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Abstract: The beta and Kumaraswamy distributions are two of the most widely used distributions
for modeling bounded data. When the histogram of a certain dataset exhibits increasing or decreas-
ing behavior, one-parameter distributions such as the power, Marshall–Olkin extended uniform
and skew-uniform distributions become viable alternatives. In this article, we propose a new one-
parameter distribution for modeling bounded data, the Lambert-uniform distribution. The proposal
can be considered as a natural alternative to well known one-parameter distributions in the statistical
literature and, in certain scenarios, a viable alternative even for the two-parameter beta and Ku-
maraswamy distributions. We show that the density function of the proposal tends to positive finite
values at the ends of the support, a behavior that favors good performance in certain scenarios. The
raw moments are derived from the moment-generating function and used to describe the skewness
and kurtosis behavior. The quantile function is expressed in closed form in terms of the Lambert W
function, which allows reparameterizing the distribution such that the involved parameter represents
the qth quantile. Thus, for the analysis of a bounded range variable, for which a set of covariates
is available, we propose a regression model that relates the qth quantile of the response to a linear
predictor through a link function. The parameter estimation is carried out using the maximum
likelihood method and the behavior of the estimators is evaluated through simulation experiments.
Finally, three application examples are considered in order to illustrate the usefulness of the proposal.

Keywords: lambert-F generator; maximum likelihood estimator; quantile; quantile regression;
skewness; uniform distribution

1. Introduction

It is common to deal with data expressed as a proportion, percentage, rate or fraction in
the continuous range (0, 1) when analyzing certain random phenomena, for example, when
observing the annual replacement rate related to blue collar workers [1], the proportion of
codling moth eggs that die from fumigation with methyl bromide [2] and the percentage
difference in nicotine levels in users of first and new generation e-cigarette devices [3].

Two widely used probability distributions in data modeling such as those described
above are the two-parameter beta (B) [4] and Kumaraswamy (K) [5] distributions. These
distributions have a very flexible probability density function (pdf), presenting monotonic,
unimodal and U shapes. Although these distributions are usually the first alternatives
considered for modeling bounded data, it is possible to find in the statistical literature
one-parameter distributions that can appropriately model datasets whose histograms show
increasing or decreasing behavior. In this scenario, the power (P) distribution, which can
be derived as a special case of the B and K distributions, and the Marshall–Olkin extended
uniform (MOEU) [6] and skew-uniform (SU) [7] distributions, which are the result of the
popular approach of adding a parameter to a baseline distribution in search of a more
flexible distribution, can be considered viable alternatives.
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A notable characteristic shared by these latter distributions is that the pdfs tend
monotonically to finite values (functions of the parameters) at the extremes of the support,
which in certain scenarios allows the extreme sample quantiles to be much more adequately
modeled. However, on occasions, due to the curvature characteristics of the pdfs, the
modeling of the most central quantiles may not be good, which in turn affects the quality
of the fit of the extreme quantiles. Consequently, the performance of the P, MOEU and
SU distributions is not good. In such a case, the B and K distributions, having two shape
parameters, can properly model the most central quantiles due to the great flexibility
exhibited by the pdfs in terms of curvature.

Motivated by the above, we formulate the following question as a starting point in
this work: Based on the approach of adding parameters to a baseline distribution, is it
possible to generate a parsimonious distribution that can perform better than the P, MOEU,
SU, B and K distributions when modeling data whose histogram exhibits increasing or
decreasing behavior?

To answer such question, we consider the Lambert-F distribution generator [8] defined
by the cumulative distribution function (cdf) given by G(x; α) = 1− [1− F(x)]αF(x), where
α ∈ (0, e) is a shape parameter, e ≈ 2.718 is the Euler’s number and F(x) is an arbitrary
baseline cdf. This generator has the particularity that the inverse function, that is, the
quantile function, can be expressed in closed form in terms of the Lambert W function
defined in Appendix A. If the baseline distribution F(x) is symmetric, it can be verified
that α performs as a skewness parameter, allowing asymmetric shapes for the resulting pdf
(for more details, see Iriarte et al. [9]).

In this article, we introduce a new one-parameter distribution that is especially useful
for modeling bounded data from a population whose pdf has a monotonic (increasing or
decreasing) behavior. The proposal arises directly from the Lambert-F generator when
considering a uniform (U) baseline distribution. We observe that the pdf of the proposed
distribution, called the Lambert-uniform (LU) distribution, tends to finite values at the ends
of the support, which in certain scenarios favors the good performance of the distribution.
Consequently, the LU distribution may perform better in data modeling than the P, MOEU,
SU, B and K distributions. We show that the LU distribution can be reparameterized in
terms of its qth quantile. Thus, based on this result, we propose a regression model that
relates the qth quantile of the response to a linear predictor through a link function. The
proposed model can be considered as an alternative to quantile regression models available
in the literature, such as the K quantile regression model, and performs adequately in
scenarios where the histogram of the observed values of the response variable exhibits an
increasing or decreasing behavior.

The article is organized as follows. In Section 2, we propose the LU distribution,
derive its main structural properties, describe the skewness and kurtosis characteristics
and discuss the parameter estimation under the maximum likelihood (ML) method. In
Section 3, we propose the quantile regression model based on the LU distribution and
discuss the estimation of the regression coefficients via the ML method. In Section 4, the
behavior of the estimators is evaluated in scenarios with and without covariates. Section 5
presents three application examples illustrating the usefulness of the propose. Finally, the
main conclusions are reported in Section 6.

2. Lambert-Uniform Distribution

In this section, we define the Lambert-uniform random variable and derive the density,
distribution and quantile functions.
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2.1. LU Random Variable

Definition 1. A random variable X follows a Lambert-uniform distribution, with shape parameters
α ∈ (0, e), denoted as X ∼ LU(α), if it can be represented as

X =


1

log(α)
W0

(
log(α)(U − 1)

α

)
+ 1, if α ∈ (0, 1) ∪ (1, e),

U, if α = 1,
(1)

where W0(·) is the principal branch of the Lambert W function and U is a uniform(0, 1) random variable.

