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Abstract: Using the path integral formulation in Euclidean space, we extended the calculation
of the abelian chiral anomalies in the case of Lorentz violating theories by considering a new
fermionic correction term provided by the standard model extension, which arises in the continuous
Hamiltonian of a weakly tilted Weyl semimetal, and whose cones have opposite tilting. We found
that this anomaly is insensitive to the tilting parameter, retaining its well-known covariant form. This
independence on the Lorentz violating parameters is consistent with other findings reported in the
literature. The initially imposed gauge invariant regularization was consistently recovered at the end
of the calculation by the appearance of highly non-trivial combinations of the covariant derivatives,
which ultimately managed to give only terms containing the electromagnetic tensor. We emphasize
that the value of the anomaly with an arbitrary parameter is not automatically related to the effective
action describing the electromagnetic response of such materials.

Keywords: Lorentz invariance violation; Weyl semimetals; abelian chiral anomaly; path integral
approach; effective electromagnetic response

1. Introduction

The appearance of fermionic excitations in the continuum Hamiltonians of condensed
matter materials, which naturally violate some spacetime symmetries and incorporate
contributions similar to those in the fermionic sector of the standard model extension
(SME) [1,2], has created the possibility of applying many of the techniques already devel-
oped in the search for a fundamental Lorentz violation in the interactions of high energy
physics to this area. This also occurs in the effective electromagnetic response of magne-
toelectic materials, for example, which also reproduce some of the terms included in the
electromagnetic sector of the SME [3,4].

Macroscopic electromagnetic transport properties in condensed matter are often cal-
culated using the Kubo formula [5] or the semiclassical Boltzmann approach [6]. Recently,
the rise of topological phases of matter has promoted the use of anomaly calculations for
these purposes. The topological properties of anomalies have long been recognized in high
energy physics and their presence is expected to provide a macroscopic understanding of
the underlying topological properties in the electronic design of these materials. Such an
approach has been particularly fruitful in the case of Weyl semimetals (WSMs) whose elec-
tronic Hamiltonians naturally include some of the Lorentz invariance violating (LIV) terms
considered in the fermionic sector of the standard model extension (SME) [7]. Nevertheless,
in this case, the LIV parameters need not be highly suppressed, since they are determined
by the electronic structure of the material and subjected to experimental determination.
Weyl semimetals were first theoretically predicted in pyrochlore iridates (such as Y2Ir2O7)
in 2011 [8] and experimentally discovered in TaAs four years later [9–13]. Their low energy
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excitations near the Fermi energy are described by Weyl fermions whose band structure is
characterized by an even number of gapless Weyl nodes with opposite chiralities, which
are the only points where the valence band touches the conduction band. This pair-wise
characteristic is a consequence of the Nielsen–Ninomiya theorem [14] and the stability of
the Weyl cones is guaranteed by the breaking of time reversal and/or inversion symmetries.
Each pair of nodes can present a separation in energy and/or momentum in the Brillouin
zone. Fixing one of the momenta in the Brillouin zone, say kz, the dispersion relation of the

Weyl fermions is E(k) = ±
√

k2
x + k2

y for the energy spectrum near the nodes. This surface

describes a cone with an apex at the origin and axis perpendicular to the (kx − ky) plane
where we fix the Fermi energy touching the cone just in the apex.

A simple model of a WSM consisting of two Weyl nodes is described by the fermionic
action:

S =
∫

d4x
(

iΨ̄
(

γµ∂µ + ibµγµγ5
)

Ψ
)

, (1)

where bµ signals a Lorentz violating term which accounts for the separation of the Weyl
nodes in energy (b0) and in momentum (b). Adding an additional Lorentz violating term
in the derivative term of the action (1) makes it possible to give an inclination to the
cone axis, thus defining a tilted WSM. For small inclinations (small tilting), we keep the
point-like Fermi surface and these materials are called Type-I WSMs. By increasing the
tilting, we arrive at a point where the conical surface becomes tangent to the (kx − ky)
plane. A further increment will produce an intersection of the conical surface with the
Fermi energy plane creating what are called the electron and hole pockets, which takes
us out from the point-like Fermi surface. This second possibility gives rise to Type II
WSMs [15,16].

Among the novel transport properties of WSMs, we find the chiral magnetic effect,
whereby a ground state dissipationless current proportional to an applied magnetic field is
generated in the bulk of a WSM with broken inversion symmetry [17]. This yields a con-
ductivity proportional to the magnetic field, or equivalently, to a resistivity that decreases
with an increasing magnetic field. This phenomenon, dubbed as negative magnetoresis-
tance, was predicted in Ref. [14] and was experimentally observed in Ref. [18]. WSMs
also exhibit the anomalous Hall effect, characterized by Hall conductivity proportional to
the separation of the Weyl nodes in momentum [19–22]. For a review of WSMs, see, for
example, Refs. [23–25].

The appearance of Weyl fermions quasi-particles in WSMs naturally introduces the
issue of anomalies when gauge invariance is demanded via the minimal coupling with
external electromagnetic fields which is required to probe the electromagnetic response of
such materials [26]. In this way, the chiral current J5

µ = Ψ̄γµγ5Ψ is not conserved, yielding
the abelian version of the chiral anomaly:

∂µ J5
µ = − e2

16π2 εµναβFµνFαβ = +
e2

2π2 E · B, (2)

in the Lorentz covariant case [27,28]. Here we follow the conventions of Ref. [29] with
ε0123 = ε1234 = +1 . In the path integral approach, the effective macroscopic electromag-
netic action is obtained by introducing the electromagnetic coupling in (1) and subsequently
trading the fermionic term Ψ̄bµγµγ5Ψ by an electromagnetic contribution arising from the
Jacobian of the chiral transformation, which eliminates the bµ term from the action [21].
Following this idea, the Fujikawa prescription to calculate the chiral anomalies [30,31] has
been extensively used for these purposes [21,22].

The relevance of the tilting of the cones in the transport properties of WSMs was
first reported in Ref. [15]. Subsequent works aiming to understand the role of the chiral
anomaly in this process were based on the semiclassical Boltzman approach. Here, the
contribution of the anomaly was identified through the term E ·B which appears as a factor
of the Berry phase in the equation of motion of the momentum of the wave packet, which
is finally solved in terms of the external electromagnetic fields [32,33].



Symmetry 2021, 13, 1181 3 of 20

In this work, we take the first steps in calculating the effective electromagnetic action
of an isotropic tilted Type I WSM, by considering a model with a single pair of Weyl points
with tilting in opposite directions. Using the path integral approach, we deal with the
calculation of the anomaly corresponding to the modified axial current responsible for
the tilting of the cones around each node, which amounts to discarding the effect of the
bµ contribution in a first approximation. In this restricted setting, our work is similar to
the calculation of the anomaly presented in Ref. [34], however, we find some important
differences arising from the non-commutativity of the operators involved in the calculation,
which we report in Section 6. We only consider the corrections to the anomaly which are
linear and quadratic in the tilting parameter.

