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Abstract: In this paper, the existence and uniqueness of solutions to a coupled formally symmet-
ric system of fractional differential equations with nonlinear p-Laplacian operator and nonlinear
fractional differential-integral boundary conditions are obtained by using the matrix eigenvalue
method. The Hyers–Ulam stability of the coupled formally symmetric system is also presented with
certain growth conditions. By using the topological degree theory and nonlinear functional analysis
methods, some sufficient conditions for the existence and uniqueness of solutions to this coupled
formally symmetric system are established. Examples are provided to verify our results.

Keywords: existence and uniqueness of solutions; coupled system; Hyers–Ulam stability; topological
degree theory; p-Laplacian

1. Introduction

Symmetry is an important form of many things in nature and society; many of the
differential equations we studied are symmetric. Among these equations, the fractional
differential equation is one of the important fields that has profound theories and wide
applications in modern mathematics. Mathematical models of fractional differential equa-
tions are at the heart of quantitative descriptions of a large number of physical systems,
including engineering, plasma physics, aerodynamics, electrical circuits and many other
fields. The existence and stability of solutions for fractional differential equations are
studied as one of the key techniques for solving physical systems (see [1–5] and references
therein). The existence and uniqueness of solutions for fractional differential equations
are investigated usually by using classical fixed point theory. Various kinds of stabilities
have been established, such as Lyapunov stability, Mittag–Leffler stability and exponential
stability, see ([6–9] for details). These stability results have attracted a lot of attention in
recent years as they arise naturally in various areas of applications.

The stability of functional equations derived from the stability problem of group
homomorphism was first proposed by Ulam in 1940. In 1941, Hyers solves the stability
problem of additive mappings over Banach spaces. Since then, Hyers–Ulam stability has
developed rapidly. These stability results are widely used in stochastic analysis, financial
mathematics and actuarial science. As is known to all, it is difficult and time-consuming
to calculate the Lyapunov stability for some nonlinear fractional differential equations,
and it is also a challenge to construct the exact Lyapunov function. Hyers–Ulam stability
is just suitable for nonlinear fractional differential equations dealing with this situation.
A significant number of researchers have devoted to not only Hyers–Ulam stability but
also the existence and uniqueness of solutions of fractional differential equations.

In 1983, Leibenson [10] introduced a differential equation with the p-Laplacian op-
erator, which models the turbulent flow in a porous medium. The classical nonlinear
p-Laplacian operator is defined as
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Φp(s) = |s|p−2s, p > 1,
1
p
+

1
q
= 1, Φq(s) = Φ−1

p . (1)

Henceforth, differential equations with a p-Laplacian operator are widely applied to
different fields of physics and natural phenomena, for example, mechanics, dynamical
systems, biophysics, plasmaphysics, material science, and electrodynamics (see [10–12]
and the references therein).

The existence and Hyers–Ulam stability of solutions of fractional differential equations
with p-Laplacian has attracted much attention in recent years. In 2014, using the Leggett–
William fixed point theorem, Lu et al. [13] obtained the existence of two or three positive so-
lutions of fractional differential equations with p-Laplacian operator. K. P. Prasad et al. [4]
discuss the existence of positive solutions for the coupled system of the fractional order
boundary value problem with p-Laplacian operator in 2016. In 2017, H. Khan et al. [14]
investigate the existence, uniqueness and Hyers–Ulam stability for the following coupled
system of fractional differential equations with p-Laplacian operator

Dβ1
0+
(
Φp
(

Dα1
0+v(t)

))
= −ψ1(t, z(t)),

Dβ2
0+
(
Φp
(

Dα2
0+z(t)

))
= −ψ2(t, v(t)),

Dα1
0+v(t)|t=0 = 0 =

(
Φp

(
Dα1

0+v(t)
))′
|t=0 = Dδ1

0+v(t)|t=η1 ,

v(1) =
Γ(2− δ1)

η1−δ1
1

J α1−δ1 Φq

(
J β1

0+ ψ1(t, z(t))
)
|t=η1 ,

Dα2
0+z(t)|t=0 = 0 =

(
Φp

(
Dα2

0+z(t)
))′
|t=0 = Dδ2

0+z(t)|t=η2 ,

v(1) =
Γ(2− δ2)

η1−δ2
2

J α2−δ2 Φq

(
J β2

0+ ψ2(t, v(t))
)
|t=η2 ,

where t ∈ [0, 1], ηi, δi ∈ (0, 1), αi, βi ∈ (1, 2], for i = 1, 2. Using topological degree theory
and a Lerray–Schauder-type fixed point theorem, H. Khan et al. [15] studied the Hyers–
Ulam stability for this coupled system with the different initial boundary conditions for
αi, βi ∈ (2, 3). The nonlinear p-Laplacian operator is defined as that in (1).

A. Khan et al. [6] discuss the existence, uniqueness and Hyers–Ulam stability of solutions
to a coupled system of fractional differential equations with nonlinear p-Laplacian operator

Dβ1
(
Φp(Dα1 µ(t))

)
+F1(x, v(x)) = 0, x ∈ (0, 1),

Dβ2
(
Φp(Dα2 v(t))

)
+F2(x, µ(x)) = 0, x ∈ (0, 1),

Dα1 µ(x)|x=0 = 0 = µ(x)|x=0 = µ′′(x)|x=0,

µ′(x)|x=1 = η1 Iγ1
P ψ1(µ),

Dα2 v(x)|x=0 = 0 = v(x)|x=0 = v′′(x)|x=0,

v′(x)|x=1 = η2 Iγ2
P ψ2(µ),

where Φp is p-Laplacian operator and 2 < αi < 3, 0 < βi < 1, P, ηi, γi > 0, ψi ∈ L[0, 1],
i = 1, 2 and Dαi is the Caputo derivative of order αi.