In Definition 1, taking into account that W0(·) is a monotonic function, it is observed
that X corresponds to a one-to-one transformation of the uniform random variable. Further-
more, it is observed that the analytic expression W0[log(α)(U − 1)/α]/ log(α) + 1 assumes
values in the interval (0, 1) for all U ∈ (0, 1) and α ∈ (0, e), which means that X assumes
values in this same interval.

Proposition 1. Let X ∼ LU(α). Then, the cdf of X is given by FX(x; α) = 1− (1− x)αx, where
x ∈ (0, 1) and α ∈ (0, e).

Proof. From Equation (1), for α 6= 1, we have that

FX(x; α) = P(X ≤ x) = P
(

W0

[
log(α)(U − 1)

α

]
≤ log(α)(x− 1)

)
.

Then, by definition of the Lambert W function, it follows that

P(X ≤ x) = P
(

log(α)(U − 1)
α

≤ log(α)(x− 1)αx−1
)
= P(U ≤ 1− (1− x)αx),

and the result is obtained taking into account that P(U ≤ u) = u, since U ∼ uniform(0, 1).
Finally, note that the expression obtained is also valid for α = 1, once FX(x; 1) = x.

The pdf of X can be obtained in a straightforward way from Proposition 1.

Corollary 1. Let X ∼ LU(α). Then, the pdf of X is given by fX(x; α) = αx[1− log(α)(1− x)].

Consistent with Definition 1, it is observed that the cdf and the pdf of the LU dis-
tribution reduce to the cdf and the pdf of the U distribution when α = 1. Therefore,
the LU distribution can be understood as an extension with one extra parameter of the
U distribution.

The analytical description of the shapes for the LU pdf is simple and leads to establish
that: (i) limx→0+ fX(x; α) = 1− log(α) and limx→1− fX(x; α) = α. (ii) fX(x; α) is a constant
function when α = 1, a decreasing monotonic function when α ∈ (0, 1) and an increasing
monotonic function when α ∈ (1, e). Property (i) shows that the pdf of the LU distribution
converges to finite values (greater than 0) as x tends to the extreme values, 0 and 1, of the
support. From Property (ii), it follows that the LU distribution is appropriate to fit bounded
data whose relative frequency shows increasing or decreasing behavior. Figure 1 shows
some pdf curves of the LU distribution for different values of the parameter α. Note that the
behavior of the pdf curves is consistent with what is established above. In addition, note
that the curvature of the pdf varies depending on its behavior at the ends of the support.
Thus, the behavior of the LU pdf is similar to that of the P, MOEU and SU pdfs.

Note that, due to the behavior of the pdf at the ends of the support, the LU distribution
may more adequately fit the extreme sample quantiles than a distribution whose pdf tends
to ∞ and 0 at the ends of the support. In Section 5, we see that the LU distribution may
perform better in fitting data than the P, MOEU and SU distributions, even better than the
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two-parameter B and K distributions whose pdfs (in the monotonic case) tend to ∞ and 0
at the ends of the support.
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Figure 1. LU pdf curves for different values of α.

Considering steps very similar to those of the proof of Proposition 1, the quantile
function (qf) of the LU distribution can be easily derived by inverting the cdf given in
Proposition 1. The resulting analytical expression for this function, for u ∈ (0, 1), is
given by

QX(u; α) =


1

log(α)
W0

(
log(α)(u− 1)

α

)
+ 1, if α ∈ (0, 1) ∪ (1, e),

u, if α = 1.
(2)

Since the Lambert W function is implemented in different statistical software, Equation (2)
can be easily computed.

As a final consideration of this section, we highlight that the linear transformation
a + bX, where X ∼ LU(α), a ∈ R and b > 0, follows a LU distribution on the continuous
range (a, a + b). Therefore, the LU distribution can be easily used to fit bounded data to
any real range.

2.2. Related Distributions

It is well known that some distributions such as the exponential, Rayleigh and power,
among others, can be derived as a transformation of a uniform random variable. Con-
sidering these transformations on a LU random variable, we derive the following dis-
tributions: (1) Let Y = −λ log(1− X), where X ∼ LU(α) and λ > 0. Then, Y follows
the Lambert-exponential distribution, see Iriarte et al. [8]. (2) Let Y = σ

√
− log(1− X),

where X ∼ LU(α) and σ > 0. Then, Y follows the Lambert–Rayleigh distribution (see
Iriarte et al. [8]). (3) Let Y = X1/δ, where X ∼ LU(α) and δ > 0. Then, the distribution of
Y is a two-parameter distribution that reduces to the P distribution when α = 1. In this
case, the pdf of Y is given by fY(y; δ, α) = δyδ−1αyδ[

1− log(α)(1− yδ)
]
, where y ∈ (0, 1).

Thus, we refer to this distribution as the Lambert-power distribution.
Other distributions of the literature can be derived under consideration of appropriate

transformations of LU random variables. Illustratively, we consider in this section only the
three transformations described above.
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2.3. Skewness and Kurtosis

In the following, a description of the skewness and kurtosis characteristics of the LU
distribution is made by analyzing Fisher’s asymmetry and kurtosis coefficients. For this,
the moment generating function is first calculated.

Proposition 2. Let X ∼ LU(α). Then, in the case α = 1, the moment generating function of X is
given by MX(t) = (et − 1)/t. In the case α ∈ (0, 1) ∪ (1, e), the moment generating function is
given by MX(t) = {log2(α)− [1− log(α)]t + αtet}[t + log(α)]−2.

Proof. In the case α = 1, the distribution LU reduces to standard U distribution, thus
Mx(t) = E(etX) = (et − 1)/t. In the case α ∈ (0, 1) ∪ (1, e), we observe that

E(etX) =
[1− log(α)][α exp(t)− 1]

t + log(α)
+ log(α)

∫ 1

0
x exp{x[t + log(α)]} dx,

and the result is obtained considering the usual method of integration by parts and an
appropriate algebra.