This paper is organized as follows. In Section 2, we define our model and provide
a brief explanation of WSMs, setting the notation and conventions. Section 3 deals with
a review of the axial anomaly in the path integral approach when going to Euclidean
space. The modified axial current is calculated and the basic operators required for the
implementation of the Fujikawa method are derived. We then proceed to the first order
calculation (linear in the tilting parameter) in Section 4, followed by the second order
calculation (quadratic in the tilting parameter) in Section 5. We conclude with a summary
and a discussion of the results in Section 6. In this section, we also make a comparison with
previous findings in the literature. The Appendix A summarizes some useful relations
used in the calculations.

2. The Modified Dirac Lagrangian

In this article, we consider the Lagrangian:

L = Ψ̄(x)iDΨ(x) = iΨ̄(x)
(
γµDµ + γ0γ5viDi

)
Ψ(x), (3)

which describes the dynamics of a massless spinor field Ψ(x), coupled with an external
electromagnetic field Aµ through the covariant derivative Dµ = ∂µ − ieAµ. The standard
gamma matrices γµ would ensure the Lorentz invariance of the Lagrangian if it were
not for the presence of the second term. This term contains the pseudoscalar matrix
γ5 = iγ0γ1γ2γ3 and a Lorentz violating parameter vi, i = 1, 2, 3, which we consider as
the components of a spacetime vector v. In this way, we keep invariance under rotations.
For v = 0, we recover the usual Dirac Lagrangian for massless spinors. As is usual,
Ψ̄(x) = Ψ†γ0.

The physical motivations for taking the modified Lagrangian (3) can be seen from two
branches of physics. On one hand, in the description of Weyl semimetals, v parametrizes a
tilt of the cones in a system with a pair of Weyl nodes. This parameter, which is determined
by the electronic structure of the material, could in principle take any value, as Lorentz
invariance is effectively broken into condensed matter. On the other hand, in the context of
quantum field theory, this term probes the possibility of a fundamental breaking of Lorentz
invariance. As this possibility has not been found in the many high-precision experiments
already performed, we must consider this parameter as very small in this setting. Indeed,
the Lagrangian (3) is a particular case of:

L = Ψ̄(x)
(
iΓµ∂µ −M

)
Ψ(x), (4)

which arises in the study of possible Lorentz violations in the fermionic sector of the
SME [7], with:

Γµ = γµ + cµ
νγν + dµ

νγνγ5, M = m + bµγµγ5 +
Hµν

2
σµν. (5)

In particular, we will calculate the abelian axial anomaly for the choice cµ
ν = 0 and

M = 0. We rewrite the Lagrangian (3) in a way that makes explicit the transformation
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properties of the indices involved. To this end, we follow the notation of the Dirac equation
in curved space and write (3) as

L = Ψ̄(x)iγAeA
µ∂µΨ(x), (6)

where Latin indices A = 0, 1, 2, 3 : {0, a = 1, 2, 3} live in the matrix space, while Greek
indices µ = 0, 1, 2, 3 : {0, i = 1, 2, 3} label spacetime coordinates. Then, the indices A
transform under local Lorentz transformations while the indices µ transform under general
coordinate transformations. In our flat space setting, both types of transformations coincide,
but this distinction will be relevant when we make the continuation to Euclidean space.

We further constrain ourselves to the case:

eA
µ = δ

µ
A + dµ

Aγ5, (7)

and we interpret dµ
A as four spacetime vectors labeled by the Dirac indices A. Moreover,

the Lagrangian in Equation (3) yields the further restriction:

dµ
A = δ

µ
i δ0

Avi, (8)

which says that we have only one spacetime vector vµ
0 corresponding to A = 0 with only

spatial components vi
0 = vi. The main point here is that both types of indices have definite

transformation properties when changing coordinate frames. In this notation, the gamma
matrices satisfy {γA, γB} = 2ηAB with ηAB = diag(+1,−1,−1,−1). The spacetime metric
is ηµν = diag(+1,−1,−1,−1).

A Brief on Weyl Semimetals

In a low energy approximation near the Fermi energy, Weyl semimetals are materials
for which their band structure can be described by a pair (or an even number) of nodes
(Weyl points) separated in energy and momentum. The low energy theory of an isolated
Weyl point is given by the Hamiltonian [16]:

H±(k) = ±σ0v0 · k + χσava · k = σAvi
A(±, χ)ki, vi

A(±, χ) = (±vi
0, χvi

a), (9)

where σa (a = 1, 2, 3) are the Pauli matrices, σ0 = I is the unit 2× 2 matrix , χ = ±1 is the
chirality of the node and ±v0 indicates the direction of the tilting. The Nielsen–Ninomiya
theorem [14] states that each pair of cones must carry opposite chiralities. In Equation (9),
k is the crystal momentum vector centered in each node. As shown in Ref. [21] for the
untilted case, taking into account the separation of the nodes has direct consequences on
the coefficient of the anomaly.

We have four spacetime vectors vA = (vi
A) (A = 0, 1, 2, 3, i = 1, 2, 3) with only spatial

components vi
A. That is, for each particular label i, the object vi

A transforms as a covariant
vector in Lorentz space. The vectors vi

A characterize the cone structure arising from the
dispersion relations, where the apexes of the cones are located at the nodes. The vectors
va describe the anisotropy of the cones while v0 gives their tilting. Our choice ±v0 in
the Hamiltonian (9) indicates that we are considering the two cones with tilting in the
opposite directions.

The case of tilting in the same direction has been considered in Ref. [34] and results in
no additional terms in the axial anomaly, yielding a Lorentz invariant result. Although the
authors in Ref. [34] obtained a non-trivial anomaly in the case of cones with opposite tilting
using the Fujikawa approach, their result differs from the one we found. Such difference
arises from the alternative ways of dealing with the non-commuting operators involved.
Since the calculation is very different from the standard case, it turns out that the correct
expansion of the regulator required to define the anomaly is highly non-trivial and so it is
worthy of the separate calculation which we perform.
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We will consider the isotropic case where vj
a = δ

j
a, such that the system to be studied

only deals with the tilting of the cones and it is given by the Hamiltonian:

H = H− ⊕ H+, H−(k) = −σ0v0 · k− σσσ · k, H+(k) = +σ0v0 · k + σσσ · k. (10)

Choosing the Weyl basis, we take:

γ0 =

(
0 1
1 0

)
, γa =

(
0 σa

−σa 0

)
, γ5 =

(
−1 0
0 1

)
, αa = γ0γa =

(
−σa 0

0 σa

)
. (11)

in Minkowski space. Since the matrix γ5 will play an important role in this work, we
specify its definition together with our convention for the related Levi–Civita symbol ε

µναβ
M :

γ5 = iγ0γ1γ2γ3, tr γ5γµ γν γα γβ = −4iεµναβ
M , ε0123

M = +1. (12)

On the basis of (11), the Hamiltonian H is:

H =

(
H+ 0
0 H−

)
= ααα · k + v0 · kγ5. (13)

We then show that the Lagrangian of Equation (3) reproduces the Hamiltonian of
Equation (13) before adding the electromagnetic coupling. We work in momentum space
where iDµ −→ i∂µ −→ −kµ. With this, a direct calculation from the Lagrangian (3) yields:

L = −Ψ̄
[
γAkA + γ0γ5v0 · k

]
Ψ = −Ψ†

[
(k0 + γ5v0 · k) + αaka

]
Ψ, (14)

which gives H in Equation (13) after the Legendre transformation:

H = Π0(∂0ψ)−L = −ψ†k0ψ−L = Ψ† H Ψ, (15)

is performed.

