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1. Introduction

Recently, many convergence results by the proximal point algorithm have been extended
from the classical linear spaces to the setting of manifolds (see, for example, refs. [1–18].
Li et al. [10] developed the proximal point method in the setting of Hadamard manifolds.
Later, Li et al. [11] extended the Mann and Halpern iteration scheme for finding the fixed
points of nonexpansive mappings from Hilbert spaces to Hadamard manifolds. Very recently,
Ansari et al. [12] and Al-Homidan-Ansari-Babu [13] considered the problem of finding

x ∈ Fix(T)
⋂
(A + B)−1(0) (1)

in a Hadamard manifold, where T is a nonexpansive mapping, B is a set-valued maximal
monotone mapping, and A is a single-valued continuous and monotone mapping. They
proposed some Halpern-type and Mann-type iterative methods. Under suitable conditions they
proved that the sequence generated by the algorithm converges strongly to a common element
of the set of fixed points of the mapping T and the set of solutions of the inclusion problem.

Recently, Calao et al. [14] and Khammahawong et al. [19] studied the equilibrium
problem on Hadamard manifolds. Let M be a Hadamard manifold, TM be the tangent
bundle of M, K be a nonempty closed geodesic convex subset of M, and F : K× K −→ R
be a bifunction satisfying F(x, x) = 0, for all x ∈ K. Then the equilibrium problem on the
Hadamard manifold is to find x∗ ∈ K such that

F(x∗, y) ≥ 0, ∀y ∈ K. (2)

We denote the set of a equilibrium points of the equilibrium problem (2) by EP(F).
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Motivated and inspired by the above results, we consider the following common
solution problem for a finite family of the equilibrium problem, quasi-variational inclusion
problem and the fixed point on Hadamard manifolds: i.e., to find x∗ ∈ K such that

x∗ ∈
m⋂

i=1

EP(Fi)
⋂
(A + B)−1(0)

⋂
F(S). (3)

In this paper, an iterative algorithm for finding a commmon solution of problem (3)
is proposed. Under suitable conditions, some strong convergence is proven. Our results
extend some recent results in literature.

2. Preliminaries

In this section, we recall some fundamental definitions, properties, useful results, and
notations of Riemannian geometry. Readers can refer to the textbook [20].

Let M be a finite dimensional differentiable manifold, Tp M be the tangent space of
M at p ∈ M, and we denote by TM =

⋃
p∈M Tp M the tangent bundle of M. An inner

product Rp(·, ·) on Tp M is called a Riemannian metric on Tp M. A tensor field R(·, ·) is
said to be a Riemannian metric on M if for every p ∈ M, the tensorRp(·, ·) is a Riemannian
metric on Tp M. The corresponding norm to the inner productR(·, ·) on Tp M is denoted
by || · ||p. A differentiable manifold M endowed with a Riemannian metricR(·, ·) is called
a Riemannian manifold. The length of a piecewise smooth curve γ : [0, 1]→ M joining p
to q (i.e., γ(0) = p and γ(1) = q) is defined as

L(γ) =
∫ 1

0
||γ′(t)||dt. (4)

the Riemannian distance d(p, q) is the minimal length over the set of all such curves joining
p to q, which induces the original topology on M.

A Riemannian manifold M is complete if for any p ∈ M, all geodesics emanating from
p are defined for all t ∈ R. A geodesic joining p to q in M is said to be a minimal geodesic
if its length is equal to d(p, q). A Riemannian manifold M equipped with Riemannian
distance d is a metric space (M, d). By Hopf–Rinow Theorem [20], if M is complete, then
any pair of points in M can be joined by a minimal geodesic. Moreover, (M, d) is a complete
metric space and bounded closed subsets are compact.

Definition 1. If M is a complete Riemannian manifold, then the exponential map expp : Tp M→
M at p ∈ M is defined by exppv = γv(1, p) for all v ∈ Tp M, where γv(·, p) is the geodesic
starting from p with velocity v, that is, γv(0, p) = p and γ′v(0, p) = v.