Corollary 2. Let X ∼ LU(α). Then, in the case α = 1, the first four raw moments of X are
E(X) = 1/2, E(X2) = 1/3, E(X3) = 1/4 and E(X4) = 1/5. In the case α ∈ (0, 1) ∪ (1, e),
for δ = log(α), the first four raw moments are given by

E(X) =
α− 1− δ

δ2 , E(X3) =
3[αδ2 − 2δ(2α + 1)− 6(1− α)]

δ4 ,

E(X2) =
2[(α + 1)δ + 2(1− α)]

δ3 , E(X4) =
4[αδ2(δ− 6) + 6δ(3α + 1) + 24(1− α)]

δ5 .

Corollary 3. Let X ∼ LU(α). Then, in the case α = 1, the skewness (γ1(α)) and kurtosis (γ2(α))
coefficients assume the values 0 and 9/5, respectively. In the case α ∈ (0, 1) ∪ (1, e), the coefficients
are given by

γ1(α) =
µ3 − 3µ1µ2 + 2µ3

1
(µ2 − µ1)3/2 and γ2(α) =

µ4 − 4µ1µ3 + 6µ2
1µ2 − 3µ4

1
(µ2 − µ1)2 .

where µr = E(Xr), with r = 1, 2, 3, 4, are as in Corollary 2.

The skewness and kurtosis ranges for the LU distribution are (3e− 6e2 + 2e3 − 4)[(2 +
2e− e2)−3/2] < γ1(α) < 2 and 9/5 < γ2(α) < 9.

Figure 2 presents plots of the coefficients given in Corollary 3. The figure shows
that the LU distribution is symmetric only in the case α = 1, has positive skewness
when α ∈ (0, 1) and has negative skewness when α ∈ (1, e). Furthermore, it is observed
that the LU distribution can model kurtosis levels higher than the kurtosis level of the
U distribution.
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Figure 2. Plots of the skewness and kurtosis coefficients of the LU distribution (red color) and the U
distribution (circle).

2.4. ML Estimation

For a random sample X1, . . . , Xn, such that Xi ∼ LU(α), with i = 1, . . . , n, the log-
likelihood function is given by

`(α) = log
n

∏
i=1

fX(xi; α) = log(α)
n

∑
i=1

xi +
n

∑
i=1

log[1− log(α)(1− xi)], (3)

where x is the mean of the observed sample. Thus, the score function is given by

U (α) = ∂`(α)

∂α
=

1
α

n

∑
i=1

xi −
1
α

n

∑
i=1

1− xi
1− log(α)(1− xi)

. (4)

From Equation (4), it is observed that the ML estimator for α cannot be explicitly
expressed. Therefore, the ML estimate of α must be obtained by solving the equation
U (α) = 0 by numerical procedures. The uniroot.all function available in the rootSolve
package of the R programming language [10] is a good option to tackle this task.

Since the ML estimator of α does not have a closed form, a good alternative to obtain
the ML estimate is to solve the optimization problem maxα `(α), subject to α ∈ (0, e). To
solve this problem, we use the optim function in the R programming language under the
L-BFGS-B algorithm. This algorithm requires the specification of a value in the range of
α to initialize the iterative process. Through simulation experiments, we observe that the
initial value α0 = 1 is a good initial value.

The second partial derivative of the `(α) function, with respect to α, is given by

∂2`(α)

∂α2 = − 1
α2

n

∑
i=1

xi +
1
α2

n

∑
i=1

1− xi
1− log(α)(1− xi)

− 1
α2

n

∑
i=1

(
1− xi

1− log(α)(1− xi)

)2
.

Thus, under regularity conditions, we observe that the Fisher information is given by

I(α) = −E
(

∂2`(α)

∂α2

)
=

n
α

∫ 1

0

u2

αu[1− log(α)u]
du. (5)

The integral in Equation (5) can be calculated by numerical integration, for example,
the integrate function of the R programming language can be used. Then, under regularity
conditions, the asymptotic distribution of (α̂− α) is N(0, I−1(α)). Thus, the asymptotic
standard error of α̂ is given by 1/

√
I(α̂) and the asymptotic 100(1 − γ)% confidence
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interval for α̂ is given by α̂± zγ/2/
√
I(α̂), where γ/2 is the γ/2 upper quantile of the

standard normal distribution.

3. Quantile Regression Model

In statistical modeling, the regression technique is used to quantify the relationship
between the dependent variable (response) and one or more independent variables (co-
variates). In the case in which the interest lies in quantifying the effect on the conditional
mean response, given the covariates, the classical least squares regression model and the
generalized linear models are especially valued. These models have been shown to be very
useful when analyzing data in various areas of knowledge. However, there are scenarios
where it is equally or even more important to quantify the effect on some other measure
such as the conditional median or some extreme conditional quantile of the response (see,
e.g., [11,12]). In this scenario, a quantile regression model is appropriate because it allows
quantifying the effect of the covariates on any conditional quantile of the response.

In the case of a continuous bounded range response, for example bounded to the range
(0, 1), it is possible to use the well-known beta regression model (among others) to quantify
the effect of the covariates on the mean response (see [13]). Attractive alternatives to the
beta regression model can be found in the literature (see, e.g., [14]). On the other hand,
from a quick review of the literature, we found the K [15] and arc-secant-hyperbolic-normal
(ASHN) [16] regression models among the proposals for modeling the conditional quantiles
of the response. In these last two models, we emphasize that the regression depends on a
shape parameter that provides great flexibility and that must be estimated together with
the regression coefficients.

A very good description of regression models for bounded response variables can be
found in the work of Bayes et al. [17], who proposed a mixed quantile regression model for
bounded response variables.

In what follows, we propose a quantile regression model formulated from a reparame-
terized version of the LU distribution proposed in Section 2.1. In this model, unlike the K
and ASHN models, only the regression coefficients must be estimated. This is because it is
formulated from a distribution with a single shape parameter that is linked to the linear
predictor through an appropriate link function. We highlight that the performance of the
proposed model is appropriate in scenarios where the histogram of the observed values of
the response variable exhibits a decreasing or increasing behavior.

3.1. The LU Model

In Corollary 2, it can be seen that the mean of the LU distribution has a closed
form. However, despite this, we observe that the shape parameter α cannot be expressed
explicitly as a function of the mean, which is a major drawback to formulate a regression
model to quantify the effect of the covariates on the mean response. On the other hand,
we observe that α can be explicitly expressed as a function of the qth quantile, which
allows reparameterizing the LU distribution in terms of its qth quantile and, consequently,
formulate a quantile regression model in a simple way.