3. The Axial Anomaly

Before explaining the details, we give a quick overview on how the axial anomaly
arises from a general chiral rotation in the fermionic functional for massless fermions, ac-
cording to the general method of Fujikawa in the path integral approach [30,31]. The start-
ing point is:

Z(Aµ) =
∫
DΨ̄′DΨ′ exp

[
iS(Aµ , Ψ′)

]
=
∫
DΨ̄′DΨ′ exp

[
i
∫

d4x
(

Ψ̄′iDΨ′
)]

, (16)

with D =
(
γµDµ + γ0γ5viDi

)
= Γµ(∂µ − ieAµ). The change of integration variables

Ψ(x)→ Ψ′(x) due to the chiral transformations:

Ψ′(x) = eiθ(x)γ5
Ψ(x), Ψ̄′(x) = Ψ̄(x)eiθ(x)γ5

, (17)

with θ(x) arbitrary, leaves the functional integral unchanged and produces:

Z(Aµ) =
∫

J(Aµ)DΨ̄DΨ exp
[
i
∫

d4x
(

Ψ̄iDΨ− Jµ
5 ∂µθ(x)

)]
. (18)

This allows the identification of the chiral current as Jµ
5 = Ψ̄(x)Γµγ5Ψ(x) together

with the introduction of the Jacobian J(Aµ) required by the change of variables DΨ̄′DΨ′ =
J(Aµ)DΨ̄DΨ. The further calculation of J(Aµ) yields:

J(Aµ) = exp
(
− i

∫
d4x θ(x)A(x)

)
. (19)
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Since δZ(Aµ)/δθ(x) = 0, it follows that:

∂µ Jµ
5 = A(x), (20)

which defines the abelian chiral anomaly A(x) of the corresponding current.
The calculation is performed in Euclidean space and we follow the conventions of

Ref. [30]. We perform a Wick rotation:

x0 −→ −ix4, x0 −→ ix4, x4 ∈ R, γ0 −→ −iγ4, (21)

which applies to all tensorial indices. This leaves us with the Euclidean the metric ηµν =
diag(−1,−1,−1,−1) and the Lorentz indices µ now run from 1 to 4. The Euclidean Dirac
matrices satisfy:

{γµ, γν} = 2ηµν, (γµ)† = −γµ (22)

and the pseudoscalar γ5 retains its definition in Minkowski space:

γ5 = iγ0γ1γ2γ3 = γ4γ1γ2γ3 = −γ1γ2γ3γ4, (23)

with the basic properties:

tr γ5 = 0, tr γ5γµγν = 0, tr γ5γµγνγαγβ = −4ε
µναβ
E , ε1234

E = +1. (24)

Since vi
0 is contracted with the space indices of the covariant derivatives Di, we

consider these parameters as the space components of a vector which are not affected by
the Wick rotation. Thus, we have:

vi
0 −→ vi

4, vi
4 ∈ R. (25)

With the above choices, the Euclidean Dirac operator:

DE = γµDµ − iγ4γ5vk
4Dk, (26)

is Hermitian under the scalar product (ψ,DE χ) =
∫

d4xψ†(x)DE χ(x). The Euclidean
action is:

SE =
∫

d4xLE, LE = Ψ̄(x) iDE Ψ(x), (27)

where Ψ̄(x) and Ψ(x) are now independent fields. When going back to the Minkowski
space, we set Ψ → ΨM, Ψ̄ → (ΨM)†γ0, d4x → i(d4x)M and PµηµνQν → (PµηµνQν)M , in
addition to using the relations in Equation (21).

3.1. The Modified Axial Current

Our Lagrangian (27) is trivially invariant under the global transformations:

Ψ(x) −→ eiθΨ(x), Ψ̄(x) −→ Ψ̄(x)e−iθ , (28)

which lead to the charge Noether current:

Jµ = Ψ̄γµΨ− iΨ̄γ4γ5vk
4δ

µ
k Ψ, (29)

such that ∂µ Jµ = 0. The invariance of the Lagrangian can be extended to transforma-
tions including a local parameter θ(x), provided we demand that Aµ −→ Aµ − ∂µθ(x)/e.
Now, the conservation of Jµ is a consequence of gauge invariance, and must still hold in the
quantum version of the theory. In other words, no anomalies are acceptable for this current.

The massless classical Lagrangian (27) has an additional symmetry corresponding to
the chiral transformations (17) with the constant parameter θ. The associated Noether cur-
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rent, which is conserved due to the classical equations of motion, can be readily identified
by an arbitrary infinitesimal variation of the fields:

δΨ̄(x) = iδθ(x)Ψ̄γ5, δΨ(x) = iδθ(x)γ5Ψ(x) (30)

resulting when promoting δθ to a local parameter. The equations of motions yield:

0 = δSE = δ
∫

d4x δLE = −
∫

d4x (∂µδθ)
[
Ψ̄γµγ5Ψ− i(vk

4δ
µ
k )Ψ̄γ4Ψ

]
, (31)

from where we read the conservation of the modified classical axial current:

Jµ
5 = Ψ̄γµγ5Ψ− i(vk

4δ
µ
k )Ψ̄γ4Ψ, (32)

since δθ(x) is arbitrary. In quantum electrodynamics, it is not possible to maintain the
conservation of both Jµ and Jµ

5 , and one must choose the conservation of the electric charge
to preserve gauge invariance. This leads to the presence of the chiral anomaly.

3.2. The Fujikawa Method

As we previously mentioned, the path integral calculation of the chiral anomaly [30]
tells us that its origin is found in the non-trivial Jacobian, arising when performing the
axial transformation. Using this method, we will compute the axial anomaly originating
from our modified Lagrangian (27). We start from the Euclidean path integral:

ZE(Aµ) =
∫
DΨ̄EDΨE exp SE =

∫
DΨ̄EDΨE exp

[ ∫
(d4x)E

(
Ψ̄EiDEΨE

)]
, (33)

where we suppress the subindices E in the following. Recalling that our modified Dirac
operator D is Hermitian, with eigenfunctions ϕn(x) such that Dϕn = λn ϕn, we follow the
standard steps in the calculation of the Jacobian by expanding the fields in terms of the
orthonormal and complete eigenvectors ϕn(x). That is:

Ψ(x) = ∑
n

an ϕn(x), Ψ̄(x) = ∑
n

b̄n ϕ†
n(x), (34)

and similarly for Ψ̄′ and Ψ′. Let us recall that the fields are Grassmann numbers and
so are the coefficients an, a′n and b̄n, b̄′n. The infinitesimal axial transformation (30) yields
the relation:

a′n =
(

δn,m + i
∫

d4xϕ†
n(x)δθ(x)γ5 ϕm(x)

)
an ≡ Tmnan, (35)

with a similar expression for b̄′n in terms of b̄n. The above equation introduces the matrix
T = I + δt with:

δtmn = i
∫

d4xϕ†
n(x) δθ(x) γ5 ϕm(x). (36)

