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Abstract: The paper presents a methodology for training neural networks for vision tasks on synthe-
sized data on the example of steel defect recognition in automated production control systems. The
article describes the process of dataset procedural generation of steel slab defects with a symmetrical
distribution. The results of training two neural networks Unet and Xception on a generated data grid
and testing them on real data are presented. The performance of these neural networks was assessed
using real data from the Severstal: Steel Defect Detection set. In both cases, the neural networks
showed good results in the classification and segmentation of surface defects of steel workpieces in
the image. Dice score on synthetic data reaches 0.62, and accuracy—0.81.

Keywords: computer vision; synthetic data; steel defect detection; machine learning

1. Introduction

Machine learning algorithms for computer vision are widely used in various industries.
A distinctive feature of such algorithms is the need for large arrays of labeled data on which
to train them. The quality of a machine-learning-based automation system largely depends
on the quality of the initial training sample. It should maximally reliably reflect the nature
of the process under study, in other words, be representative [1]. Obtaining such a sample
is very laborious; it is necessary to capture as many different variants of the object states
under investigation as possible [2]. For example, if you want to classify an object, you have
to include as many unique instances of each class in the sample as possible. However, this
may cause difficulties because of the intraclass variation of the object, i.e., objects belonging
to the same class may have a different representation (color, shape, size, etc.) [3].

In most cases, developers of industrial automation systems do not have at their
disposal the necessary amount of production data sufficient to implement machine learning
algorithms. This is due to the company not recording the necessary parameters beforehand
nor doing it properly; automatic markup of production data being difficult, and manual
markup requiring a high level of specialist competence; data collection must be performed
in long time intervals (months and years) [4,5]. As a consequence, these limitations, taken
together, significantly complicate the implementation of machine learning algorithms in
automated control systems for technological processes [6].

One of these tasks is to control the surface condition of steel blanks and identify defects.
Currently, machine learning methods applied as part of steel slab surface inspection systems
require a large number of defect images for training. This in turn increases the time required
to collect and markup the training dataset [7,8].

The use of synthesized datasets will solve these problems by accelerating the collection
and partitioning of training data. The use of synthesized data for training machine learning
algorithms has been gaining popularity recently. Artificial datasets based on computer
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graphics are already used for self-driving vehicles [9] and for cancer diagnostics [10]. This
study considers the possibility of applying synthesized data for semantic segmentation
and classification of defects in steel products. The developed approach is supposed to
be used in automatic control systems of steel rolling production. These systems include
vision-based quality control systems.

The task of determining defects on the workpiece surface is complex; it combines
several independent vision tasks. First of all, it is necessary to determine the presence of
surface defects in the image [11]. It is necessary to have a clear idea about the permissible
visual deviations, which can lead to false positive recognitions. For example, grease
residues, water drops, or fragments of slab markings can be such deviations (Figure 1).

Figure 1. Examples of defects in steel workpiece. From left to right: scratch, surface crack, network
cracks and caverns.

The next stage of slab surface analysis is the semantic classification of defects. The
complexity of this task is due to the wide intraclass diversity of defects [12–14]. Most slab
surface defects are cracks of various shapes, lengths, depths, and localization. An important
problem is the technical side of defect detection. Current methods of metal surface scanning
are based on optical systems: video imaging, laser triangulation, and their combination.
Depth cameras have also recently begun to be used. The choice of the technical means of
scanning the workpiece surface largely determines the further architecture of the system,
the type of the classification algorithm, and the physical possibility of determining certain
types of surface defects [15].

This publication presents the results of generating a synthetic dataset of steel defects
for training a machine learning model. On the data generated during the work, neural
networks of two types were trained—a classifier and a semantic segmentation network.
Both models were also trained and evaluated on the dataset. The resulting models can be
used in industrial quality control systems for rolled steel. Methods for evaluating neural
networks are in Section 2. The dataset generation methodology and model training results
are in Section 3.