Denoting by η the qth quantile of the LU distribution, from Equation (2), we obtain
that α = [(1− q)/(1− η)]1/η . Thus, the LU distribution can be easily reparameterized in
terms of the qth quantile, obtaining (for q ∈ (0, 1) is known) the pdf given by

fX(x; η) =

(
1− q
1− η

) x
η
[

1− 1
η

log
(

1− q
1− η

)
(1− x)

]
, x, η ∈ (0, 1). (6)

Let X1, . . . , Xn be n random variables and denote by x1, . . . , xn the observed values.
Assume that each Xi has pdf fXi (x; ηi) given in Equation (6). The LU quantile regression
model is defined by establishing that the qth quantile ηi of Xi satisfies the functional
relationship g(ηi) = wt

i β, i = 1, . . . , n, where wi = (1, wi1, . . . , wi(k−1))
t is the vector of

covariates associated to the response xi, β = (β0, β1, . . . , β(k−1))
t is a k-dimensional vector

of unknown regression coefficients and g(·) is a strictly increasing and twice differentiable
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function that maps (0, 1) into R (link function). For instance, the most useful well-known
link functions are the logit, log-log and probit functions.

3.2. ML Estimation

From Equation (6), the log-likelihood function is given by

`(β) = log(1− q)
n

∑
i=1

xi
ηi
−

n

∑
i=1

(1− ηi)xi
ηi

+
n

∑
i=1

log
[

1− 1
ηi

log
(

1− q
1− ηi

)
(1− xi)

]
, (7)

and the score functions are given by

∂`(β)

∂βr
= − log(1− q)

n

∑
i=1

xiηi,r

η2
i

+
n

∑
i=1

xi log(1− ηi)ηi,r

η2
i

+
n

∑
i=1

xiηi,r

ηi(1− ηi)
(8)

+
n

∑
i=1

log
(

1−q
1−ηi

)
(1− xi)ηi,r

η2
i

[
1− 1

ηi
log
(

1−q
1−ηi

)
(1− xi)

] − n

∑
i=1

(1− xi)ηi,r

(1− ηi)
[
1− 1

ηi
log
(

1−q
1−ηi

)
(1− xi)

] ,

where ηi,r = ∂ηi/∂βr, ηi = g−1(wt
i β), with r = 0, 1, . . . , k− 1. Note that ηi,r depends on the

link function. For example, if the logit link is considered, that is, g(u) = log(u/(1− u)),
for u ∈ (0, 1), then ηir = ηi(1− ηi)wir, where ηi = exp(wt

i β)/[1 + exp(wt
i β)], wi0 = 1, with

i = 1, 2, . . . , n, r = 0, 1, . . . , k− 1.
We observe from Equation (7) that the ML estimators for the coefficients βs cannot

be expressed in closed form. Thus, the ML estimates must be obtained by solving the
system of score equations using numerical procedures. In the R programming language,
the multirrot function of the rootSolve package is a good alternative to solve this system
of equations.

In this case, since the ML estimators do not have a closed form, a good alterna-
tive to obtain ML estimates is to solve the following optimization problem maxβ `(β),
subject to βr ∈ R, r = 0, 1, . . . , k− 1, where `(β) is given in Equation (7). We solved this
problem using the function optim of the R programming language and, specifically, the
BFGS algorithm was applied.

Under regularity conditions, the asymptotic distribution of (β̂ML− β) is Nk(0, K(β)−1),
where K(β) is the expected information matrix. Since the function `(β) is not simple, it
is not easy to obtain the analytical expression of this matrix. However, we obtain an
approximation from the observed information matrix, whose elements are computed as
minus the second partial derivatives of the log-likelihood function with respect to all the
parameters (evaluated at the ML estimates). Thus, the observed information matrix is
given by

I(β) =


εβ0β0 εβ0β1 . . . εβ0βk−1

εβ0β1 εβ1β1 . . . εβ1βk−1
...

...
. . .

...
εβ0βk−1

εβ1βk−1
. . . εβk−1βk−1

,

εβr βp =− ∂2`(β)

∂βrβp

∣∣∣
β=β̂ML

, r, p = 0, 1 . . . , k− 1,

where the second derivatives are presented in Appendix C.

4. Simulation Studies

In this section, we initially carry out a simulation study to evaluate the behavior of the
ML estimators of the shape parameter of the LU distribution. Subsequently, we carried out
a second simulation study to evaluate the behavior of the ML estimators for the coefficients
of the LU quantile regression model.



Symmetry 2021, 13, 1190 9 of 22

4.1. First Simulation Study

In this study, 1000 random samples from the LU distribution were simulated con-
sidering the sample sizes n = 10, 20, . . . , 1000, respectively, in the scenarios α = 0.5 and
α = 1.5. The samples were generated using the qf given in Equation (2). The LambertW
package [18] available in the R programming language was used to compute the princi-
pal branch of the Lambert W function. The estimates were obtained by maximizing the
log-likelihood function under the considerations of Section 2.4.

Figure 3 shows the average estimate (AE), the empirical standard deviation (SD) and
the roots of the mean squared error (RMSE) for each of the 1000 estimates obtained for
each scenario and sample size considered. In addition, the average of asymptotic standard
errors (SE) and the coverage probability (CP) of the 95% asymptotic confidence intervals
are also reported. In the figures, it is observed that the AEs tend to be close to the true
values of α as the sample size increases. The SDs, RMSEs and SEs are close and decrease
to zero as the sample size increases, as expected in standard asymptotic theory. It is also
observed that the CPs converge to the nominal values as the sample size increases.

Note that the decreasing patterns observed in the left panels of the figure suggest an
overestimation of α when the sample size is small. As complementary information, the
AEs obtained in sample sizes less than 100 can be consulted in Appendix B.
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Figure 3. The AE, SD, SE, RMSE and CP for each of the 1000 estimates of α obtained in the scenarios α = 0.5 (top) and
α = 1.5 (bottom), under the different sample sizes.