Motivated by A. Khan [6] and H. Khan [14,15], this paper is devoted to study the
existence, uniqueness and Hyers–Ulam stability of solutions to nonlinear coupled fractional
differential equations with p-Laplacian operator of the form
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Dβ1
0
(

Lp
(

Dα1
0 x(t)

))
−F1(t)x(t) = Φ(t, x(t), y(t)),

Dβ2
0
(

Lp
(

Dα2
0 y(t)

))
−F2(t)y(t) = Ψ(t, x(t), y(t)), t ∈ T ,

Dα1
0 x(t)|t=0 = 0, x(t)|t=0 = 0, x′′(t)|t=0 = 0,

x′(t)|t=1 =
η1

Γ(γ1)

∫ b

0
(b− ξ)γ1−1ψ1(x(ξ))dξ,

Dα2
0 y(t)|t=0 = 0, y(t)|t=0 = 0, y′′(t)|t=0 = 0,

y′(t)|t=1 =
η2

Γ(γ2)

∫ b

0
(b− ξ)γ2−1ψ2(y(ξ))dξ,

(2)

where 2 < αi ≤ 3, 0 < βi ≤ 1, P, ηi, γi > 0, ψi ∈ L[0, 1], and Dαi
0 and Dβi

0 are the Caputo
derivatives of order αi and βi, i = 1, 2, respectively. Lp(s) = |s|p−2s is p-Laplacian operator,
where 1

p + 1
q = 1, Lq denotes inverse of p-Laplacian. Fi : T → R are closed bounded

and linear operators for any t ∈ T = [0, 1], and Φ, Ψ : T ×R×R → R are continuous
functions, i = 1, 2. For this purpose, we use the coincidence degree method and nonlinear
functional analysis theory to deal with the existence and uniqueness of solutions and the
matrix eigenvalue method in order to investigate Hyers–Ulam stability.

The paper is organized as follows. In Section 2, we provide some auxiliary results
which will be used in the next sections. In Section 3, using the coincidence degree theory
and nonlinear functional analysis methods, the existence result of coupled system (2) is
established, then the existence and uniqueness of solutions are discussed using Banach
fixed point theorem. In Section 4, the Hyers–Ulam stability of the solutions is investi-
gated by using the matrix eigenvalue method with some nonlinear boundary conditions.
The Section 5 is devoted to providing some examples to illustrate the application of our
main results.

2. Auxiliary Results

In this paper, we revisit the problem of Hyers–Ulam stability of Banach space using the
coincidence degree theory and nonlinear functional analysis methods. LetH1 be the space of
all continuous functions x : [0, 1] → R, endowing the norm supt∈[0,1]{|x(t)| : x ∈ C[0, 1]}.
Then H1 is a Banach space under this norm, and, hence, their product space, denoted by
H = H1 ×H1, is also a Banach space with norm ‖(x, y)‖ = ‖x‖+ ‖y‖. Here, we recall some
special definitions, theorems and Hyers–Ulam stability results from the literature [1,3,5,16–18],
which we will use throughout this paper.

Definition 1. Let σ ∈ R+. for a given function x : [a, ∞) → R, then its σ−order fractional
integral in the sense of Riemann–Liouville is given by

Iσ
a x(t) =

1
Γ(σ)

∫ t

a
(t− ξ)σ−1x(ξ)dξ

such that the integral on the right side is pointwise defined on R+.

Definition 2. Let x be a given function on closed interval [a, b], then its fractional order derivative
in the sense of Caputo is stated as

CDσ
a x(t) =

∫ t

a

(t− ξ)n−σ−1

Γ(n− σ)

(
dn

dξn x(ξ)
)

dξ, σ ∈ (n− 1, n],

where [σ] = n− 1. In particular if x is defined on the interval [a, b] and σ ∈ (0, 1), then

CDσ
a x(t) =

1
Γ(1− σ)

∫ t

a

x′(ξ)
(t− ξ)σ

dξ, where x′(s) =
dx(s)

ds
.
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Theorem 1 ([18]). Let σ ∈ [n− 1, n). For x ∈ C[a, b], the unique solution of CDσ
a x(t) = 0 has

the form x(t) = ∑
[σ]
k=0 aktk, where ak ∈ R, k = 1, 2, 3, · · · , [σ].

Theorem 2 ([18]). Let σ ∈ [n− 1, n). For x ∈ C(n)[a, b], Iσ
a [

CDσ
a x(t)] = x(t) + ∑

[σ]
k=0 aktk, for

some ak ∈ R, k = 1, 2, 3, · · · , [σ].

Definition 3. Let the class of the all-bounded set ofH be denoted byB. The mapping ς : B→ (0, ∞)
for Kuratowski measure of noncompactness is defined as

ς(µ) = inf{d > 0 : µ has a finite cover for sets of diameter ≤ d}, where µ ∈ B.

Theorem 3. The following are the characteristics of the measure ς:

(1) For relative compact A, the Kuratowski measure ς(A) = 0;
(2) Semi-norm ς, that is ς(kA) = |k|ς(A), k ∈ R, and ς(A1 + A2) ≤ ς(A1) + ς(A2);
(3) A1 ⊂ A2 yields ς(A1); ς(A1 ∪ A2) = sup{ς(A1), ς(A2)};
(4) ς(convA) = ς(A);
(5) ς(A) = ς(A).

Definition 4. Assume that ν : ϑ→ v is a bounded and continuous mapping such that ϑ ⊂ v, if
there exists ζ ≥ 0 such that ς(v(µ)) ≤ ζς(µ) for all bounded µ ⊂ ϑ, then ν is a ς-Lipschitz.

Furthermore, ν is called strict ς-contraction under the condition ζ < 1.