The Grassmann character of the expansion coefficients leads to:

DΨ̄′DΨ′ = lim
N−→∞

N

∏
n=1

db̄′nda′n = (det T)−2 lim
N−→∞

N

∏
n=1

db̄ndan = (det T)−2DΨ̄DΨ, (37)

which identifies J = (det T)−2 as the Jacobian of the transformation. As det(M) =
exp

[
Tr (ln(M))

]
, we have:

Jδθ = (det T)−2 = exp
[
− 2Tr (ln(I + δt))

]
= exp

[
− 2 Tr (δt)

]
,

Jδθ = exp
[
− 2i ∑

n

∫
d4xϕ†

n(x)δθ(x)γ5 ϕn(x)
]
= exp

[
− 2iTr

(
δθ γ5)], (38)
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to the first order in δθ(x). Here, the trace Tr is taken in the matrix space (∑n) as well as in
the coordinate space (

∫
d4x). Nevertheless, the series in the exponential diverges, and so it

must be regularized. We need to preserve invariance under the gauge transformations:

ϕ′n(x) = eiΛ(x)ϕn(x), A′µ = Aµ −
1
e

∂µΛ(x) (39)

which induce the transformation DeiΛ(x) = eiΛ(x)D such that ϕ†
n(x)F(D)ϕn(x) is gauge

invariant. To ensure convergence, we choose F(D) = exp[−D2/M2] with M → ∞ at the
end of the calculation.

It is convenient to define:

α(x) ≡ lim
M−→∞

∑
n

ϕ†
n(x)γ5e−D

2/M2
ϕn(x), (40)

such that the regularized Jacobian is written as

J(Aµ) = exp

[
− 2i

∫
d4x δθ(x) α(x)

]
. (41)

This expression for the regularized Jacobian, together with the change in the Euclidean
action (33) due to the chiral transformations (30), enters in the functional integral by
modifying the Euclidean Lagrangian (27) as

LE → LE + δθ(x)
(

∂µ Jµ
5 − 2i α(x)

)
, (42)

where α(x) depends on the external electromagnetic field and Jµ
5 is given by Equation (32).

Let us emphasize that to calculate the chiral anomaly, it is sufficient to consider only the
infinitesimal transformations (30).

Having regularized the Jacobian, we take a convenient change of basis, from {ϕn(x)}
to {eik·x}, so that:

α(x) = lim
M−→∞

tr
∫ d4k

(2π)4 e−ik·xγ5e−D
2/M2

eik·x. (43)

Here, tr refers to the trace in the gamma matrix space. We then calculate D2 and
organize the resulting terms to evaluate α(x). Using the relation [Dµ, Dν] = −ieFµν,
we obtain:

D2 = DµDµ − ie
4
[γµ, γν]Fµν − eγµγ4γ5vj

4Fµj − 2iγaγ4γ5vj
4DjDa − (vi

4Di)
2. (44)

As [Dµ, eik·x] = ikµeik·x, we can remove the exponentials in Equation (43) by shifting
Dµ → Dµ + ikµ. This leads to:

α(x) = lim
M−→∞

tr γ5
∫ d4k

(2π)4 exp
−1
M2

[
(ikµ + Dµ)

2 − ie
4
[γµ, γν]Fµν − eγµγ4γ5vi

4Fµi

− 2iγiγ4γ5vj
4(ik j + Dj)(iki + Di)− (vj

4(ik j + Dj))
2
]

.
(45)

Scaling the momentum integral kµ −→ Mkµ, and defining λ = 1/M, we obtain the
final expression:

α(x) = lim
λ−→0

∫ d4k
(2π)4 e−kµkµ−(v4

aka)2

(
1

λ4 tr γ5eA+λB
)

. (46)
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with the identifications:

A = −2iγiγ4γ5vj
4k jki, B = α + βiγ

iγ4γ5 +
ie
2

λ(γµγνFµν − 2iγµγ4γ5vj
4Fµj), (47)

and the further splitting:

α = 2i(vi
4kiv

j
4Dj − kµDµ) + λ((vj

4Dj)
2 − DµDµ), βi = −2vj

4(k jDi + kiDj) + 2iλvj
4DjDi. (48)

As the operators A and B do not commute, the factorization eA+λB = eA eλB followed
by an expansion of eλB in a Taylor series of λB is not allowed. We must therefore take the
complete expansion:

eA+λB =
∞

∑
n=0

1
n!
(A+ λB)n. (49)

This includes terms to all orders of vi
4, even when focusing on those proportional to

λ4, which are the only ones which contribute to α(x).
In this work, we restrict ourselves to calculate the contributions to α(x) only to the first

and second order in vi
4. This means that we are considering vi

4 as a small parameter, which
limits the range of our results in the context of further applications to Weyl semimetals.
With this assumption, we need to identify the required powers of vi

4 in A and B. To simplify
the notation, we write vi

4 = vi in what follows:

A = vj Mj, Mj = −2i
(

γiγ4γ5
)

k jki, (50)

B = N0 + vjNj + vivjNij, (51)

N0 = −2ikµDµ + λ

(
ie
2

γµγνFµν − DµDµ

)
,

Nj = −2(k jDi + kiDj)γ
iγ4γ5 + λ

(
2iDjDiγ

iγ4γ5 + eγµγ4γ5Fµj

)
,

Nij = 2ikiDj + λDiDj. (52)

Since any contribution to α(x) arises from the term proportional to λ4 in the expansion
of the exponential (49), we still have to explicitly write the λ-dependence of the above
coefficients. This yields the additional splitting:

N0 = N00 + λN01, Nj = Nj0 + λNj1, Nij = Nij0 + λNij1, (53)

with:

N00 = −2ikµDµ, N01 =

(
ie
2

γµγνFµν − DµDµ

)
, (54)

Nj0 = −2(k jDi + kiDj)
(

γiγ4γ5
)

, (55)

Nj1 =
[
eγµγ4γ5Fµj + 2iDjDi

(
γiγ4γ5

)]
, (56)

Nij0 = 2ikiDj, Nij1 = DiDj. (57)

Let us observe that all the operators in the previous four equations commute with γ5.
Since the binomial expansion in Equation (49) will produce multiple permutations of the
different coordinate operators (Dµ and Fµν), it would be tempting to use the cyclic property
of the trace in coordinate space to move operators from the far right to the far left of some
expressions and therefore simplify the proliferation of non-commutative contributions.
Nevertheless, this would not be useful in the case of derivatives because of the term δθ(x)
inside the spacetime trace. Suppose we have a term like Tr δθ(x)γ5DµFαβDν, then the cyclic
identity will yield Tr Dν δθ(x)γ5DµFαβ which is different from Tr δθ(x)γ5DνDµFαβ since
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[Dν, δθ(x)] = −(∂νδθ(x)) 6= 0. For this reason, we only use the cyclic identity of the trace
tr in matrix space in our calculations.