4.2. Second Simulation Study

In this study, we simulated 1000 random samples (considering the sample sizes
n = 10, 20, . . . , 1000, respectively) from the reparameterized LU distribution, given in
Equation (6), where the shape parameter is linked via the logit function with three covari-
ates. The samples were generated as follows:

1. Definition of covariates: Generate w1 = (w11, . . . , w1n)
t, w2 = (w21, . . . , w2n)

t and
w3 = (w31, . . . , w3n)

t, where (w1j, w2j) follows a bivariate normal distribution with
parameters µ1 = µ2 = 0, σ1 = σ2 = 1 and ρ = 0.7, with j = 1, . . . , n and w3 is a binary
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variable with probability of success depending on the variable w1 through the logistic
function, that is, w3j ∼ Bernoulli(pj), where pj = 1/[1 + exp(−w1j)] j = 1, . . . , n.

2. Definition of scenarios: We considered two scenarios, A and B, where in both we picked
β0 = −2, β1 = 0.1, β2 = 0.5 and β3 = −2.5. Regarding the choices for q, we chose the
values 0.25 for Scenario A and 0.75 for Scenario B.

3. Simulate the response variable: Generate (u1, . . . , un)t, uj ∼ uniform(0, 1), j = 1, . . . , n,
and calculate

xj =
ηj

log
(

1−q
1−ηj

)W0

[
log

(
1− q
1− ηj

)
uj − 1

ηj

(
1− ηj

1− q

)1/ηj
]
+ 1, j = 1, . . . , n,

where ηj = exp(wtβ)/[1 + exp(wtβ)], such that wtβ = β0 + β1w1j + β2w2j + β3w3j,
with j = 1, . . . , n.

In both scenarios, under the different sample sizes, it is possible to verify that the
histogram of the simulated values has a decreasing behavior.

For each simulated sample, we calculated the ML estimates for the coefficients βs
under the considerations of Section 3.2. Figures 4 and 5 show the AEs, SDs, SEs and RMSEs
for the estimates obtained in each scenario and sample size considered. In Figure 6, the CPs
of the 95% asymptotic confidence intervals are reported. Similar to the results obtained
in the first simulation study, in the figures, it is observed that the AEs tend to be close to
the true values of the coefficients βs as the sample size increases. The SDs, RMSEs and
SEs are close and decrease to zero as the sample size increases, as expected in standard
asymptotic theory. It is observed that the CPs converge to the nominal values as the sample
size increases.
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Figure 4. The AE, SD, SE and RMSE for each of the 1000 estimates of the coefficients βs obtained in Scenario A, under the
different sample size.

Note that the increasing and decreasing patterns exhibited in the top panels of
Figures 4 and 5 suggest an underestimation and overestimation, respectively, of the in-
dividual effect of the covariates on the 0.25th and 0.75th quantiles of the response when the
sample size is small. Complementarily, the AEs of the βs obtained in sample sizes smaller
than 100 can be consulted in Appendix B.
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When comparing the upper right panels of the figures, a different behavior pattern is
observed for the AEs of β3. Therefore, the effect of the covariate w3 on the 0.25th quantile
of the response can be underestimated when the sample size is small, while the effect on
the 0.75th quantile can be overestimated.
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Figure 5. The AE, SD, SE and RMSE for each of the 1000 estimates of the coefficients βs obtained in Scenario B, under the
different sample size.
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Figure 6. The CPs for the estimates of the coefficients βs in: Scenario A (left); and Scenario B (right).

5. Data Analysis

In this section, three application examples are presented in order to illustrate the
usefulness of the LU distribution and the LU quantile regression model. In the first, we
compare the performance of the LU, P, MOEU, SU, B and P distributions in the fitting of
1000 samples generated from an LU population. Here, we highlight the virtues of the LU
distribution over the aforementioned distributions, leaving open the existence of a possible
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real-world setting where the distributions show such performance. In the second example,
we compare the performance of the LU, P, MOEU, SU, B and P distributions in fitting a real
dataset. In the third example, based on a real data frame, and in order to quantify the effect
of the covariates on the 0.25th, 0.5th and 0.75th quantiles of the response, we compare the
performance of the LU quantile regression model with the performance of other models
such as ASHN [16] and K [15] quantile regression models. In all three models, the logit
function is considered to relate the qth quantile of the response to the linear predictor. The
pdfs of the ASHN and K distributions are given, respectively, by

f (x; α, η) =
2αΦ−1(qα)

A(η)x
√

1− x2
φ

(
Φ−1(qα)A(x)

A(η)

)[
2− 2Φ

(
Φ−1(qα)A(x)

A(η)

)]α−1

,

where x ∈ (0, 1), qα = 1 − (q1/α)/2, A(z) = log[(1 +
√

1− z2)/z] is the hyperbolic
arcsecant function, α > 0 is a shape parameter, η ∈ (0, 1) is a quantile parameter and
q ∈ (0, 1) is known, and

f (x; β, η) =
β log(1− q)
log(1− ηβ)

xβ−1(1− xβ)log(1−q)/ log(1−ηβ)−1, x ∈ (0, 1),

where β > 0 is a shape parameter, η ∈ (0, 1) is a quantile parameter and q ∈ (0, 1)
is known.

The regression framework for bounded responses based on the K and ASHN distribu-
tions is very similar to the regression framework based on the LU distribution presented in
Section 3.1. However, the main difference with LU regression is that it depends on a shape
parameter that gives great flexibility to the modeling.

In all three examples, the parameters are estimated by maximizing the corresponding
likelihood functions with the optim function in the R programming language. We compared
the performance of the models by contrasting the maximum value of the log-likelihood
function (`) and contrasting the values associated with the Akaike Information Criterion
(AIC) [19] and the Bayesian Information Criterion (BIC) [20]. In general, the best model
can be chosen as the one that shows the highest ` value and the lowest AIC, CAIC and
BIC values. In addition, we consider the usual Anderson–Darling (AD) and Cramer–von
Mises (CvM) goodness-of-fit tests to assess the quality of the fits in the first and second
examples. In the third example, we use these tests to assess the overall quality of fit of the
regression models, by testing the hypothesis that the randomize residuals [21] follow the
standard normal distribution. These residuals follow a standard normal distribution when
the overall quality of fit is appropriate. We use the ad.test and cvm.test functions available
in the goftest [22] package in the R programming language to calculate the statistics and
p-values of these tests.