Definition 5. The function ν is ς-condensing if ς(ν(µ)) < ς(µ) for all bounded µ ⊂ ϑ with
ς(µ) > 0. Therefore ς(ν(µ)) ≥ ς(µ) yields ς(µ) = 0.

Furthermore, we call ν : ϑ→ v is Lipschitz for ζ > 0, such that

‖ν(µ)− ν(µ)‖ ≤ ζ‖µ− µ‖, f or all µ, µ ∈ ϑ.

The condition ζ < 1 yields that ν is a strict contraction.

Theorem 4. The mapping ν : ϑ→ v is ς-Lipschitz with constant ζ = 0 if and only if ν is compact.

Theorem 5. The mapping ν : ϑ→ v is ς-Lipschitz for some constant ζ if and only if ν is Lipschitz
with constant ζ.

Theorem 6 ([19]). Let ν : H → H be a ς-contraction and Z = {z ∈ H : there exist 0 ≤ λ ≤ 1
such that z = λν(z)}. Under the condition that Z ⊂ H is bounded for r > 0 and Z ⊂ µr(0),
with degree

deg(I − λν, µr(0), 0) = 1, for every λ ∈ [0, 1].

Then, ν has at least one fixed point.

Theorem 7 ([20]). Let Lp be a p-Laplacian operator. We have

(i) If 1 < p ≤ 2, x1 · x2 > 0, and |x1|, |x2| ≥ M1 > 0, then

|Lp(x1)− Lp(x2)| ≤ (p− 1)Mp−2
1 |x1 − x2|;

(ii) If p > 2, and |x1|, |x2| ≤ M2, then

|Lp(x1)− Lp(x2)| ≤ (p− 1)Mp−2
2 |x1 − x2|.

Definition 6 ([16]). Let u1, u2 : H → H be two operators defined onH. Then the operator system
provided by {

x(t) = u1(x, y)(t),

y(t) = u2(x, y)(t)
(3)



Symmetry 2021, 13, 1160 5 of 17

is called Hyers–Ulam stable if we can find Ci > 0, i = 1, 2, 3, 4 such that for each εi > 0, i = 1, 2,
and for each solution (x∗, y∗) ∈ H of the inequalities given by{

‖x∗ −Θ1(x∗, y∗)‖ ≤ ε1,

‖y∗ −Θ2(x∗, y∗)‖ ≤ ε2,

there exists a solution (x, y) ∈ H of system (3), which satisfies{
‖x∗ − x‖ ≤ C1ε1 + C2ε2,

‖y∗ − y‖ ≤ C3ε1 + C4ε2.

Definition 7. If λi (i = 1, 2, · · · , n) are the (real or complex) eigenvalues of a matrix Q ∈ Cn×n,
then the spectral radius ρ(Q) is defined by

ρ(Q) = max{|λi| i = 1, 2, · · · , n}.

Furthermore, the matrix will converge to zero if ρ(Q) < 1.

Theorem 8 ([16]). Let u1, u2 : H → H be two operators such that{
‖u1(x, y)− u1(x∗, y∗)‖ ≤ C1‖x− x∗‖+ C2‖y− y∗‖,
‖u2(x, y)− u2(x∗, y∗)‖ ≤ C3‖x− x∗‖+ C4‖y− y∗‖

for all (x, y), (x∗, y∗) ∈ H. If the matrix Q =

(
C1 C2
C3 C4

)
converges to zero, then the fixed points

corresponding to system (3) are Hyers–Ulam stable.

3. Existence Results

To come to our main results, we need the following hypotheses:

Hypothesis 1. The operators Fi : T → R are closed bounded and linear for any t ∈ T = [0, 1]
and i = 1, 2. Denote m1 = maxt∈T {|F1(t)|}, m2 = maxt∈T {|F2(t)|}.

Hypothesis 2. The functions Φ, Ψ : T ×R×R→ R are continuous. For all (x, y), (x, y) ∈ R,
t ∈ T , there exist mΦ, mΨ > 0, such that

|Φ(t, x(t), y(t))−Φ(t, x(t), y(t))| ≤ |mΦ(|x(t)− x(t)|+ |y(t)− y(t)|)| ≤ mΦ‖(x− x, y− y)‖,

|Ψ(t, x(t), y(t))−Ψ(t, x(t), y(t))| ≤ |mΨ(|x(t)− x(t)|+ |y(t)− y(t)|)| ≤ mΨ‖(x− x, y− y)‖.

Hypothesis 3. The functions Φ and Ψ satisfy the following growth conditions under the constants
CΦ, CΨ, MΦ, MΨ, q1 ∈ (0, 1],

‖Φ(t, x, y)‖ ≤ CΦ|x|q1 + MΦ,

‖Ψ(t, x, y)‖ ≤ CΨ|y|q1 + MΨ.

Hypothesis 4. The nonlocal functions ψ1, ψ2 : R→ R satisfy the hypotheses that for any (x, y),
(x, y) ∈ R, t ∈ T , there exist K1 > 0, K2 > 0, such that

|ψ1(x)− ψ1(x)| ≤ K1‖x− x‖,
|ψ2(y)− ψ2(y)| ≤ K2‖y− y‖.
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Hypothesis 5. The nonlocal functions ψ1, ψ2 : R→ R satisfy the following growth conditions by
the constants Cv1 , Cv2 , Mv1 , Mv2 > 0 and p1 ∈ [0, 1) for x, y ∈ R,

|ψ1(x)| ≤ Cv1 |x|
p1 + Mv1 ,

|ψ2(y)| ≤ Cv2 |y|p1 + Mv2 .