It is known that expptv = γv(t, p) for each real number t. It is easy to see that
expp0 = γv(0, p) = p, where 0 is the zero tangent vector. Moreover, for any p, q ∈ M we
have d(p, q) = ||exp−1

p q||. Note that the exponential map expp is differentiable on Tp M for
any p ∈ M.

Definition 2. A complete simply connected Riemannian manifold of non-positive sectional curva-
ture is called a Hadamard Manifold.

Proposition 1 ([20]). Let M be a Hadamard manifold. Then for any two points x, y ∈ M, there
exists a unique normalized geodesic γ : [0, 1]→ M joining x = γ(0) to y = γ(1), which is in fact
a minimal geodesic denoted by

γ(t) = expxtexp−1
x y, ∀t ∈ [0, 1]. (5)
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Lemma 1 ([21]). Let 4(p, q, r) be a geodesic triangle in a Hadamard manifold M. Then there
exist p̄, q̄, r̄ ∈ R2 such that

d(p, q) = || p̄− q̄||, d(q, r) = ||q̄− r̄||, d(r, p) = ||r̄− p̄||.

The triangle 4( p̄, q̄, r̄) is called the comparison triangle of the geodesic-triangle
4(p, q, r), which is unique up to isometry of M.

Lemma 2 ([11]). Let4(p, q, r) be a geodesic triangle in a Hadamard manifold M,4( p̄, q̄, r̄) be
its comparison triangle.

(1) Let α, β, γ (respectively, ᾱ, β̄, γ̄) be the angles of4(p, q, r) (respectively, 4( p̄, q̄, r̄) at
the vertices p, q, r(respectively, p̄, q̄, r̄). Then, the following inequalities hold:

ᾱ ≥ α, β̄ ≥ β, γ̄ ≥ γ.

(2) Let z be a point on the geodesic joining p to q and z̄ be its comparison point in the
interval [ p̄, q̄]. suppose that d(z, p) = ||z̄− p̄|| and d(z, q) = ||z̄− q̄||. Then

d(z, r) ≤ ||z̄− r̄||. (6)

The following inequalities can be proved easily.

Lemma 3 ([15]). Let M be a finite dimensional Hadamard manifold.

(i) Let γ : [0, 1]→ M be a geodesic joining x to y. Then we have

d(γ(t1), γ(t2)) = |t1 − t2|d(x, y), ∀t1, t2 ∈ [0, 1]; (7)

(From now on d(x, y) denotes the Riemannian distance).
(ii) for any x, y, z, u, w ∈ M and t ∈ [0, 1], the following inequalities hold:

d(expx(1− t)exp−1
x y, z) ≤ td(x, z) + (1− t)d(y, z); (8)

d2(expx(1− t)exp−1
x y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y); (9)

d(expx(1− t)exp−1
x y, expu(1− t)exp−1

u w) ≤ td(x, u) + (1− t)d(y, w). (10)

Let M be a Hadamard manifold. A subset K ⊂ M is said to be geodesic convex if for
any two points x and y in K, the geodesic joining x to y is contained in K.

In the sequel, unless otherwise specified, we always assume that M is a finite dimen-
sional Hadamard manifold, and K is a nonempty, bounded, closed and geodesic convex
set in M and Fix(S) is the fixed point set of a mapping S.

A function f : K → (−∞, ∞] is said to be geodesic convex if, for any geodesic
γ(λ)(0 ≤ λ ≤ 1) joining x, y ∈ C, the function f ◦ γ is convex, i.e.,

f (γ(λ)) ≤ λ f (γ(0)) + (1− λ) f (γ(1)) = λ f (x) + (1− λ) f (y).

Definition 3. Let X be a complete metric space and Q ⊂ X be a nonempty set. A sequence
{xn} ⊂ X is called Fejér monotone with respect to Q if for any y ∈ Q and n ≥ 0,

d(xn+1, y) ≤ d(xn, y).

Lemma 4 ([22,23]). Let X be a complete metric space, Q ⊂ X be a nonempty set. If {xn} ⊂ X
is Fejér monotone with respect to Q, then {xn} is bounded. Moreover, if a cluster point x of {xn}
belongs to Q, then {xn} converges to x.

