely” than would otherwise be done and, therefore, be more “goal-oriented”.
In this paper, we introduced transition dependent Q-learning and SARSA algorithms.
We proved that even by having different discount factor values for all transitions, the al-
gorithms manage to converge to optimal. The experiments demonstrate that by setting
the right values of β(i, u, j), algorithms can achieve faster convergence. Another benefit
of transition dependent discount is more control over the policy learnt. The agent can
be encouraged to take risky or non-risky policy by changing the values of β(i, u, j) as
demonstrated in the cliff walking example. Thus, not only it can potentially speed up an
RL agent’s learning process, but it can also provide better control over the agent in taking
or avoiding risky paths.

In all experiments, the models with a transition dependent discount factor manage to
converge to optimal strategy. Finding the correct discount function is a tedious process
and a significant challenge that remains. Discount factor as a function also develops a
path that leads towards a step in the direction of an adaptive discount factor. This paper
concludes that the discount function is a viable choice for discounting, both theoretically
and experimentally.
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