2. Materials and Methods

To solve the issue described in the Introduction, a technique was developed that
allows for generating training datasets for training neural networks. The implementation
of the proposed methodology consists of the following stages. The process of build-
ing the above-described hardware and software complex can be divided into several
sequential stages:

1. Collecting data and forming training samples. At this stage, the collection, systemati-
zation, and marking of data on surface defects of steel workpiece are carried out in
a unified form [16].

2. Building a defect classifier model. A classifier model is built and trained based on the
obtained ideas about the types of defects on the surfaces of rolled steel and variations
in their manifestation [17].

3. Evaluating the quality of the classifier’s work. The chosen classifier model is tested
on a specially selected sample, and its samples were not part of the training one.
Additionally, distortions can be introduced into the test sample images to test the
robustness of the algorithm as a whole [18].
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The freeware 3D editor Blender was used to generate the training sample. It is also
equipped with built-in shader writing tools necessary for software generation of random
slab defect textures.

To test the proposed methodology, two neural networks were trained on the syn-
thesized data: Unet [19]—for segmentation of defects in the image and the Xception
classifier [20]. Trained neural networks were tested on a real dataset Severstal: Steel Defect
Detection [21] as a validation sample.

Metrics such as precision, recall, and Dice coefficient were used to evaluate the quality
of the models [22–24].

Algorithm accuracy within one class or intraclass accuracy is a metric that charac-
terizes the number of all records that really belong to a certain class, to the sum of all
exemplars that were assigned to that class by the algorithm. The metric is calculated using
the following Formula (1):

Precission =
TP

TP + FP
(1)

where TP—number of true positive answers, and FP—number of false positives.
Recall is another important metric that is defined as the proportion of samples from

a class that are correctly predicted by the model. This metric is the proportion of class
instances recognized by the algorithm as related to the total number of instances of the
class in the sample [25]. Recall is calculated using Formula (2):

Recall =
TP

TP + FN
(2)

where TP—number of true positive answers, FN—number of false-negative responses.
Dice’s coefficient [26] is used to compare the pixel match between the predicted

segmentation and the corresponding ground truth [27]. The Dice coefficient is determined
by Formula (3):

Dice(X, Y) =
2 · | X ∩ Y|
|X |+ | Y | (3)

where X—predicted pixel set, Y—true meaning.
The Dice coefficient is primarily a statistical measure used to assess the similarity of

two samples: the similarity coefficient [25].
The training and evaluating of the neural network model was carried out using the

Keras framework and the Python programming language. To assess the model quality
metrics, validation samples were fed to the input of the model, which the neural network
had not previously processed during training. We compared the neural network’s responses
to the ground truth values according to the chosen metric. To automate the evaluation of
the quality of the work of models, the function “evaluate”, built into the Keras framework,
was used.

The artificial training dataset was generated in the Blender 3 editor using the built-in
shader tool; the program texture generation was done in the Blender API. This software
product is widely used for generating artificial data for object detection using state-of-the-
art deep learning models [26].

The process of generating an artificial dataset of defects includes the following steps:

• Setting the 3D scene of the object;
• Procedural generation of the surface texture (defect);
• Image rendering;
• Render of the mask.

To generate synthetic data containing surface defects of steel workpieces, a scene simulating
the shooting of a steel by a camera was assembled in the Blender 3D graphical editor.

The slab model is a parallelepiped onto which the shader material is superimposed.
Depending on the input parameters passed to the shader, the texture displayed on the
surface of the parallelepiped changes. Thus, a unique combination of defects of the same
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kind can be reproduced with each new set of parameters. The disadvantage of this approach
is the need to create a new shader for each type of defect. Therefore, in this work, the
choice was limited to three basic types of defects: cracks, bubbles, foreign inclusions, and
surface irregularities.

The conditions of shooting the slab surface in the 3D scene mimic real industrial
conditions with cameras mounted vertically above the slab surface. The light source in the
scene was placed slightly above the camera, thus simulating the illumination provided by
the computer vision cameras (Figure 2).