Theorem 9. Assume that z : T → R and F1 : T → R be bounded linear operators, then the
solution of

Dβ1
0 Lb

(
Dα1

0 x(t)
)
−F1(t)x(t) = z(t), β1 ∈ (0, 1], α1 ∈ (2, 3], t ∈ T ,

x(t)|t=0 = 0, x′′(t)|t=0 = 0, Dα1
0 x(t)|t=0 = 0,

x′(t)|t=1 = η1 Iγ1
b ψ1(x) =

η1

Γ(γ1)

∫ b

0
(b− ξ)γ1−1ψ1(x(ξ))dξ

is given by

x(t) =
∫ 1

0
Gα1(t, ξ) · Lq

(
Iβ1
0 (F1(ξ)x(ξ) + z(ξ))

)
dξ

+
η1t

Γ(γ1)

∫ b

0
(b− ξ)γ1−1ψ1(x(ξ))dξ,

where Gα1(t, ξ) is Green’s function, given by

Gα1(t, ξ) =


(t− ξ)α1−1

Γ(α1)
− t(1− ξ)α1−2

Γ(α1 − 1)
, 0 ≤ ξ ≤ t ≤ 1,

− t(1− ξ)α1−2

Γ(α1 − 1)
, 0 ≤ t ≤ ξ ≤ 1.

(4)

Proof. Since

Dβ1
0 Lb

(
Dα1

0 x(t)
)
−F1(t)x(t) = z(t), t ∈ [0, 1], β1 ∈ (0, 1], α1 ∈ (2, 3]. (5)

Applying the operator Iβ1
0 on (5) and using Theorem 2, we can obtain the following

integral form as
Lb
(

Dα1
0 x(t)

)
= Iβ1

0 (F1(t)x(t) + z(t)) + a0.

Using the initial condition Dα1
0 x(t)|t=0 = 0, we have a0 = 0.

Furthermore,
Dα1

0 x(t) = Lq

[
Iβ1
0 (F1(t)x(t) + z(t))

]
. (6)

Using Theorem 2 and applying the operator Iα1
0 on (6), we have

x(t) = Iα1
0

{
Lq

[
Iβ1
0 (F1(t)x(t) + z(t))

]}
+ a1 + a2t + a3t2. (7)

By using the conditions x(t)|t=0 = 0 and x′′(t)|t=0 = 0 in (7), we obtain a1 = a3 = 0.
We also obtain

x′(t) =
1

Γ(α1 − 1)

∫ t

0
(t− ξ)α1−2Lq

[
Iβ1
0 (F1(ξ)x(ξ) + z(ξ))

]
dξ + a2. (8)

If x′(t)|t=1 = η1 Iγ1
b ψ1(x) in (8), then

a2 =
η1

Γ(γ1)

∫ b

0
(b− ξ)γ1−1ψ1(x(ξ))dξ − 1

Γ(α1 − 1)

∫ 1

0
(1− ξ)α1−2 · Lq

(
Iβ1
0 (F1(ξ)x(ξ) + z(ξ))

)
dξ.

By substituting the values of a1, a2, a3 in (7), we obtain the following integral equation:
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x(t) =
1

Γ(α1)

∫ t

0
(t− ξ)α1−1 · Lq

(
Iβ1
0 (F1(ξ)x(ξ) + z(ξ))

)
dξ

− t
Γ(α1 − 1)

∫ 1

0
(1− ξ)α1−2 · Lq

(
Iβ1
0 (F1(ξ)x(ξ) + z(ξ))

)
dξ +

η1t
Γ(γ1)

∫ b

0
(b− ξ)γ1−1ψ1(x(ξ))dξ

=
∫ 1

0
Gα1(t, ξ) · Lq

(
Iβ1
0 (F1(ξ)x(ξ) + z(ξ))

)
dξ +

η1t
Γ(γ1)

∫ b

0
(b− ξ)γ1−1ψ1(x(ξ))dξ,

where Gα1(t, ξ) is defined as (4). This completes the proof.

According to Theorem 9, the equivalent system of Hammerstein-type integral equa-
tions corresponding to coupled system (2) is given by

x(t) =
∫ 1

0
Gα1(t, ξ) · Lq

(
Iβ1
0 (F1(ξ)x(ξ) + Φ(ξ, x(ξ), y(ξ)))

)
dξ +

η1t
Γ(γ1)

∫ b

0
(b− ξ)γ1−1ψ1(x(ξ))dξ,

y(t) =
∫ 1

0
Gα2(t, ξ) · Lq

(
Iβ2
0 (F2(ξ)x(ξ) + Ψ(ξ, x(ξ), y(ξ)))

)
dξ +

η2t
Γ(γ2)

∫ b

0
(b− ξ)γ2−1ψ2(x(ξ))dξ,

(9)

where Gα1(t, ξ) is defined as (4), and Gα2(t, ξ) is defined by

Gα2(t, ξ) =


(t− ξ)α2−1

Γ(α2)
− t(1− ξ)α2−2

Γ(α2 − 1)
, 0 ≤ ξ ≤ t ≤ 1,

− t(1− ξ)α2−2

Γ(α2 − 1)
, 0 ≤ t ≤ ξ ≤ 1.

(10)

Now, we consider a closed ball Br = {(x, y) ∈ H : ‖(x, y)‖ ≤ r} and define operators
U = (U1, U2), V = (V1, V2) on Br as

U1(x, y)(t) =
∫ 1

0
Gα1(t, ξ) · Lq

(
Iβ1
0 (F1(ξ)x(ξ) + Φ(ξ, x(ξ), y(ξ)))

)
dξ,

U2(x, y)(t) =
∫ 1

0
Gα2(t, ξ) · Lq

(
Iβ2
0 (F2(ξ)y(ξ) + Ψ(ξ, x(ξ), y(ξ)))

)
dξ

(11)

and 
V1x(t) =

η1t
Γ(γ1)

∫ b

0
(b− ξ)γ1−1ψ1(x(ξ))dξ,

V2y(t) =
η2t

Γ(γ2)

∫ b

0
(b− ξ)γ2−1ψ2(x(ξ))dξ.