Definition 4. A mapping S : K → K is said to be
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(1) nonexpansive if
d(Sx, Sy) ≤ d(x, y), ∀x, y ∈ K.

(2) firmly nonexpansive [20] if for all x, y ∈ K, the function φ : [0, 1]→ [0, ∞] defined by

φ(t) := d(expxtexp−1
x Sx, expytexp−1

y Sy), ∀t ∈ [0, 1]

is nonincreasing

Proposition 2 ([24]). Let S : K → K be a mapping. Then the following statements are equivalent.

(i) S is firmly nonexpansive;
(ii) For any x, y ∈ K and t ∈ [0, 1]

d(S(x), S(y)) ≤ d(expxtexp−1
x Sx, expytexp−1

y Sy); (11)

(iii) For any x, y ∈ K

R(exp−1
S(x)S(y), exp−1

S(x)x) +R(exp−1
S(y)S(x), exp−1

S(y)y) ≤ 0. (12)

Lemma 5 ([16]). If S : K → K is a firmly nonexpansive mapping and Fix(S) 6= ∅, then for any
x ∈ K and p ∈ Fix(S) the following conclusion holds:

d2(Sx, p) ≤ d2(x, p)− d2(Sx, x). (13)

In the sequel, we denote by Ω(M) the set of all single-valued vector fields A : M→
TM, such that A(x) ∈ Tx M for each x ∈ M, and let the domain D(A) of A be defined by

D(A) = {x ∈ M : A(x) ∈ Tx M}.

Definition 5 ([25]). A single-valued vector field A ∈ Ω(M) is said to be monotone if

〈A(x), exp−1
x y〉 ≤ 〈A(y),−exp−1

y x〉, ∀x, y ∈ M.

Let X (M) denote the set of all set-valued vector fields B : M → 2TM such that
B(x) ⊂ Tx M for all x ∈ M, and let the domain D(B) of B be defined by D(B) = {x ∈ M :
B(x) 6= ∅}.

Definition 6 ([26]). A set-valued vector field B ∈ X (M) is said to be

(1) monotone if for any x, y ∈ D(B),

R(u, exp−1
x y) ≤ R(v,−exp−1

y x), ∀u ∈ B(x) and ∀v ∈ B(y);

(2) maximal monotone if it is monotone and for all x ∈ D(B) and u ∈ Tx M, the condition

R(u, exp−1
x y) ≤ R(v,−exp−1

y x) ∀y ∈ D(B) and ∀v ∈ B(y).

implies u ∈ B(x).
(3) For given λ > 0, the resolvent of B of order λ > 0 is a set-valued mapping JB

λ : M → 2TM

defined by
JB
λ (x) := {z ∈ M : x ∈ expzλB(z)}, ∀x ∈ M.

Theorem 1 ([24]). Let B ∈ X (M). The following assertions hold for any λ > 0

(1) the vector field B is monotone if and only if JB
λ is single-valued and firmly nonexpansive.

(2) if D(B) = M, the vector field B is maximal monotone if and only if JB
λ is single-valued, firmly

nonexpansive and the domain D(JB
λ ) = M.
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Proposition 3 ([24]). Let K be a nonempty subset of M and T : K → M be a firmly nonexpansive
mapping. Then

R(exp−1
Ty x, exp−1

Ty y) ≤ 0

holds for any x ∈ F(T) and y ∈ K.

Lemma 6 ([13]). Let K be a nonempty closed subset of M and B ∈ X (M) be a maximal monotone
vector field. Let {λn} ⊂ (0, ∞) be a real sequence with limn→∞λn = λ > 0 and a sequence
{xn} ⊂ K with limn→∞xn = x ∈ K such that limn→∞ JB

λn
(xn) = y. Then, y = JB

λ (x).

Proposition 4 ([12]). Let A ∈ Ω(M) be a single-valued monotone vector field, B ∈ X (M) be a
set-valued maximal monotone vector field. For any x ∈ K, the following assertions are equivalent

(1) x ∈ (A + B)−1(0);
(2) x = JB

λ (expx(−λA(x))), ∀λ > 0.