4. The First Order Expansion

We look for the first order contribution in vi to the anomaly α(x) defined in Equation (46).
To take into account the non-commuting operators that are involved, we start by rewriting
the term (A+ λB)n to be expanded so that the dependence upon va is made explicit:

1
n!
(A+ λB)n =

1
n!
(A + Bivi + vivjCij)

n,

A = λN0, Bi = Mi + λNi, Cij = λNij. (58)

The coefficients N0, Mi, Ni, Nij were previously defined in Equations (50) and (53).
As previously emphasized, we still have to make explicit the λ-dependence of the expansion
and only focus on the λ4 contribution. Furthermore, we recall that γ5 commutes with all
the remaining operators. The contribution to each order n is denoted by an. In this way,
when looking for the linear contribution in vi, it is sufficient to consider the terms:

1
n!
(A+ λB)n → 1

n!

⌊
An−1Bi

⌋
vi ≡ an, (59)

where
⌊

An−1Bi
⌋

is a short-hand notation for all possible ordering arising in a given product
of operators which do not commute. For example, in this case, the coefficients an are:

a2 =
1
2!
bA, Bicvi =

1
2!
(ABi + Bi A)vi,

a3 =
1
3!

⌊
A2, Bi

⌋
vi =

1
3!

(
ABi A + Bi A2 + A2Bi

)
vi,

a4 =
1
4!

⌊
A3, Bi

⌋
vi =

1
4!

(
ABi A2 + Bi A3 + A2Bi A + A3Bi

)
vi,

a5 =
1
5!

⌊
A4, Bi

⌋
vi =

1
5!

(
A4Bi + ABi A3 + A2Bi A2 + A3Bi A + Bi A4

)
vi. (60)

Since A = λN0, all contributions an with n ≥ 6 will yield a zero result.
Now, we make explicit the λ-dependence in order to extract the λ4 terms. To this

end, we use Equation (58) together with the further expansion in powers of λ given in
Equation (53). This yields:

a2 =
1
2!

λ
⌊
(N00 + λN01),

(
Mi + λNi0 + λ2Ni1

)⌋
2
vi, (61)

a3 =
1
3!

⌊
λ2(N00 + λN01)

2,
(

Mi + λNi0 + λ2Ni1

)⌋
3
vi, (62)

a4 =
1
4!

⌊
λ3(N00 + λN01)

3,
(

Mi + λNi0 + λ2Ni1

)⌋
4
vi, (63)

a5 =
1
5!

⌊
λ4(N00 + λN01)

4,
(

Mi + λNi0 + λ2Ni1

)⌋
5
vi, (64)

from where we extract the coefficients of λ4. The result is:

a2

λ4 =
1
2!
bN01, Ni1c2vi, (65)

a3

λ4 =
1
3!

[⌊
N2

01, Mi

⌋
3
+ bN00, N01, Ni0c6 +

⌊
N2

00, Ni1

⌋
3

]
vi, (66)

a4

λ4 =
1
4!

[⌊
N2

00, N01, Mi

⌋
24
+
⌊

N3
00, Ni0

⌋
4

]
vi, (67)

a5

λ4 =
1
5!

⌊
N4

00, Mi

⌋
5
vi. (68)
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The notation is bP, Q, . . . Rcn, where n denotes the total number of non-commuting
products inside the bracket b. . .c. Now, we take the trace in matrix space including γ5,
obtaining:

tr
(

γ5⌊N01, Nj1
⌋

2

)
= 8ie2F4µFµj + 4e

{
F4j, DµDµ

}
− 8e

{
DjDi, F4i

}
, (69)

tr
(

γ5
⌊

N2
01, Mj

⌋
3

)
= 24e(k jki){DαDα, F4i}, (70)

tr
(

γ5

⌊
N2

00, Nj1

⌋
3

)
= 16e

[{(
kµDµ

)2, F4j

}
+
(
kµDµ

)
F4j
(
kµDµ

)]
, (71)

tr
(

γ5⌊N00, N01, Nj0
⌋

6

)
= −16e(kαDα)

{
F4m, (k jDm + kmDj)

}
−16e(k jDm + kmDj){kαDα, F4m}
−16eF4m

{
kαDα, (k jDm + kmDj)

}
, (72)

tr
(

γ5
⌊

N2
00, N01, Mj

⌋
24

)
= −128ek jki

[{(
kµDµ

)2, F4i

}
+
(
kµDµ

)
F4i(kαDα)

]
, (73)

tr
(

γ5
⌊

N3
00, Nj0

⌋
4

)
= 0, tr

(
γ5
⌊

N4
00, Mj

⌋
4

)
= 0. (74)

In the above equations, we factored out the term vj and {P, Q} = PQ + QP denotes
the anticommutator of A and B.

We then perform the integrals with respect to the momentum using the relations:

∫
d4ke−kµkµ () → π2(),

∫
d4ke−kµkµ kαkβ() =

π2

2
δαβ(),∫

d4ke−kµkµ kαkβkµkν() =
π2

4
(
δαβδµν + δαµδβν + δανδβµ

)
(). (75)

Going back to the notation in Equations (65)–(68), we obtain:

1
π2λ4

∫
d4ke−kµkµ tr(γ5a2)j = 4ie2F4µFµj + 2e{D2, F4j} − 4e

{
F4i, DjDi

}
, (76)

1
π2λ4

∫
d4ke−kµkµ tr

(
γ5a3

)
j
= −2e

{
D2, F4j

}
− 4

3
e
[{

D2, F4j

}
+ DµF4jDµ

]
+

8
3

e
(

DjF4iDi + DiF4iDj +
{

F4i,
{

Dj, Di
}})

, (77)

1
π2λ4

∫
d4ke−kµkµ tr

(
γ5a4

)
j
= +

4
3

e
({

D2, F4j

}
+ DµF4jDµ

)
−4

3
e
({{

Dj, Di
}

, F4i
}
+ DjF4iDi + DiF4iDj

)
. (78)

Here, D2 = DµDµ. In this notation, we write the contribution α(1)(x) to the anomaly,
which is linear in vj, as

(4π)2 α(1)(x) =
1

π2λ4

∫
d4k e−kµkµ tr(γ5aj) vj, aj = (a2 + a3 + a4)j. (79)

The direct combination of the previous equations in (79) cancels the D2 terms and
provides commutators of covariant derivatives which can be traded by the corresponding
field strength. We are left with:

(4π)2 α(1)(x) = −i
4
3

e2F4i Fijvj +
4
3

e
(

DiF4iDj − F4iDiDj + DjF4iDi − DiDjF4i

)
vj. (80)
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In order to show the gauge invariance of our result, we rearrange the terms with
covariant derivatives in the following way:

DiF4iDj − F4iDiDj = DiF4iDj − ([F4i, Di] + DiF4i)Dj =
(

∂iF4i
)

Dj, (81)

DjF4iDi − DiDjF4i = Dj[F4i, Di] +
(

DjDi − DiDj
)

F4i = −Dj(∂iF4i)− ieFjiF4i. (82)

Substituting in Equation (80) yields:

(4π)2 α(1)(x) = −i
4
3

e2F4i Fijvj +
4
3

e
((

∂iF4i
)

Dj − Dj(∂iF4i)− ieFjiF4i

)
vj

=
4
3

evj
((

∂iF4i
)

Dj − Dj(∂iF4i)
)

=
4
3

evj
((

∂iF4i
)
(−ieAj)− (∂j∂iF4i) + (ieAj)(∂iF4i)

)
= −4

3
evj∂j∂iF4i. (83)

Nevertheless, we can discard this unexpected gauge invariant term, recalling that a
redefinition of the current is allowed provided the value of the charge remains unchanged.
In our case, we show that the contribution of α(1)(x) to the chiral charge is zero. Returning
to the Minkowski space, the additional term in the divergence of the axial current is
∂µ J(1)µ5 ∼ evj∂j∂µFµ0 = ∂µ(evj∂jFµ0), which yields the extra term J(1)µ5 = evj∂jFµ0 in the
axial current. The corresponding charge:

Q5
(1) =

∫
d3x J5

(1)0 (84)

is identically zero because F00 = 0. Thus, we find a null contribution to the anomaly at first
order in vi.