(12)

Then, the operator equation of the Hammerstein-type integral system (9) is given by

(x, y) = W(x, y) = U(x, y) + V(x, y). (13)

So, the solution of system (9) is the fixed points of operator Equation (13).

Theorem 10. Under the hypotheses (H4) and (H5) and if Cv < 1, the operator V is ς-Lipschitz
and satisfies the growth condition given by

‖V(x, y)‖ ≤ C∗v‖(x, y)‖p1 + Mv, ∀(x, y) ∈ H, (14)

where

Cv = max
{

η1bγ1 K1

Γ(γ1 + 1)
,

η2bγ2 K2

Γ(γ2 + 1)

}
, (15)

C∗v = max
{

η1bγ1Cv1

Γ(γ1 + 1)
,

η2bγ2Cv2

Γ(γ2 + 1)

}
, (16)
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and
Mv =

η1bγ1 Mv1

Γ(γ1 + 1)
+

η2bγ2 Mv2

Γ(γ2 + 1)
. (17)

Proof. Using the condition (H4) and t ≤ 1, we have

|V1(x)(t)−V1(x)(t)| =
∣∣∣∣ η1t
Γ(γ1)

∫ b

0
(b− ξ)γ1−1[ψ1(x(ξ))− ψ1(x(ξ))]dξ

∣∣∣∣
≤ K1‖x− x‖

∣∣∣∣ η1t
Γ(γ1)

∫ b

0
(b− ξ)γ1−1dξ

∣∣∣∣
=

η1bγ1 K1

Γ(γ1 + 1)
‖x− x‖.

Similarly, we obtain

|V2(y)(t)−V2(y)(t)| ≤
η2bγ2 K2

Γ(γ2 + 1)
‖y− y‖.

Then,

‖V(x, y)−V(x, y)‖ = ‖V1(x)−V2(x)‖+ ‖V1(y)−V2(y)‖

≤ η1bγ1 K1

Γ(γ1 + 1)
‖x− x‖+ η2bγ2 K2

Γ(γ2 + 1)
‖x− x‖

≤ Cv‖(x− x, y− y)‖,

where Cv is defined by (15), Cv ∈ [0, 1). Therefore, using Theorem 5, the operator V
is ς-Lipschitz.

Next, to obtain the growth condition, using the condition (H5), we have

|V1(x)(t)| =
∣∣∣∣ η1t
Γ(γ1)

∫ b

0
(b− ξ)γ1−1ψ1(x(ξ))dξ

∣∣∣∣
≤ η1

Γ(γ1)

∫ b

0
(b− ξ)γ1−1|ψ1(x(ξ))|dξ

≤ η1

Γ(γ1)

∫ b

0
(b− ξ)γ1−1[Cν1 |x|

p1 + Mv1 ]dξ.

Then,

‖V1(x)‖ ≤ η1bγ1

Γ(γ1 + 1)
[Cν1‖x‖

p1 + Mv1 ]. (18)

Similarly, we have

‖V2(y)‖ ≤
η2bγ2

Γ(γ2 + 1)
[Cν2‖y‖p1 + Mv2 ]. (19)

Hence, (18) and (19) imply that

‖V(x, y)‖ = ‖V1(x)‖+ ‖V2(y)‖

≤ η1bγ1

Γ(γ1 + 1)
[Cν1‖x‖

p1 + Mv1 ] +
η2bγ2

Γ(γ2 + 1)
[Cν2‖y‖p1 + Mv2 ]

=
η1bγ1Cv1

Γ(γ1 + 1)
‖x‖p1 +

η2bγ2Cv2

Γ(γ2 + 1)
‖y‖p1 +

η1bγ1 Mv1

Γ(γ1 + 1)
+

η2bγ2 Mv2

Γ(γ2 + 1)

≤ C∗v‖(x, y)‖p1 + Mv,

where C∗v , Mv are defined as (16) and (17). This completes the proof.
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Theorem 11. Under the hypotheses (H1) and (H3), the operator U is continuous and satisfies the
growth condition given by

‖U(x, y)‖ ≤ (q− 1)Mq−2
1 (A1‖(x, y)‖q1 + A2‖(x, y)‖+ A3), (20)

where

A1 = max
(x,y)∈Br

{
CΦ

Γ(α1 + β1)
,

CΨ

Γ(α2 + β2)

}
, (21)

A2 = max
(x,y)∈Br

{
m1

Γ(α1 + β1)
,

m2

Γ(α2 + β2)

}
, (22)

and

A3 = max
(x,y)∈Br

{
MΦ

Γ(α1 + β1)
,

MΨ

Γ(α2 + β2)

}
. (23)

Proof. To prove the continuity of operator U, we construct a sequence {(xn, yn)} in Br
with (xn, yn)→ (x, y) as n→ ∞. Then, using Theorem 7 and the condition (H1), we have

|U1(xn, yn)(t)−U1(x, y)(t)| =
∣∣∣∣∫ 1

0
Gα1(t, ξ)Lq

(
Iβ1
0 (F1(ξ)xn(ξ) + Φ(ξ, xn(ξ), yn(ξ)))

)
dξ

−
∫ 1

0
Gα1(t, ξ)Lq

(
Iβ1
0 (F1(ξ)x(ξ) + Φ(ξ, x(ξ), y(ξ)))

)
dξ

∣∣∣∣
≤(q− 1)Mq−2

1

∫ 1

0
Gα1(t, ξ)

(∣∣∣Iβ1
0 F1(ξ)xn(ξ)− Iβ1

0 F1(ξ)x(ξ)
∣∣∣

+
∣∣∣Iβ1

0 Φ(ξ, xn(ξ), yn(ξ))− Iβ1
0 Φ(ξ, x(ξ), y(ξ))

∣∣∣)dξ

≤(q− 1)Mq−2
1 m1

∫ 1

0
Gα1(t, ξ)

∣∣∣Iβ1
0 xn(ξ)− Iβ1

0 x(ξ)
∣∣∣dξ

+ (q− 1)Mq−2
1

∫ 1

0
Gα1(t, ξ)

∣∣∣Iβ1
0 Φ(ξ, xn(ξ), yn(ξ))− Iβ1

0 Φ(ξ, x(ξ), y(ξ))
∣∣∣dξ.