Let K be a nonempty closed geodesic convex set in M and F : K × K → R be a
bifunction satisfying the following assumptions:
(A1) for all x ∈ K, F(x, x) ≥ 0;

(A2) F is monotone, that is, for all x, y ∈ K, F(x, y) + F(y, x) ≤ 0;
(A3) for every y ∈ K, x 7→ F(x, y) is upper semicontinuous;
(A4) for every x ∈ K, y 7→ F(x, y) are geodesic convex and lower semicontinuous;
(A5) x 7→ F(x, x) is lower semicontinuous;
(A6) there exists a compact set L ⊆ M such that x ∈ K \ L =⇒ ∃y ∈ K

⋂
L such that

F(x, y) < 0.

Definition 7 ([14]). Let F : K × K → R be a bifunction. The resolvent of F is a multivalued
operator TF

r : M→ 2K defined by

TF
r (x) = {z ∈ K : F(z, y)− 1

r
〈exp−1

z x, exp−1
z y〉 ≥ 0, ∀y ∈ K}.

Theorem 2 ([14]). Let F : K× K → R be a bifunction satisfying the following conditions:

(1) F is monotone;
(2) for all r > 0, TF

r is properly defined, that is, the domain D(TF
r ) 6= ∅.

Then for any r > 0,

(i) the resolvent TF
r is single-valued;

(ii) the resolvent TF
r is firmly nonexpansive;

(iii) the fixed point set of TF
r is the equilibrium point set of F,

F(TF
r ) = EP(F).

Theorem 3 ([24]). Let F : K× K → R be a bifunction satisfying the assumptions (A1)− (A3).
Then D(TF

r ) = M.

Lemma 7 ([24]). Let F : K×K → R be a bifunction satisfying the assumptions (A1), (A3), (A4), (A5)
and (A6). Then, there exists z ∈ K such that

F(z, y)− 1
r
〈exp−1

z x, exp−1
z y〉 ≥ 0, ∀y ∈ K,

for all r > 0 and x ∈ M.

3. The Main Results

In the sequel, we always assume that
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(1) K is a nonempty closed bounded geodesic convex subsets of a Hadamard manifold
M;

(2) B : K −→ 2TM is a maximal monotone setvalued vector field;
(3) A : K −→ TM is a continuous and monotone single-valued vector field satisfying the

following condition [13].

(Assumption 3.1):

d(expx(−λA(x)), expy(−λA(y))) ≤ (1− ρ)d(x, y), ∀x, y ∈ K, λ > 0 and ρ ∈ [0, 1]. (14)

(4) S : K → K is a nonexpansive mapping;
(5) Fi : K× K −→ R, i = 1, 2, · · · , m, is a bifunction satisfying the conditions (A1)− (A6),

and for given r > 0, the resolvent of Fi is a multivalued operator TFi
r : M −→ 2K such

that for all x ∈ M

TFi
r (x) = {z ∈ K : Fi(z, y)− 1

r
〈exp−1

z x, exp−1
z y〉 ≥ 0, ∀y ∈ K}, i = 1, 2, · · · , m.

(6) Denote by

Sl
r := TFl

r ◦ TFl−1
r ◦ · · · ◦ TF2

r ◦ TF1
r , l = 1, 2, · · · , m.

Theorem 4. Let K, M, A, B, {Fi}m
i=1, {Sl

r}m
l=1 and S be the same as above. Let {xn}, {un}, {yn}

and {zn} be the sequences generated by x0 ∈ K
un = JB

λn
(expxn(−λn A(xn))),

yn = expxn αnexp−1
xn Sun,

zn = Sm
r (yn),

xn+1 = expxn βnexp−1
xn zn. ∀n ≥ 0,

(15)

where {αn}, {βn} and {λn} are positive sequences satisfying the following conditions:

(i) 0 < a ≤ αn, βn ≤ b < 1, ∀n ∈ N ;
(ii) 0 < λ̂ ≤ λn ≤ λ̃ < ∞, ∀n ∈ N;
(iii) ∑∞

n=1 αnβn = ∞
If Ω =

⋂m
i=1 EP(Fi)

⋂
(A + B)−1(0)

⋂
F(S) 6= ∅, then {xn} converges strongly to a

solution of problem (1.4).