Figure 2. Defective steel sheet model in Blender.

The surface texture of the workpiece, the type, and frequency of appearance of defects
on it were set through the shader of the material assigned to the workpiece model. Thus,
we were able to determine in advance, even before generation, the composition (by defects)
of our artificial dataset. Image generation for the dataset was performed automatically by
sequentially shifting the slab model in the scene relative to the camera, thus simulating
the movement of the workpiece along the roller conveyor. Shader parameters were also
changed with each iteration to create a greater variety of defect shapes and locations. Thus,
the effect of random distribution of surface defects was created, after which the image of
the surface was rendered.

The main algorithm for creating a synthetic dataset is the procedural generation of
a surface defect. It is a shader—a program that sequentially transforms the original noise
texture. A separate shader was written for each of the four defect types. The variety of
shapes of the generated defects was adjusted using the detorsion and noise parameter. For
example, such a defect as a crack is based on a procedural texture—a spherical gradient. It,
like the cracks themselves, has the shape of an ellipse, subjected in advance to numerous
deformations through changes in its UV coordinates and the symmetry of the original
figure. The fracture boundaries are subject to displacements along the normal. The textures
for chipping generation were created by transforming the Perlin noise. An overall scheme
of the procedural dataset generation algorithm is shown in Figure 3.

Parallel to the photorealistic images, their black and white masks are also created. The
pixels containing the defects of the slab surface are highlighted in white. The masks are
one of the variants of training data markup for segmenting architectures. They also can be
used to automate the markup of classifiers. Thus, one of the main difficulties encountered
in the preparation of real data—markup—was solved. In this approach, the partitioning
was done automatically, in parallel with the generation of the images themselves.
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Figure 3. Scheme of the procedural dataset generation algorithm.

Since the data generation process for the dataset is fully controllable, we can predeter-
mine the distribution of surface defect classes within the sample. In this case, it is necessary
to ensure the most equal distribution between the classes of different defects. It is necessary
to normalize the distribution of instances in the dataset. This will increase the accuracy of
defect classification and reduce the influence of the predominant number of instances of
individual classes in the sample on the classification result as a whole. Synthetic data have
been tested over two artificial neural networks: U-Net and Xception.

U-Net is one of the standard CNN architectures for image segmentation tasks when
you need to segment its areas by class and create a mask that will divide the image into
several classes. The architecture consists of a contraction path for capturing context and
an asymmetrical expanding path that allows precise object localization. U-Net achieves
high results in various real-world problems using a small amount of data to achieve high
segmentation accuracy [27].

The Xception is a compact modification of the Inception classifier architecture based
on depthwise separable convolution. We used this architecture to classify defect types on
original image areas with steel defects that previously were recognized with the U-Net
model. This mode was chosen among many other classifiers because it requires less data
for correct object classification.

As the result of combining both of these models, the semantic segmentation problem
on steel defects models was solved.

3. Results

An artificial dataset consisting of 6000 defect images and including four defect classes
was generated during the experiment. A total of 1500 images were generated for each type
of defect to ensure an even distribution of samples in the sample.

Below, there are the results of generating synthetic data for different types of defects.
Figure 4 shows examples of defects and their masks in the generated dataset.

Two neural network architectures were trained: Unet—for defect segmentation in the
original image and Xception—for classification. Both neural networks were trained on
a synthesized dataset and tested on real data.

Below are the results of training the Unet neural network on synthetic data with
validation on real data. The neural network was trained entirely on a synthetic dataset for
30 epochs. Figure 5 shows charts of the change in the Dice coefficient for epochs for the test
and validation samples.
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Figure 4. Examples of defect renders of various types and their masks.

Figure 5. Dice Coefficient change graph.

As can be seen from the graph, the Dice coefficient for the training sample reaches
0.815 and 0.632 for the validation sample, represented by real defect images.

Figure 6 shows examples of segmentation of defects in an image from a real dataset
by the Unet neural network trained on synthetic data.