Due to the continuity of Φ, one has Φ(ξ, xn(ξ), yn(ξ)) → Φ(ξ, x(ξ), y(ξ)) as n → ∞.
Using the Lebesgue-dominated convergent theorem, we have |Iβ1

0 Φ(ξ, xn(ξ), yn(ξ)) −
Iβ1
0 Φ(ξ, x(ξ), y(ξ))| → 0 as n → ∞. We also obtain Iβ1

0 xn(ξ) → Iβ1
0 x(ξ) as n → ∞. So,

|U1(xn, yn)(t)−U1(x, y)(t)| → 0 as n→ ∞. Hence, U1 is continuous. Similarly, we obtain

|U2(xn, yn)(t)−U2(x, y)(t)| ≤(q− 1)Mq−2
1 m2

∫ 1

0
Gα2(t, ξ)

∣∣∣Iβ2
0 yn(ξ)− Iβ2

0 y(ξ)
∣∣∣dξ

+ (q− 1)Mq−2
1

∫ 1

0
Gα2(t, ξ)

∣∣∣Iβ2
0 Ψ(ξ, xn(ξ), yn(ξ))− Iβ2

0 Ψ(ξ, x(ξ), y(ξ))
∣∣∣dξ.

Using the continuity of Ψ and Iβ2
0 yn(ξ)→ Iβ2

0 y(ξ) as n→ ∞, we obtain |U2(xn, yn)(t)−
U2(x, y)(t)| → 0 as n → ∞ similarly. Hence, U2 is continuous. Due to |U(xn, yn)(t) −
U(x, y)(t)| = |U1(xn, yn)(t)−U1(x, y)(t)|+ |U2(xn, yn)(t)−U2(x, y)(t)|, we have that the
operator U is continuous.

Next, for growth condition (20), using (H1), (H3) and Theorem 7, we have

|U1(x, y)(t)| ≤ (q− 1)Mq−2
1

∣∣∣∣∫ 1

0
Gα1(t, ξ)Iβ1

0 F1(ξ)x(ξ)dξ

∣∣∣∣+ (q− 1)Mq−2
1

∣∣∣∣∫ 1

0
Gα1(t, ξ)Iβ1

0 Φ(ξ, x(ξ), y(ξ))dξ

∣∣∣∣
≤ (q− 1)Mq−2

1 m1

∣∣∣∣ tα1+β1 − t(α1 − 1)
Γ(α1 + β1)

∣∣∣∣‖x‖+ (q− 1)Mq−2
1

∣∣∣∣ tα1+β1 − t(α1 − 1)
Γ(α1 + β1)

∣∣∣∣(CΦ‖x‖q1 + MΦ)

≤
(q− 1)Mq−2

1 m1

Γ(α1 + β1)
‖x‖+

(q− 1)Mq−2
1

Γ(α1 + β1)
(CΦ‖x‖q1 + MΦ),
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which implies that

‖U1(x, y)‖ ≤
(q− 1)Mq−2

1
Γ(α1 + β1)

(CΦ‖x‖q1 + m1‖x‖+ MΦ), (24)

and similarly

‖U2(x, y)‖ ≤
(q− 1)Mq−2

1
Γ(α2 + β2)

(CΨ‖y‖q1 + m2‖y‖+ MΨ). (25)

It follows from (24) and (25) that

‖U(x, y)‖ =‖U1(x, y)‖+ ‖U2(x, y)‖

≤(q− 1)Mq−2
1

(
CΦ

Γ(α1 + β1)
‖x‖q1 +

CΨ

Γ(α2 + β2)
‖y‖q1

)
+ (q− 1)Mq−2

1

(
m1

Γ(α1 + β1)
‖x‖+ m2

Γ(α2 + β2)
‖y‖

)
+ (q− 1)Mq−2

1

(
MΦ

Γ(α1 + β1)
+

MΨ

Γ(α2 + β2)

)
≤(q− 1)Mq−2

1 (A1‖(x, y)‖q1 + A2‖(x, y)‖+ A3),

where A1, A2, A3 are defined as (21)–(23). This completes the proof.

Theorem 12. Under the hypotheses (H1) and (H3), the operator U : H → H is compact and
ς-Lipschitz with constant zero.

Proof. With the assumption (H1) and (H3), Theorem 11 implies that the operator U is
bounded. Let D be a bounded subset of Br. For the given sequence {(xn, yn)} ⊂ D and for
any t1, t2 ∈ [0, 1], we obtain

|U1(xn, yn)(t1)−U1(xn, yn)(t2)|

≤ (q− 1)Mq−2
1

∣∣∣∣∫ 1

0
(Gα1(t1, ξ)− Gα1(t2, ξ))

1
Γ(β1)

∫ ξ

0
(ξ − τ)β1−1dτdξ

∣∣∣∣(CΦ‖xn‖q1 + m1‖xn‖+ MΦ).