Proof. We divide the proof of Theorem 4 into five steps.
For n ≥ 0, let γn : [0, 1] → M be the geodesic joining γn(0) = xn to γn(1) = zn and

γ̂n : [0, 1]→ M be the geodesic joining γ̂n(0) = xn to γ̂n(1) = Sun. Then {xn+1} and {yn}
can be written as

xn+1 := γn(βn), yn = γ̂n(αn). (16)

(I) We first prove that Ω is closed and geodesic convex.
Because every nonexpansive mapping is continuous, therefore F(S) is closed. We can

prove that F(S) is geodesic convex.
In fact, let p, q ∈ F(S), we need to prove that a gecdesic γ : [0, 1]→ M joining p to q is

contained in F(S). It is well-known that in Hadamard manifold M, for any p, q ∈ M, and
t ∈ [0, 1], there exists a unique point ωt = γ(t) = expptex−1

p q such that

d(p, q) = d(p, ωt) + d(ωt, q).

By the nonexpansiveness of S and the geodesic convexity of Riemannian distance,
we have

d(p, S(ωt)) = d(S(p), S(ωt)) ≤ d(p, ωt) = d(p, γ(t)) ≤ td(p, q).
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Similarly, we get
d(S(ωt), q) ≤ (1− t)d(p, q).

From the above, we have

d(p, q) ≤ d(p, S(ωt)) + d(S(ωt), q) ≤ d(p, q).

So
d(p, q) = (p, S(ωt)) + d(S(ωt), q).

By the uniqueness of ωt, we have ωt = S(ωt). Therefore, ωt = γ(t) ∈ F(S). Thus,
F(S) is geodesic convex.

From Proposition 4, we have (A + B)−1(0) = F(JB
λ (exp(−λA))). Because JB

λ is non-
expansive, this together with Assumption 3.1, JB

λ (exp(−λA)) is nonexpansive. Therefore,
(A + B)−1(0) is closed and geodesic convex in M.

From Theorem 2, we have TFi
r is firmly nonexpansive and F(TFi

r ) = EP(Fi). Therefore,
EP(Fi) is closed and geodesic convex in M. Hence, Ω is closed and geodesic convex.

(II) We prove that {xn} is Fejér monotone with respect to Ω.

Let ω ∈ Ω, Then ω ∈ (A + B)−1(0) and ω ∈ ⋂m
i=1 EP(Fi). By Proposition 4, we have

ω = JB
λn
(expω(−λn A(ω))). By nonexpansiveness of resolvent JB

λn
of B and Assumption

3.1, we have

d(un, ω) = d(JB
λn
(expxn(−λn A(xn))), JB

λn
(expω(−λn A(ω))))

≤ d(expxn(−λn A(xn)), expω(−λn A(ω)))

≤ (1− ρ)d(xn, ω)

≤ d(xn, ω).

(17)

Since ω ∈ ⋂M
i=1 EP(Fi), by Theorem 2, for each i = 1, 2, · · · , m, TFi

r is non-expansive
and Fix(TFi

r ) = EP(Fi), therefore Sm
r is also non-expansive and ω ∈ Fix(Sm

r ), we have

d(zn, ω) = d(Sm
r (yn), Sm

r (ω)) ≤ d(yn, ω). (18)

Because yn = γ̂n(αn) for all n ≥ 0, S is a nonexpansive mapping on K and ω ∈ F(S),
by using the geodesic convexity of Riemannian distance and (17), we have

d(yn, ω) = d(γ̂n(αn), ω)

≤ (1− αn)d(γ̂n(0), ω) + αnd(γ̂n(1), ω)

≤ (1− αn)d(xn, ω) + αnd(Sun, ω)

≤ (1− αn)d(xn, ω) + αnd(un, ω)

≤ d(xn, ω).

(19)

Since xn+1 := γn(βn), from (18) and (19), we have

d(xn+1, ω) = d(γn(βn), ω)

≤ (1− βn)d(γn(0), ω) + βnd(γn(1), ω)

≤ (1− βn)d(xn, ω) + βnd(zn, ω)

≤ (1− βn)d(xn, ω) + βnd(yn, ω)

≤ (1− βn)d(xn, ω) + βnd(xn, ω)

≤ d(xn, ω).