Figure 6. Defect segmentation by the Unet neural network.

As can be seen from the above images, the neural network with the Unet architecture
quite accurately and clearly identifies defects in the original image of real defects in
rolled steel.
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The Xception architecture was used to classify defects. This neural network was also
trained on synthetic data. The training was carried out in 15 epochs. As mentioned earlier,
the main metrics for assessing the quality of classification are accuracy and recall.

Figures 7 and 8 show graphs of the accuracy of defect recognition on synthetic (train-
ing) data and on real data.

Figure 7. Precision graphs during neural network training.

Figure 8. Plots of recall during neural network training.

As can be seen from the graphs, Xception classifies defects in training and validation
samples with a sufficiently high accuracy. At the same time, the recall of the classification
is somewhat lower and on the validation sample does not exceed 0.81, which indicates
a large number of false positive recognitions (Figure 8).

Let us compare the performance of architectures trained on synthetic data and on real
data. To do this, we train the presented Xception and Unet models on the real Severstal:
Steel Defect Detection dataset, which includes 7095 samples and four classes of defects.
Figure 9 shows the distribution of defects by type in the real dataset.
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Similar to the artificial dataset, the real data was divided into training and test dataset
in the ratio of 80% for training and 20% for test dataset. Neural network training was
also performed with the same settings as on synthetic data, i.e., 30 epochs for Unet
and 15 epochs for Xception. Thus, the only different condition in this experiment was
dataset. Table 1 shows the comparison of neural network quality metrics on real and
synthesized data.

Table 1. Summary ANN performance on real and synthetic dataset.

Unet Xception

Dice Score Precision Recall

Real dataset 0.56 0.87 0.91
Synthetic dataset 0.63 0.81 0.89

4. Discussion

The proposed approach makes it possible to develop and debug computer vision
algorithms without having access to the real object of research, as well as to automate the
process of marking up training data for segmentation and classification tasks. The results
of neural networks validation trained on artificial data were promising. This confirms the
viability of the proposed methodology for working with different types of vision algorithms
and the application of techniques for the development of industrial quality control and
defectoscopy systems.

The variety of scenes that can be rendered using 3D graphics does not limit the scope
of synthetic data to the steel industry. The proposed approach can be applied in other areas,
for example, in medicine, analysis of satellite images, and autonomous vehicles.

Synthetic data made it possible to correctly train neural networks for such basic tasks
of computer vision as image segmentation and image classification. During the variation
of neural networks on real data, the accuracy of recognition and segmentation of defects
noticeably decreased. This is primarily due to the fact that procedurally generated images
of defects are not realistic enough in comparison with their real counterparts, which, of
course, introduces certain distortions in the operation of the algorithm. In general, it should
be noted that the quality of defect classification is lower than segmentation. This proves
that the images of defects on artificial data are not realistic enough. This disadvantage can
be compensated by combining synthetic and real data as part of one dataset, whenever
possible, or by increasing the realism of generated images using computer graphics.
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5. Conclusions

In the course of this work, we investigated the possibility of using synthesized datasets
to train deep neural networks that solve the problems of computer vision on the exam-
ple of segmentation and classification of surface defects in steel workpieces. A training
dataset was generated using the 3D graphics editor Blender. Deep neural networks of
two architectures Unet and Xception were trained on the synthetic data set. The perfor-
mance of these neural networks was evaluated on real data from the Severstal:Steel Defect
Detection dataset.

In both cases, neural networks showed good results in the classification and segmenta-
tion of surface defects of steel blanks in the image. The results obtained in the course of this
experiment indicate the feasibility of applying the proposed methodology. These results
are especially valuable when access to the object under study is difficult and the collection
and markup of real data are time-consuming. In addition, the proposed technique can be
used to increase the variety of existing datasets with real data.

The considered methodology, in addition to its use in industrial flaw detection, can
also be useful in other computer vision tasks that require a large amount of data and are
difficult to mark up.
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