By simplification, we obtain

|U1(xn, yn)(t1)−U1(xn, yn)(t2)|

≤(q− 1)Mq−2
1

[
1

Γ(β1 + 1)Γ(α1)

∣∣∣∣∫ t1

0
(t1 − ξ)α1−1ξβ1 dξ −

∫ t2

0
(t2 − ξ)α1−1ξβ1 dξ

∣∣∣∣
+

1
Γ(β1 + 1)Γ(α1 − 1)

∣∣∣∣(t2 − t1)
∫ 1

0
(1− ξ)α1−2ξβ1 dξ

∣∣∣∣](CΦ‖xn‖q1 + m1‖xn‖+ MΦ)

=

[
(q− 1)Mq−2

1 B(α1, β1 + 1)
Γ(β1 + 1)Γ(α1)

∣∣∣tα1+β1
1 − tα1+β1

2

∣∣∣+ (q− 1)Mq−2
1 B(α1 − 1, β1 + 1)

Γ(β1 + 1)Γ(α1 − 1)
|t1 − t2|

]
· (CΦ‖xn‖q1 + m1‖xn‖+ MΦ)

=

[
(q− 1)Mq−2

1
Γ(α1 + β1 + 1)

∣∣∣tα1+β1
1 − tα1+β1

2

∣∣∣+ (q− 1)Mq−2
1

Γ(α1 + β1)
|t1 − t2|

]
(CΦ‖xn‖q1 + m1‖xn‖+ MΦ),

(26)

where B(·, ·) is the Beta function. In the same manner, we have

|U2(xn, yn)(t1)−U2(xn, yn)(t2)|

≤
[

(q− 1)Mq−2
1

Γ(α2 + β2 + 1)

∣∣∣tα2+β2
1 − tα2+β2

2

∣∣∣+ (q− 1)Mq−2
1

Γ(α2 + β2)
|t1 − t2|

]
(CΨ‖yn‖q1 + m2‖yn‖+ MΨ).

(27)
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By (26) and (27), we have

|U(xn, yn)(t1)−U(xn, yn)(t2)|

=|U1(xn, yn)(t1)−U1(xn, yn)(t2)|+ |U2(xn, yn)(t1)−U2(xn, yn)(t2)|

≤
[

(q− 1)Mq−2
1

Γ(α1 + β1 + 1)

∣∣∣tα1+β1
1 − tα1+β1

2

∣∣∣+ (q− 1)Mq−2
1

Γ(α1 + β1)
|t1 − t2|

]
(CΦ‖xn‖q1 + m1‖xn‖+ MΦ)

+

[
(q− 1)Mq−2

1
Γ(α2 + β2 + 1)

∣∣∣tα2+β2
1 − tα2+β2

2

∣∣∣+ (q− 1)Mq−2
1

Γ(α2 + β2)
|t1 − t2|

]
(CΨ‖yn‖q1 + m2‖yn‖+ MΨ).

(28)

Equation (28) tends to zero as t1 → t2. Therefore, U = (U1, U2) is equi-continuous
on D. Using the Arzelá− Ascoli theorem, U(D) is compact. Hence, U is ς-Lipschitz with
constant zero. This completes the proof.

Theorem 13. Under the hypotheses (H1), (H3), (H4) and (H5), and if

(q− 1)Mq−2
1 A1 + (q− 1)Mq−2

1 A2 + C∗v ≤ 1, (29)

then the coupled system (2) has at least one solution (x, y) ∈ H.

Proof. In view of Theorems 10–12, U and V are continuous and ς-Lipschitz with constant
C∗v and 0. By the help of Definition 4, we have W is strict ς-contraction.

Let S = {(x, y) ∈ H : λ ∈ [0, 1]|(x, y) = λW(x, y)}. Now, to prove that S is bounded,
we obtain

‖(x, y)‖ = ‖λW(x, y)‖ ≤ ‖λU(x, y)‖+ ‖λV(x, y)‖

≤ (q− 1)Mq−2
1 (A1‖(x, y)‖q1 + A2‖(x, y)‖+ A3) + C∗v‖(x, y)‖p1 + Mv

≤
(
(q− 1)Mq−2

1 (A1 + A2) + C∗v
)
‖(x, y)‖+ (q− 1)Mq−2

1 A3 + Mv.

(30)

Hence, the set of solutions S is bounded. Using Theorem 6, the coupled system (2)
has at least one solution. This completes the proof.

Theorem 14. Suppose the hypotheses (H1) to (H5) are satisfied. Then, the coupled system (2) has
a unique solution provided

Ω = A4 + A5 + Cv < 1, (31)

where

A4 = max

{
(q− 1)Mq−2

1 m1

Γ(α1 + β1)
,
(q− 1)Mq−2

1 m2

Γ(α2 + β2)

}
, (32)

A5 =
(q− 1)Mq−2

1 mΦ

Γ(α1 + β1)
+

(q− 1)Mq−2
1 mΨ

Γ(α2 + β2)
, (33)

and Cv is defined by (15).

Proof. Let (x, y) and (x, y) ∈ H be two solutions, then

‖W(x, y)−W(x, y)‖ = ‖U(x, y)−U(x, y)‖+ ‖V(x, y)−V(x− y)‖.
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Using the conditions (H1), (H2) and Theorem 7, we obtain

‖U(x, y)−U(x, y)‖ =‖U1(x, y)−U1(x, y)‖+ ‖U2(x, y)−U2(x, y)‖

=
∫ 1

0
Gα1 (t, ξ)

∣∣∣Lq

(
Iβ1
0 F1(ξ)x(ξ) + Φ(ξ, x(ξ), y(ξ))

)
−Lq

(
Iβ1
0 F1(ξ)x(ξ) + Φ(ξ, x(ξ), y(ξ))

)∣∣∣dξ

+
∫ 1

0
Gα2 (t, ξ)

∣∣∣Lq

(
Iβ2
0 F2(ξ)y(ξ) + Ψ(ξ, x(ξ), y(ξ))