(20)

This shows that {d(xn, ω)} is decreasing and bounded below. Hence, the limit
limn→∞d(xn, ω) exists for each ω ∈ Ω. This implies that {xn} is Fejér monotone with respect to
Ω. Hence, the sequence {xn} is bounded. So are the sequences {expxn(−λn A(xn))}, {S(un)},
{yn} and {zn}.
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(III) Next, we prove that
lim

n→∞
d(xn+1, xn) = 0

We fix n ≥ 0 and let ∆(xn, zn, ω) be a geodesic triangle with vertices xn, zn and ω, and
∆(xn, zn, ω) ⊆ R2 be a corresponding comparison triangle. Then, we have

d(xn, ω) = ||xn −ω||, d(zn, ω) = ||zn −ω|| and d(zn, xn) = ||zn − xn||.

Recall xn+1 := expxn βnexp−1
xn zn, so it comparison point is xn+1 = (1− βn)xn + βnzn.

Using (6), (18) and (19), we get

d2(xn+1, ω) ≤ ||xn+1 −ω||2

= ||(1− βn)xn + βnzn −ω||2

= ||(1− βn)(xn −ω) + βn(zn −ω)||2

= (1− βn)||xn −ω||2 + βn||zn −ω||2 − βn(1− βn)||xn − zn||2

= (1− βn)d2(xn, ω) + βnd2(zn, ω)− βn(1− βn)d2(xn, zn)

≤ (1− βn)d2(xn, ω) + βnd2(yn, ω)− βn(1− βn)d2(xn, zn)

≤ (1− βn)d2(xn, ω) + βnd2(xn, ω)− βn(1− βn)d2(xn, zn)

= d2(xn, ω)− βn(1− βn)d2(xn, zn).

(21)

From (21), we also obtain

βn(1− βn)d2(xn, zn) ≤ d2(xn, ω)− d2(xn+1, ω),

and we further have

d2(xn, zn) ≤
1

βn(1− βn)
(d2(xn, ω)− d2(xn+1, ω))

≤ 1
a(1− b)

(d2(xn, ω)− d2(xn+1, ω)).

Since {xn} is a Fejér monotone with respect to Ω which implies that limn→∞d(xn, ω)
exists. By letting n→ ∞, we have

lim
n→∞

d(xn, zn) = 0. (22)

Recall that xn+1 := γn(βn) for all n ∈ N, using the geodesic convexity of Riemannian
distance, we obtain

d(xn+1, xn) = d(γn(βn), xn)

≤ (1− βn)d(γn(0), xn) + βnd(γn(1), xn)

= (1− βn)d(xn, xn) + βnd(zn, xn)

= βnd(xn, zn)

≤ bd(xn, zn).

Letting n→ ∞ and using (22), we get

lim
n→∞

d(xn+1, xn) = 0. (23)

(IV) Next we prove that limn→∞ d(xn, yn) = 0 and limn→∞ d(xn, Sun) = 0.
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Because {xn} is bounded, there exists a constant L such that d(xn, ω) ≤ L for all n ≥ 0.
By (17) and (20), Assumption 3.1 and geodesic convexity of Riemannian distance, we have

d(xn, ω) ≤ (1− βn−1)d(xn−1, ω) + βn−1d(yn−1, ω)

≤ (1− βn−1)d(xn−1, ω) + βn−1((1− αn−1)d(xn−1, ω) + αn−1d(un−1, ω))

≤ (1− βn−1)d(xn−1, ω) + βn−1((1− αn−1)d(xn−1, ω) + αn−1(1− ρ)d(xn−1, ω))

= (1− βn−1)d(xn−1, ω) + βn−1(1− ραn−1)d(xn−1, ω)

= (1− ραn−1βn−1)d(xn−1, ω),

where ρ is the same as in Assumption 3.1. Let 0 ≤ m ≤ n, then

d(xn, ω) ≤ L
n−1

∏
j=m

(1− ραjβ j). (24)

On the other hand, by (19) and (20), we have

d(xn, yn) ≤ d(xn, xn+1) + d(xn+1, ω) + d(yn, ω)

≤ d(xn, xn+1) + 2d(xn, ω).