5. The Second Order Expansion

Since in flat space there is no difference among spacetime and Lorentz indices, we
include a, b, . . . among the space indices in the following. Having obtained that there are
no linear contributions of va to the anomaly, we now focus on the quadratic ones. They are
included in:

1
n!
(A+ λB)n → 1

n!

⌊
(λN0)

n−2, (Ma + λNa), (Mb + λNb)
⌋
(n

2)
vavb

+
1
n!

⌊
(λN0)

n−1, (λNab)
⌋

n
vavb (85)

≡ bn + cn, (86)

where bn and cn denote the first and second term in the right-hand side of Equation (85), re-
spectively. Let us also keep in mind the definition of the symbol b. . .c given in Equation (60).

The only relevant contributions (λ of order less than 5) are b2, b3, b4, b5, b6 and c1, c2,
c3, c4. This means:

b2 =
1
2
b(Ma + λNa)(Mb + λNb)c1vavb,

b3 =
1
6
b(λN0), (Ma + λNa)(Mb + λNb)c3vavb,

b4 =
1

24

⌊
(λN0)

2, (Ma + λNa)(Mb + λNb)
⌋

6
vavb,

b5 =
1

120

⌊
(λN0)

3, (Ma + λNa)(Mb + λNb)
⌋

10
vavb,

b6 =
1

720

⌊
(λN0)

4, (Ma + λNa)(Mb + λNb)
⌋

15
vavb, (87)
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and:

c1 = bλNabc1vavb, c2 =
1
2
b(λN0), (λNab)c2vavb,

c3 =
1
6

⌊
(λN0)

2, (λNab)
⌋

3
vavb, c4 =

1
24

⌊
(λN0)

3, (λNab)
⌋

4
vavb. (88)

In our notation, no permutations are made between the operators (Ma + λNa) and
(Mb + λNb) as they are the same when contracted with va and vb. To emphasize this, we
introduced the further convention that only the terms separated with commas in b. . .c
are subjected to permutations. For clarity, the subindex in b. . .c indicates the number of
permutations in the bracket, which is given by a multinomial coefficient. Making explicit
the full dependence in λ, we have:

b2 =
1
2

⌊
(Ma + λNa0 + λ2Na1)(Mb + λNb0 + λ2Nb1)

⌋
1
vavb,

b3 =
1
6

⌊
λ(N00 + λN01), (Ma + λNa0 + λ2Na1)(Mb + λNb0 + λ2Nb1)

⌋
3
vavb,

b4 =
1

24

⌊
λ2(N00 + λN01)

2, (Ma + λNa0 + λ2Na1)(Mb + λNb0 + λ2Nb1)
⌋

6
vavb,

b5 =
1

120

⌊
λ3(N00 + λN01)

3, (Ma + λNa0 + λ2Na1)(Mb + λNb0 + λ2Nb1)
⌋

10
vavb,

b6 =
1

720

⌊
λ4(N00 + λN01)

4, (Ma + λNa0 + λ2Na1)(Mb + λNb0 + λ2Nb1)
⌋

15
vavb, (89)

and:

c1 = bλ(Nab0 + λNab1)c1vavb, c2 =
1
2

⌊
λ2(N00 + λN01), (Nab0 + λNab1)

⌋
2
vavb,

c3 =
1
6

⌊
λ3(N00 + λN01)

2, (Nab0 + λNab1)
⌋

3
vavb,

c4 =
1

24

⌊
λ4(N00 + λN01)

3, (Nab0 + λNab1)
⌋

4
vavb. (90)

Separating the terms of order λ4, we obtain:

b2 ab
λ4 =

1
2
bNa1Nb1c1 , (91)

b 3 ab
λ4 =

1
6

(
bN00, Na0, Nb1c6 + bN01, Ma, Nb1c6 + bN01, Na0Nb0c3

)
, (92)

b 4 ab
λ4 =

1
24

(⌊
(N00)

2, Ma, Nb1

⌋
12
+
⌊
(N00)

2, Na0Nb0

⌋
6

)
+bN00, N01, Ma, Nb0c24 +

⌊
(N01)

2, Ma Mb

⌋
6

)
, (93)

b 5 ab
λ4 =

1
120

(⌊
(N00)

3, Ma, Nb0

⌋
20
+
⌊
(N00)

2, N01, Ma Mb

⌋
30

)
, (94)

b 6 ab
λ4 = +

1
720

⌊
(N00)

4, Ma Mb

⌋
15

, (95)

and:

c 2 ab
λ4 =

1
2
bN01, Nab1c2 , (96)

c 3 ab
λ4 =

1
6

(⌊
(N00)

2, Nab1

⌋
3
+ bN00, N01, Nab0c6

)
, (97)

c 4 ab
λ4 =

1
24

⌊
(N00)

3, Nab0

⌋
4

, (98)
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where the contraction with vavb has been factored out but taken into account when building
new permutations.

We now compute the traces in γ5(bab) and γ5(cab) using the fact that every matrix
operator commutes with γ5. For the terms involving γ5(bab), we find:

tr γ5bNa1Nb1c1 = 0, tr γ5bN00, Na0, Nb1c6 = 0, (99)

tr γ5
⌊
(N00)

2, Ma, Nb1

⌋
12

= 0, (100)

tr γ5
⌊
(N00)

2, Na0Nb0

⌋
6
= 0, tr γ5

⌊
(N00)

3, Ma, Nb0

⌋
20

= 0, (101)

tr γ5
⌊
(N00)

2, N01, Ma Mb

⌋
30

= 0, tr γ5
⌊
(N00)

4, Ma Mb

⌋
15

= 0. (102)

The only non-zero contributions are:

tr γ5bN01, Ma, Nb1c6 = kaki

(
24e2FαβF4bεαβi4 + 8ieεαβij[Fαβ, DbDj

])
≡ B 1 ab, (103)

tr γ5[N01, Na0Nb0]3 = −8iekakb(FµνDiDj + DiDjFµν − DiFµνDj)ε
µνij

−8iekak j(
{

Fµν, [Di, Db]
}
+ DbFµνDi − DiFµνDb) εµνij ≡ B 2 ab, (104)

tr γ5

[
(N01)

2, Ma Mb

]
6
= 16kakbe2k2εαβµνFαβFµν

+16e2kakbkik j

(
4εαβj4FαβFi4 − 2FαβFiνεαβjν

)
≡ B 3 ab, (105)

tr γ5[N00, N01, Ma, Nb0]24 = 32ei(kakikbkµ)εαβki[DµDkFαβ − FαβDkDµ

]
+32ei(kakikbkµ)εαβki[DkFαβDµ − DµFαβDk

]
≡ B 4 ab. (106)

Here, we introduce the notation B 1 ab,B 2 ab, which contribute to the term b 3 ab to-
gether with B 3 ab,B 4 ab, which contribute to the term b 4 ab.