5.1. Data from an LU Population

In this example, we generate 1000 random sample of size 300 from an LU population
with parameter α = 0.01. The chosen value for α is associated with a decreasing pdf that
converges to the values 5.605 and 0.01 at the ends of the support.

Based on the AD and CvM goodness of fit tests, considering a significance level of 5%,
we calculate the proportion of samples where the LU, P, MOEU, SU, B and K distributions
fit the data appropriately. We call this the non-rejection rate. Additionally, we calculate the
proportion of samples where each distribution presents the lowest AIC and BIC values,
that is, the proportion of samples where each distribution exhibits the best performance.
We call this the hit rate. Table 1 reports the values associated with the non-rejection and
hit rates for the LU, P, MOEU, SU, B and K distributions fitted to the 1000 samples. In the
table, we observe that the two-parameter B and K distributions are capable of appropriately
fitting a large proportion of samples. However, the LU distribution better fit most of the
samples generated.
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Calculating limx→0+ fX(x) for each fitted distribution in a single generated sample,
we observe the limit value 5.611 for the LU distribution, 7.618 for the MOEU distribution,
2.000 for the SU distribution and ∞ for the B, K and P distributions. Now, calculating
limx→1− fX(x), we observe the limit values 0.009 for the LU distribution, 0.131 for the
MOEU distribution, 0.438 for the P distribution and 0 for the SU, B and K distributions.
In Figure 7, the histogram for this sample fitted with the LU, P, MOEU, SU, B and K
distributions is presented. Here, it can be seen that the curvature characteristics of the LU,
B and K pdfs are similar, exhibiting a similar performance in the fit of the most central
sample quantiles. However, the LU pdf more appropriately fits the more extreme quantiles
by tending to the values 5.611 and 0.009 at the ends of the support. The ML estimates, the
AIC and BIC values and the p-values of the AD and CvM tests for each distribution fitted
to this sample can be consulted in Appendix E.

The analysis considered in this section suggests the possible existence of a real world
scenario in which such performances are displayed.

Generated data

D
e

n
si

ty
 f

u
n

ct
io

n

0.0 0.2 0.4 0.6 0.8

0
2

4
6

8 LU
B
K
P
MOEU
SU

Figure 7. Histogram for a single sample generated from the LU(0.01) population fitted with the LU,
K, MOEU, SU, B and K distributions.

Table 1. Non-rejection and hit rates for the LU, K, MOEU, SU, B and K distributions obtained from
the 1000 samples generated.

Non-Rejection Rate Hit Rate

Distribution AD CvM AIC BIC

LU 0.997 0.999 0.865 0.969
P 0.000 0.000 0.000 0.000

MOEU 0.117 0.418 0.002 0.002
SU 0.000 0.000 0.000 0.000
B 0.982 0.986 0.041 0.020
K 0.993 0.995 0.092 0.009

5.2. Peak Horizontal Acceleration Data

We consider a dataset consisting of 182 observations on the peak horizontal acceler-
ation (g) in earthquakes recorded by observation stations in California, USA. These data
were originally analyzed by Joyner and Boore [23] and can be found with the name attenu
in the dataset package of the R programming language. Some descriptive statistics are the
following: minimum, 0.003; maximum, 0.810; skewness, 1.641; and kurtosis, 6.071. The
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histogram of this dataset, presented in Appendix D, shows a decreasing behavior. Thus,
we hope that the LU distribution can properly fit the peak horizontal acceleration data.

Table 2 reports the ML estimates, the `, AIC and BIC values and the p-values of the AD
and CvM goodness of fit tests for each distribution fitted to the peak horizontal acceleration
data. In this table, based on p-values, considering a significance level of 5%, we observe
that the SU and P distributions are not appropriate to fit the peak horizontal acceleration
data. Note that the MOEU, SU, P and LU distributions are uni-parametric, however the
performance shown by the LU distribution is clearly better. We also observe in Table 2 that
the LU distribution is the one with the lowest AIC and BIC values and the one with the
highest ` value, evidencing that this distribution must be selected over the others for the fit
of the peak horizontal acceleration data.

Figure 8 presents the qqplots for the fitted distributions. This figure shows that the
LU distribution fits the peak horizontal acceleration data appropriately.

Calculating limx→0+ fX(x) for each fitted distribution, we observe the limit value
6.298 for the LU distribution, 8.923 for the MOEU distribution, 2.000 for the SU distribution
and ∞ for the B, K and P distributions. Now, calculating limx→1− fX(x), we observe the
limit values 0.005 for the LU distribution, 0.112 for the MOEU distribution, 0.412 for the P
distribution and 0 for the SU, B and K distributions. This illustrates that the performances
exhibited by the LU, P, MOEU, SU, B and K distributions over this dataset are very similar
to the performances exhibited in the previous section based on simulated data.

Table 2. The parameter estimates (with standard errors in parentheses), the `, AIC, CAIC and BIC
values and the p-values of the AD and CvM goodness-of-fit tests for the SU, P, MOEU, B, K and LU
distributions fitted to the peak horizontal acceleration data.

Parameter LU K B MOEU P SU

α 0.005 0.890 0.877 0.112 0.412 1.000
(0.002) (0.062) (0.080) (0.013) (0.030) (0.170)

β - 4.423 4.699 - - -
(0.571) (0.533)

` 158.5 157.0 156.6 149.3 98.1 91.7

AIC −315.1 −310.1 −309.3 −296.7 −194.3 −181.5
BIC −311.9 −303.7 −302.9 −293.5 −191.1 −178.2

AD 0.978 0.882 0.486 0.069 <0.001 <0.001
CvM 0.965 0.884 0.576 0.140 <0.001 <0.001
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Figure 8. QQ-plots: (a) LU distribution; (b) K distribution; (c) B distribution; (d) MOEU distribution; (e) P distribution; and
(f) SU distribution.