Therefore, by using (24), the above inequality becomes

d(xn, yn) ≤ d(xn, xn+1) + 2L
n−1

∏
j=m

(1− ραjβ j).

By taking limit as n→ ∞, we get

lim
n→∞

d(xn, yn) ≤ lim
n→∞

d(xn, xn+1) + 2L lim
n→∞

n−1

∏
j=m

(1− ραjβ j). (25)

By condition (iii), we have

lim
n→∞

n−1

∏
j=m

(1− ραjβ j) = 0.

This together with (23) and (25) implies that

lim
n→∞

d(xn, yn) = 0. (26)

From (17) and (20), we have

d(xn, Sun) ≤ d(xn, xn+1) + d(xn+1, ω) + d(Sun, ω)

≤ d(xn, xn+1) + d(xn+1, ω) + d(un, ω)

≤ d(xn, xn+1) + 2d(xn, ω).

Similarly, we can prove that

lim
n→∞

d(xn, Sun) = 0, and lim
n→∞

d(xn, un) = 0. (27)

Since
d(Sm

r (xn), xn) ≤ d(Sm
r (xn), Sm

r (yn)) + d(Sm
r (yn), xn)

≤ d(xn, yn) + d(zn, xn).
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Letting n→ ∞ and using (22) and (26), we have

lim
n→∞

d(Sm
r (xn), xn) = 0. (28)

(V) Next we prove that the cluster point ν of the sequence {xn} belongs to Ω.

We have already proved in step 1 that the sequence {xn} is bounded. Therefore, there
exists a subsequence {xnj} of {xn} which converges to a cluster point ν of {xn}. Thus, (27)
implies that unj → ν as j→ ∞. By nonexpansiveness of S, we have

d(ν, S(ν)) ≤ d(xnj , ν) + d(xnj , S(unj)) + d(S(unj), S(ν))

≤ d(xnj , ν) + d(xnj , S(unj)) + d(unj , ν).

By (27) and taking limit as j→ ∞, we have

d(ν, S(ν)) = 0,

which means that ν ∈Fix(S).
Next, we prove that ν ∈ ⋂m

i=1 EP(Fi).
By (28), we have limj→∞d(Sm

r (xnj), xnj) = 0. Since Sm
r is a non-expansive mapping, it

is demi-closed at zero, so ν ∈ Fix(Sm
r ). In order to prove that ν ∈ ⋂m

i=1 EF(Fi) it should be
proved that Fix(Sm

r ) =
⋂m

i=1 Fix(TFi
r ).

It is obvious that
⋂m

i=1 Fix(TFi
r ) ⊆ Fix(Sm

r ). Next we prove that

Fix(Sm
r ) ⊆

m⋂
i=1

Fix(TFi
r ).

Let q ∈ Fix(Sm
r ) and p ∈ ⋂m

i=1 Fix(TFi
r ), we have

d(q, p) = d(Sm
r q, p) = d(TFm

r Sm−1
r q, p) ≤ d(Sm−1

r q, p)

≤ d(Sm−2
r q, p) ≤ · · · ≤ d(S1

r q, p) = d(TF1
r q, p) ≤ d(q, p).

This implies that

d(q, p) = d(Sm
r q, p) = d(Sm−1

r q, p) = d(Sm−2
r q, p) = · · · = d(S1

r q, p)

= d(TF1
r q, p).

(29)

It follows from (29) and Lemma 5 that for each i = 1, 2, · · · , m, we have

d2(Si
rq, p) + d2(Si

rq, Si−1
r q) ≤ d2(Si−1

r q, p) = d2(q, p).

Since d(Si
rq, p) = d(q, p), this implies that for each i = 1, 2, · · · , m

d(Si
rq, Si−1

r q) = 0, i.e., Si−1
r q ∈ Fix(TFi

r ). (30)

Taking i = 1 in (2), we have q = TF1
r (q). Taking i = 2 in (3.17), we have that

q = TF1
r (q) = TF2

r (q).