For the terms involving cab, we have:

tr γ5bN01, Nab1c2 = 0, tr γ5
⌊
(N00)

2, Nab1

⌋
3
= 0, (107)

tr γ5bN00, N01, Nab0c6 = 0, tr γ5
⌊
(N00)

3, Nab0

⌋
4
= 0, (108)

and thus:
tr γ5 cab

λ4 = 0. (109)

In other words, at this stage, we have:(
1

λ4 tr γ5eA+λB
)

ab
=

1
3!
(B 1 ab +B 2 ab) +

1
4!
(B 3 ab +B 4 ab). (110)

The Integration over the Momentum

Recalling Equation (46), the last step in our calculation is the integration over the
momentum in the expression:

α(2)(x) =
∫ d4k

(2π)4 e−kµkµ

(
1− (vaka)

2
)( 1

λ4 tr γ5eA+λB
)
≡ 1

16π2 (∆1 + ∆2), (111)

which includes the full contribution to the anomaly in quadratic order in va, after using
Equations (103)–(106) together with Equation (110). Once again, we perform the integrals
given in Equation (75).
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To begin with, we deal with the first term of the right-hand side of Equation (111),
which yields the contribution in the term ∆1. The momentum integration provides the
intermediate results:

1
π2

∫
d4k e−kµkµ

(
1
3!
B 1 ab

)
= +

2
3

ieεαβaj[Fαβ, DbDj
]

+ 2e2FαβF4bεαβa4, (112)

1
π2

∫
d4k e−kµkµ

(
1
3!
B 2 ab

)
= +

2
3

ieδab(ieFijFµν + DiFµνDj)ε
µνij

+
2
3

ieεµνaj(
{

Fµν,
[
Dj, Db

]}
+ DbFµνDj − DjFµνDb), (113)

1
π2

∫
d4k e−kµkµ

(
1
4!
B 3 ab

)
= e2δab

3
4

εαβµνFαβFµν

+e2
(

4
3

εαβb4FαβFa4 −
2
3

FαβFaνεαβbν

)
, (114)

1
π2

∫
d4k e−kµkµ

(
1
4!
B 4 ab

)
= −1

3
ieδabεµνij[+ieFµνFij + 2DiFµνDj

]
−2

3
ieεµνaj[FµνDjDb − DbDjFµν + DbFµνDj − DjFµνDb

]
. (115)

Combining the above equations and after a long but straightforward calculation,
the potentially dangerous terms containing covariant derivatives Di either cancel or arrange
themselves to produce the commutator [Di, Dj] = −ieFij. We recall that terms proportional
to kµ in the integration, arising from Equation (106), do not contribute when µ = 4 due to
the antisymmetry in that variable. Furthermore, we remark that we can interchange a↔ b
since the result must be symmetric after the multiplication by vavb.

From Equation (110), we obtain:

1
π2

∫
d4k e−kµkµ

(
1

λ4 tr γ5eA+λB
)

ab
= e2δab

[
3
4

εµναβFµνFαβ −
1
3

εµνijFµνFij

]
−2

3
e2FαβFbνεαβaν +

2
3

e2εαβajFαβFjb −
2
3

e2εαβa4FαβFb4. (116)

Using the relation:

εµνijFµνFij =
1
2

εµναβFµνFαβ (117)

in the first line of (116), and separating into ν = 4 and ν = j the summation over ν in the
first term of the second line, results in:

∆1 =
1

π2

∫
d4ke−kµkµ

(
1

λ4 tr γ5eA+λB
)

ab
vavb

= e2δab vavb 7
12

εµναβFµνFαβ −
4
3

e2εαβibFαβFiavavb − 4
3

e2FijFa4εijb4vavb. (118)

The additional identity:

vavbFαβFiaεαβib = vavbFijF4aεijb4 +
1
4
|v|2εµναβFµνFαβ, |v|2 = δab vavb, (119)

yields the further simplification:

∆1 =
1

π2

∫
d4ke−kµkµ

(
1

λ4 tr γ5eA+λB
)

ab
vavb =

1
4

e2|v|2εµναβFµνFαβ. (120)

The remaining contribution ∆2 in the expression (111) comes from the zeroth order
expansion in va of the exponential, which is:



Symmetry 2021, 13, 1181 16 of 20

tr γ5

(
eA+λB

)
=

1
2!

tr γ5(λ2N01)
2 = λ4 e2

2
εµναβFµνFαβ, (121)

giving:

∆2 = −vavb 1
λ4π2

∫
d4ke−kµkµ(kbka)

e2

2
εµναβFµνFαβ = −|v|2 e2

4
εµναβFµνFαβ. (122)

Summarizing, the second order contribution in va to α(x) = (∆1 + ∆2)/(16π2) is
identically zero.

6. Discussion and Conclusions

We calculated the abelian axial anomaly in a Lorentz violating model for a particular
case of the modification γµ → γµ + dµ

νγνγ5 introduced in the fermionic sector of the
SME [2,7]. Motivated by the continuum Hamiltonian of a tilted WSM, whose cones
have opposite tilting, we considered the LIV parameter dµ

ν = δ
µ
i δ0

νvi, where vi is the
tilting parameter given by the microscopic structure of the material. Using the Fujikawa
path integral approach [30], we identify the modified axial current Jµ

5 and calculate the
anomaly to second order in the tilting parameter. For a linear order in vi, we find the
rather unexpected gauge invariant result α(1)(x) ∼ evj∂j∂iFi0, saying that the chiral current

obtains the additional term J(1)µ5 = evj∂jFµ0. Its contribution to the chiral charge Q(1)
5 =∫

d3xJ(1)05 is identically zero, which displays this term as an irrelevant contribution to the
anomaly. Thus, we conclude that the first order correction to the anomaly is zero. For the
second order correction, we also found a zero contribution, after a highly non-trivial
cancellation of a variety of combinations of spacetime operators which live in matrix space.
Then, to the order considered, our result in the Euclidean space is the standard one:

α(x) =
e2

32π2 FµνFρσεµνρσ, (123)

yielding the well-known anomaly in Minkowski space:

∂µ Jµ
5 = − e2

16π2 FµνFρσεµνρσ =
e2

2π2 E · B. (124)

We then comment on previous work reported in the literature dealing with the calcu-
lation of axial anomalies in the Lorentz invariance violating (LIV) case, emphasizing those
which use the Fujikawa approach and consider the dµ

ν contribution in Equation (5). First,
we compare our calculation with that of Ref. [34], appropriately expanded to the second
order, and which served as a motivation for the present endeavor. Even though we deal
with the same system, and contrary to our case, the authors in this reference find non-zero
corrections to the standard axial anomaly using the Fujikawa approach.