5.3. Risk Managements Practice Data

In this example, we consider the data frame presented by Schmit and Roth [24]
consisting of observations of seven variables (73 observations for each variable) consulted
by means of a questionnaire sent to 374 risk managers of large US-based organizations.
The variables consulted are described below: FI represents the measure of the firm’s risk
management cost effectiveness, defined as total property and casualty premiums and
uninsured losses as a percentage of total assets; AS represents the per occurrence retention
amount as a percentage of total assets; CA indicates that the firm owns a captive insurance
company; SI represents the logarithm of total assets; IN represents a measure of the firm’s
industry risk; CE represents a measure of the importance of the local managers in choosing
the amount of risk to be retained; and SO represents a measure of the degree of importance
in using analytical tools.

Gómez-Déniz et al. [25] considered a Log-Lindley regression model to quantify the
effect of the variables AS, CA, SI, IN, CE and SO on the mean of the variable FI. In our
case, we consider the LU quantile regression model to quantify the effect of such covariates
on the 0.25th, 0.5th and 0.75th quantiles of the variable FI, providing a very informative
scenario (which complements the one proposed by Gómez-Déniz et al. [25]) to explain the
behavior of the FI response in terms of the covariates already described. We observe that
the histogram of the variable FI, presented in Appendix D, shows a decreasing behavior.
Thus, we hope that the LU model can appropriately quantify the effect of the covariates on
the 0.25th, 0.5th and 0.75th quantiles of the response variable.

As already mentioned, we compare the results with those obtained with the K and
ASHN quantile regression models. The regression structure assumed for ηi is given by
logit(ηi) = β1(q) + β2(q)ASi + β3(q)CAi + β4(q) SIi + β5(q) INi + β6(q)CEi + β7(q) SOi,
i = 1, . . . , 73, where ηi denotes the qth quantile of the LU, K and ASHN distributions.

Table 3 reports the `, AIC and BIC values for the ASHN, K and LU models fitted to the
risk managements practice data. The p-values of the AD and CvM tests of the hypothesis
that the randomize residuals follow a standard normal distribution are also reported in
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Table 3. In this table, we see that the `, AIC and BIC values change as the value of q changes.
This shows that the rate of change in the conditional quantile of the response FI, expressed
by the regression coefficients, depends on the value of q. On the other hand, based on
the p-values and considering a significance level of 5%, we observe that the assumption
of normality of the randomize residuals of the LU and K models is not rejected. Thus,
under this significance level, the global fit of these models is appropriate. Furthermore,
we observe that the LU model is the one with the highest ` value and the one with the
lowest AIC and BIC values, suggesting that this model should be selected to quantify
the effect of the covariates on the 0.25th, 0.5th and 0.75th quantiles of the response. As
already pointed out in Section 3, keeping in mind that, in the K and ASHN models a shape
parameter must be estimated together with the regression coefficients, with one fewer
parameter to estimate, the LU quantile regression model performs more appropriately than
these models.

Table 3. The `, AIC, CAIC and BIC values for the ASHN, K and LU quantile regression models
fitted to the risk managements practice data and the p-values of the AD and CvM tests for the
randomize residuals.

Criterion p-Value for the
q Model ` AIC BIC AD Test CvM Test

0.25 ASHN 80.3 −144.7 −126.4 <0.001 <0.001
K 97.9 −179.8 −161.5 0.166 0.198

LU 107.8 −201.6 −185.6 0.134 0.231

0.5 ASHN 80.1 −144.2 −125.9 <0.001 <0.001
K 98.8 −181.6 −163.3 0.150 0.169

LU 108.1 −202.2 −186.2 0.154 0.252

0.75 ASHN 81.8 −147.7 −129.4 <0.001 <0.001
K 99.9 −183.9 −165.6 0.151 0.147

LU 108.6 −203.2 −187.2 0.158 0.230

Table 4 reports the estimates for the coefficients of the LU models fitted to the risk
managements practice data. In addition, the z statistics and the p-values of the significance
tests of the individual regression coefficients are reported. Here, we observe that the
covariates SI and IN (the logarithm of total assets and the measure of the firm’s industry
risk) are statistically significant at usual nominal levels. Additionally, it is important to point
out that there is a negative relationship between the 0.25th, 0.5th and 0.75th quantiles of the
response (the firm’s risk management cost effectiveness) and the covariate SI, while there
is a positive relationship between the 0.25th, 0.5th and 0.75th quantiles of the response and
the covariate IN. On the other hand, the covariates AS, CA, CE and SO are not significant.
Figure 9 shows the estimates of the coefficients with the 95% confidence intervals of the LU
regression model assuming different values for q. Here, we observe that the estimates of
the coefficients of the covariates SI and IN decrease and increase, respectively, distancing
themselves more and more from the value 0 as q increases. This illustrates a greater effect
of these covariates on the high quantiles of the firm’s risk management cost effectiveness.
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Table 4. Coefficient estimates for the LU quantile regression model fitted to the risk managements
practice data and significance tests of individual regression coefficients.

q Parameter Estimate SE z p-Value

0.25 Intercept 1.619 1.543 1.049 0.293
AS −0.022 0.017 −1.311 0.189
CA 0.318 0.314 1.013 0.310
SI −0.774 0.164 −4.717 <0.001
IN 3.494 0.888 3.932 <0.001
CE −0.044 0.112 −0.399 0.689
SO −0.009 0.028 −0.322 0.747

0.50 Intercept 2.730 1.601 1.705 0.088
AS −0.022 0.018 −1.263 0.206
CA 0.311 0.322 0.965 0.334
SI −0.802 0.167 −4.788 <0.001
IN 3.644 0.842 4.323 <0.001
CE −0.044 0.115 −0.388 0.697
SO −0.009 0.029 −0.333 0.738

0.75 Intercept 3.850 1.715 2.245 0.024
AS −0.023 0.019 −1.173 0.240
CA 0.293 0.340 0.863 0.387
SI −0.855 0.175 −4.869 <0.001
IN 3.946 0.826 4.777 <0.001
CE −0.045 0.122 −0.374 0.707
SO −0.010 0.031 −0.347 0.728
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Figure 9. Coefficient estimates and its 95% confidence intervals for variables AS, CA, SI, IN, CE and SO in different LU
quantile regression models considering q = 0.1, 0.2, . . . , 0.9 and response variable FI.