Taking i = 1, 2, · · · , m in (2) we can prove that

q = TF1
r (q) = TF2

r (q) = · · · = TFm−1
r (q) = TFm

r (q), i.e., q ∈
m⋂

i=1

Fix(TFi
r ).

Finally, we prove that ν ∈ (A + B)−1(0).
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Because λ̂ ≤ λn ≤ λ̃ then we can choose λ > 0 such that the subsequence {λnj} of
{λn} converges to λ. Because un = JB

λn
(expxn(−λn A(xn))). Then, by (27) and Lemma 6,

we have

0 = lim
j→∞

d(xnj , unj)

= lim
j→∞

d(xnj , JB
λnj

(expxnj
(−λnj A(xnj))))

= d(ν, JB
λ (expν(−λA(ν)))).

From Proposition 4, we have ν ∈ (A + B)−1(0). Hence, ν ∈ Ω. This completes the
proof.

In Theorem 4, take Fi ≡ 0 (i = 1, 2, · · · , m), then the following Corollary can be
obtained from Theorem 4 immediately.

Corollary 1. Let K, M, A, B and S be the same as in Theorem 4. Let {xn}, {un} and {yn} be
sequences generated by x0 ∈ K and

un = JB
λn
(expxn(−λn A(xn))),

yn = expxn αnexp−1
xn S(un),

xn+1 = expxn βnexp−1
xn yn. ∀n ≥ 0,

(31)

where {αn}, {βn} and {λn} are positive sequences satisfying the conditions (i), (ii) and (iii) in
Theorem 4. If Ω1 = (A + B)−1(0)

⋂
F(S) 6= ∅, then {xn} converges strongly to some point

ν ∈ Ω1.
In Theorem 4 take Fi ≡ 0(i = 1, 2, · · · , m) and S = I (identity mapping on K), then the

following corollary can be obtained from Theorem 4.

Corollary 2. Let K, M, A and B be the same as in Theorem 4. Let {xn}, {un} and {yn} be the
sequences generated by x0 ∈ K and

un = JB
λn
(expxn(−λn A(xn))),

yn = expxn αnexp−1
xn un,

xn+1 = expxn βnexp−1
xn yn. ∀n ≥ 0,

(32)

where {αn}, {βn} and {λn} are positive sequences satisfying the conditions (i), (ii) and (iii) in
Theorem 4. If Ω2 = (A + B)−1(0) 6= ∅, then {xn} converges strongly to some point ν ∈ Ω2.

In Theorem 4, take A ≡ 0 and S = I (the identity mapping on K), then the following result
can be obtained from Theorem 4 immediately.

Corollary 3. Let K, M, B, {Fi}m
i=1 and {Sl

rn}
m
l=1 be the same as in Theorem 4. Let {xn}, {un}, {yn}

and {zn} be the sequences generated by x0 ∈ K:
un = JB

λn
(xn),

yn = expxn αnexp−1
xn un,

zn = Sm
r (yn),

xn+1 = expxn βnexp−1
xn zn. ∀n ≥ 0,

(33)

where {αn}, {βn} and {λn} are positive sequences satisfying the the conditions (i), (ii) and (iii)
in Theorem 4. If Ω3 =

⋂m
i=1 EP(Fi)

⋂
B−1(0) 6= ∅, then {xn} converges strongly to some point

ν ∈ Ω3.
In Theorem 4 take A ≡ 0, B ≡ 0 and S = I ( identity mapping on K), then the following

result can be obtained from Theorem 4 immediately.
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Corollary 4. Let K, M, {Fi}m
i=1 and {Sl

rn}
m
l=1 be the same as in Theorem 4. Let {xn} and {zn}

be sequences generated by x0 ∈ K and{
zn = Sm

r (xn),

xn+1 = expxn βnexp−1
xn zn. ∀n ≥ 0,

(34)

where {αn}, {βn} and {λn} are positive sequences satisfying the conditions (i), (ii) and (iii) in
Theorem 4. If Ω4 =

⋂m
i=1 EP(Fi) 6= ∅, then {xn} converges to some point ν ∈ Ω4.
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