As one can see from our calculation, after discarding the irrelevant term proportional
to vj∂j∂iFi4, the cancellation of the linear and the quadratic contributions heavily rests
upon the appearance of terms including the covariant derivatives Dµ, which must come
in the right combinations to finally produce a gauge invariant result, in accordance with
the regularization employed. In our case, the terms DµDµ cancel, and those proportional
to DiDjFkl , DiFkl Dj, Fkl DiDj, for example, manage to yield gauge invariant contributions
which are functions of the electromagnetic tensor. We take these facts as a strong support
to the correctness of our evaluation. Such factors involving the covariant derivatives
do not appear in Ref. [34], and we feel that this is due to an incorrect separation of
the non-commuting terms in the exponential. In fact, the non-commuting term A =

−2iγiγ4γ5vj
4k jki cannot be factored out as eA eλB in the full expression eA+λB , which is

the starting point of the calculation.
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Another representative work is that of Ref. [35], which also considers the Fujikawa
approach to calculate the LIV abelian axial anomaly for a particular case of the contribution
Γµ in the SME. They impose the restriction dµ

ν = Q cµ
ν with the idea of keeping the

modified Dirac algebra as close as possible to the Lorentz covariant case. Here, Q is a
constant number. To apply their calculation to our case requires expressing our generalized
gamma matrix Γµ in terms of theirs, which amounts to solving the equation:

Γµ = γµ + δ
µ
i viγ0γ5 = (δ

µ
ν + cµ

ν)γ
ν(1 + Qγ5). (125)

It is a direct calculation to show that:

cµ
ν = 0, Q =

1
4

viγiγ
0, (126)

thus yielding a matrix-valued Q which lends inapplicable their method to our problem.
Nevertheless, the conclusion in Ref. [35] is that the corresponding abelian axial anomaly is
not sensitive to the terms that violate Lorentz and that it is given by the standard Lorentz
invariant expression (124). The authors in Ref. [36] also employ the Fujikawa method for
the calculation of the anomaly in the Lorentz violating case, but they set dµ

ν = 0 from
the outset.

Turning to the perturbative approach, the work in Ref. [37] generalizes the standard
triangle calculation to include the tensors cµ

ν and dµ
ν without any restriction. The author

deals with the general case of non-abelian chiral theories. His conclusion is that the left
and right chiral anomalies are independent of the LIV parameters cµ

ν and dµ
ν, thus keeping

the original form corresponding to the Lorentz covariant case. In particular, the abelian
chiral anomaly would be still given by Equation (124).

The clash between Ref. [34] and the general result [37], together with the fact that the
alternative methods employed (Fujikawa approach versus perturbative calculation) are
not known to be equivalent in the full LIV case, was our main motivation to perform this
independent calculation. Our conclusion is also that, to the order considered, the calculated
abelian axial anomaly is insensitive to the LIV corrections.

It is important to emphasize that even though the anomaly turned out to be indepen-
dent of the LIV modifications of the fermionic Hamiltonian describing a specific material,
this cannot imply that the electromagnetic response of the material will also be independent
on them. For example, the different electromagnetic response of untilted (dµ

ν = 0) versus
tilted (dµ

ν 6= 0) Weyl semimetals has been experimentally shown in Refs. [38,39].
In fact, the calculation of the effective action using a chiral rotation involving the

corresponding Jacobian, which is related to the anomaly, is rather subtle—as clearly shown
in Ref. [21] for the case of a WSM. We find it illuminating to briefly describe the main steps
of the procedure. The starting point is the Lagragian density:

L = iΨ̄
(

γµ(∂µ − ieAµ) + ibµγµγ5
)

Ψ, (127)

where bµ is a four-vector which describes the separation of the Weyl nodes in energy–
momentum space. Then, an infinitesimal chiral rotation δθ(x) = i δs γ5θ(x), 0 ≤ s ≤ 1,
with θ(x) = bµxµ is implemented, which leads to:

Z[Aµ] =
∫
DΨ̄DΨ exp

[
ln JA +

∫
d4x Ψ̄ iγµ(∂µ − ieAµ + bµ(1− δs)γ5)Ψ

]
. (128)

Observe that this rotation introduces both the Jacobian JA together with the axial
current in the term proportional to δs. Then, the Jacobian is calculated, yielding:

ln JA = −δs
∫

d4x θ(x)
e2

16π2 εµναβ FµνFαβ. (129)
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The final step is the integration of δs from zero to one, which eliminates the term
bµ(1 − δs)γ5, and introduces the anomaly contribution (129). This says we can trade
the original microscopic information contained in bµγµγ5 by the additional macroscopic
effective electromagnetic action originating from ln JA, thus defining the effective action.
In other words, the contribution ln JA from the Jacobian of the chiral rotation by itself is
not necessarily the effective action, unless we are able to perform steps similar to those
shown above.

A pending goal in this research would be to obtain the effective electromagnetic action
in our approximation and also as a non-perturbative result in the tilting parameter vi. This
would be especially important in the context of Weyl semimetals, since the value of vi will
not necessarily as small as it must be in the case of LIV in the SME. Furthermore, the case
|v| = 1 is of special physical importance, as it corresponds to cones tilted parallel to the
Fermi energy plane. This value is also relevant since it distinguishes the so-called type-I
(|v| < 1) from type-II Weyl semimetals (|v| > 1), and it is the point at which the density
of states diverges, requiring an additional regularization [16]. Only a non-perturbative
approach in vi could probe strongly tilted WSMs. A more complete calculation of the
effective action would also necessarily involve the incorporation of the separation of the
nodes given by bµ in momentum space.
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Appendix A. Useful Relations

Here, we collect some identities that we used in the course of the calculation. For the
traces of the Euclidean Dirac matrices, we have:

tr γ5 = tr γ5γµγν = tr γ5γµγνγρ = 0,

tr γµ1 γµ2 . . .γµ2n+1 = 0, µn = 1, 2, 3, 4,

tr γµγν = 4ηµν,

tr γµγνγργσ = 4
(
ηµνηρσ + ηµσηνρ − ηµρηνσ

)
,

tr γ5γµγνγργσ = −4εµνρσ,

tr γ5γµγνγργσγαγβ = −4
(
ηµνερσαβ − ηµρενσαβ + ηνρεµσαβ

+ ηαβεµνρσ + ησαεµνρβ − ησβεµνρα
)
.

(A1)

For example, the last relation gives:

tr γ5γργ4γµγνγjγ4Fµν = −4
(
ηρ4Fµνεµνj4 + 2F4iε

ρji4), (A2)

which appears when computing the trace of Equation (103).
Furthermore, some relations involving the electromagnetic field tensor are:

FµνFiσεµνiσ =
3
4

FµνFρσεµνρσ, FµνFijε
µνij =

1
2

FµνFρσεµνρσ, (A3)

FµνFi4εµνi4 =
1
4

FµνFρσεµνρσ, kikρεµνijFjρ = k jkiε
µνjrFir, (A4)

FµνvavbFiaεµνib = FijF4avavbεijb4 +
1
4
|v|2FµνFρσεµνρσ, (A5)
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where the ρ = 4 component in the last expression of Equation (A4) does not contribute as
it will integrate to zero.
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