6. Final Comments

In this article, we propose a new one-parameter distribution for the modeling of
bounded data whose histograms show increasing or decreasing behavior. The new distri-
bution, called the Lambert-uniform distribution (LU), arises from the Lambert-F generator
considering a U baseline distribution. An important aspect to highlight about the LU
distribution is that its pdf tends to finite values at the ends of the support, which allows
the extreme sample quantiles to be adequately modeled.

We derive the main structural properties of the LU distribution, including the moment-
generating function that is used to describe the skewness and kurtosis characteristics. The
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quantile function of the LU distribution can be expressed in terms of the Lambert W
function, which allows reparameterizing the pdf in terms of its qth quantile, resulting in a
pdf with a simple, easy to compute analytical structure. Thus, we propose the LU quantile
regression model that relates the qth quantile of the response to a linear predictor through
a link function. The parameter estimation for the cases with and without covariates is
performed with the maximum likelihood method. The estimators of the parameters do
not have a closed form, so the use of some computational routine is required to obtain
the estimates. We use the optim function in the R programming language to obtain the
estimates. We evaluate the behavior of the estimators through two simulation studies,
concluding that the maximum likelihood method provides acceptable estimates. Finally,
we present three application examples in order to illustrate the usefulness of the proposal.
In the first and second examples, considering datasets whose histograms show decreasing
behavior, we illustrate that the LU distribution may present a better fit than the P, MOEU,
SU, B and K distributions. Thus, in scenarios where the data exhibit such behavior, the LU
distribution can be considered a viable alternative to commonly used distributions. In the
third example, based on a real data frame, we illustrate that a quantile regression model
formulated from the LU distribution performs well when modeling the 0.25th, 0.5th and
0.75th quantiles of the response (given a set of covariates), being a viable alternative to the
other models such as the ASHN and K quantile regression models.
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Appendix A. Lambert W Function

The Lambert W function, W(z), is defined as the inverse function of xex = z, that is, it
satisfies the equation

W(z)eW(z) = z, z ∈ C.

Generally, the Lambert W function is defined for any z ∈ C. By restricting z to be a
real number, the function is defined for z ≥ −1/e, where e is the Euler’s number. In this
case, it is possible to distinguish three cases:

1. If z < −1/e, then no solution exists in the reals.
2. If z ∈ (−1/e, 0), then there are two solutions given by the principal branch, W0(z),

and the non-principal branch, W−1(z).
3. If z ≥ 0, then the solution is unique, W0(z) = W−1(z).

Appendix B. The AEs Obtained in the Simulation Studies Presented in
Sections 4.1 and 4.2 with Sample Sizes Less Than 100

Table A1. The AEs obtained in the simulation study of Section 4.1.

Sample Size

Scenario 10 20 30 40 50 60 70 80 90

A (α = 0.5) 0.566 0.534 0.523 0.508 0.520 0.509 0.498 0.510 0.512
B (α = 1.5) 1.619 1.535 1.530 1.512 1.507 1.521 1.516 1.504 1.509

Table A2. The AEs obtained in Scenarios A and B of the simulation study in Section 4.2.

Sample Size

Parameter 10 20 30 40 50 60 70 80 90

Scenario A (q = 0.25)

β0 −2.049 −2.019 −2.005 −2.011 −2.005 −1.984 −2.006 −2.015 −1.994
β1 0.090 0.097 0.125 0.089 0.107 0.113 0.108 0.098 0.104
β2 0.604 0.529 0.515 0.520 0.511 0.501 0.495 0.496 0.502
β3 2.558 −2.555 −2.563 −2.529 −2.535 −2.557 −2.515 −2.496 −2.528

Scenario B (q = 0.75)

β0 −2.275 −2.110 −2.063 −2.046 −2.034 −2.008 −2.026 −2.028 −2.009
β1 −0.035 0.089 0.114 0.096 0.108 0.110 0.107 0.099 0.105
β2 0.621 0.507 0.503 0.503 0.499 0.495 0.489 0.491 0.497
β3 −2.275 −2.454 −2.494 −2.491 −2.503 −2.529 −2.493 −2.482 −2.511
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Appendix C. Second Partial Derivatives of the Log-Likelihood Function Given in
Equation (7)

∂2`(β)

∂βp∂βr
= − log(1− q)

n
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i
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where H(xi; ηi) = 1− (1/ηi) log[(1− q)/(1− ηi)](1− xi), ηi,r and ηi,s are as in Equation (8)
and ηi,r,p = ∂2ηi/(∂βp∂βr), with r, p = 0, 1, . . . , k − 1. Thus, under the consideration of
the link logit, we observe that ηi,0,p = δiwip, ηi,r,0 = δiwir and ηi,r,p = δiwirwip, where
δi = ηi(1− ηi)(1− 2ηi), with i = 1, 2, . . . , n, and r, p = 0, 1, . . . , k− 1.

Appendix D. Histograms of the Data Considered in Sections 5.2 and 5.3
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Figure A1. (Left) Histograms of the peak horizontal acceleration data. (Right) Histogram of the
response FI (the measure of the firm’s risk management cost effectiveness).



Symmetry 2021, 13, 1190 21 of 22

Appendix E. Estimates and other Fit Measures for the Sample Associated with Figure 7
of Section 5.1

Table A3. The parameter estimates (with standard errors in parentheses); the `, AIC, CAIC and BIC
values; and the p-values of the AD and CvM goodness-of-fit tests for the SU, P, MOEU, B, K and LU
distributions fitted to simple generated data.

Parameter LU K B MOEU P SU

α 0.009 0.914 0.914 0.131 0.438 1.000
(0.003) (0.050) (0.065) (0.012) (0.025) (0.113)

β - 4.078 4.291 - - -
(0.399) (0.375)

` 232.3 227.0 226.4 216.3 136.5 143.4

AIC −462.7 −450.0 −448.8 −430.7 −271.0 −284.8
BIC −459.0 −442.6 −441.4 −427.0 −267.3 −281.1

AD 0.915 0.485 0.399 0.005 <0.001 <0.001
CvM 0.962 0.624 0.473 0.027 <0.001 <0.001
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