)
−Lq

(
Iβ2
0 F2(ξ)y(ξ) + Ψ(ξ, x(ξ), y(ξ))

)∣∣∣dξ

≤
(q− 1)Mq−2

1
Γ(α1 + β1)

[m1‖x− x‖+ mΦ‖(x− x, y− y)‖]

+
(q− 1)Mq−2

1
Γ(α2 + β2)

[m2‖y− y‖+ mΨ‖(x− x, y− y)‖]

≤
(
(q− 1)Mq−2

1 m1

Γ(α1 + β1)
‖x− x‖+

(q− 1)Mq−2
1 m2

Γ(α2 + β2)
‖y− y‖

)

+

(
(q− 1)Mq−2

1
Γ(α1 + β1)

mΦ +
(q− 1)Mq−2

1
Γ(α2 + β2)

mΨ

)
‖(x− x, y− y)‖

≤(A4 + A5)‖(x− x, y− y)‖,

(34)

where A4 and A5 are defined by (32) and (33). Furthermore,

‖V(x, y)−V(x, y)‖ = ‖V1(x)−V1(x)‖+ ‖V2(y)−V2(y)‖

≤ η1bγ1 K1

Γ(γ1 + 1)
‖x− x‖+ η2bγ2 K2

Γ(γ2 + 1)
‖y− y‖

≤ Cv‖(x− x, y− y)‖.

(35)

Hence, from (34) and (35), we have

‖W(x, y)−W(x, y)‖ ≤ (A4 + A5 + Cv)‖(x− x, y− y)‖,

which implies that the operator W is contraction due to (31). By the Banach fixed point
theorem, system (2) has a unique solution. This completes the proof.

4. Hyers–Ulam Stability

In this section, we study Hyers–Ulam stability for the coupled system of fractional dif-
ferential equations with p-Laplacian operator (2). Using Definitions 6 and 7 and Theorems 6
and 8, the corresponding results are received.

Theorem 15. Suppose that the assumptions (H1) to (H5) and (31) hold, and the matrix Q is
converging to zero, the solutions of the system are Hyers–Ulam stable.

Proof. Let (x, y) and (x∗, y∗) ∈ H be two solutions and define operator W = (W1, W2) and
W1 = U1 + V1, W2 = U2 + V2. In view of Theorem 14, we have

‖W1(x, y)−W1(x∗, y∗)‖ ≤‖U1(x, y)−U1(x∗, y∗)‖+ ‖V1x−V1x∗‖

≤
[
(q− 1)Mq−2

1 (m1 + mΦ)

Γ(α1 + β1)
+

η1bγ1 K1
Γ(γ1 + 1)

]
‖x− x∗‖

+
(q− 1)Mq−2

1 mΦ

Γ(α1 + β1)
‖y− y∗‖ = C1‖x− x∗‖+ C2‖y− y∗‖,

(36)
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where

C1 =
(q− 1)Mq−2

1 (m1 + mΦ)

Γ(α1 + β1)
+

η1bγ1 K1

Γ(γ1 + 1)

and

C2 =
(q− 1)Mq−2

1 mΦ

Γ(α1 + β1)
.

Similarly, we can also obtain

‖W2(x, y)−W2(x∗, y∗)‖ ≤
(q− 1)Mq−2

1 mΨ

Γ(α2 + β2)
‖x− x∗‖

+

[
(q− 1)Mq−2

1 (m2 + mΨ)

Γ(α2 + β2)
+

η2bγ2 K2

Γ(γ2 + 1)

]
‖y− y∗‖

=C3‖x− x∗‖+ C4‖y− y∗‖,

(37)

where

C3 =
(q− 1)Mq−2

1 mΨ

Γ(α2 + β2)

and

C4 =
(q− 1)Mq−2

1 (m2 + mΨ)

Γ(α2 + β2)
+

η2bγ2 K2

Γ(γ2 + 1)
.

So from (36) and (37), we obtain the inequalities given below

‖W1(x, y)−W1(x∗, y∗)‖ ≤ C1‖x− x∗‖+ C2‖y− y∗‖,
‖W2(x, y)−W2(x∗, y∗)‖ ≤ C3‖x− x∗‖+ C4‖y− y∗‖.

(38)

From (38), we obtain the following inequality

‖W(x, y)−W(x∗, y∗)‖ ≤ Q‖(x, y)− (x∗, y∗)‖,

where Q =

(
C1 C2
C3 C4

)
. Since Q converges to zero, system (2) is Hyers-Ulam stable. This

completes the proof.

5. Examples

Example 1. Consider the following coupled system of fractional differential equations with p-
Laplacian operator and fractional order differential and integral initial and boundary conditions of
the type 

D
1
2
0 L5

(
D

5
2
0 x(t)

)
− e−2tx(t)

20
=

t2 + sin |x(t)|+ cos |y(t)|
100

,

D
1
2
0 L5

(
D

5
2
0 y(t)

)
− ty(t)

30
=

cos |x(t)|+ sin |y(t)|
50 + t2 ,

D
5
2
0 x(t)|t=0 = 0, x(0) = 0, x′′(0) = 0,

x′(t) =
1

3Γ( 3
2 )

∫ 1

0
(1− ξ)

3
2−1 cos(x(ξ))dξ,

D
5
2
0 y(t)|t=0 = 0, y(0) = 0, y′′(0) = 0,

y′(t) =
1

3Γ( 3
2 )

∫ 1

0
(1− ξ)

1
2−1 cos(y(ξ))dξ,

(39)
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where p = 5, q = 5
4 , t ∈ [0, 1], α1 = α2 = 5

2 , β1 = β2 = 1
2 , η1 = η2 = 1

3 , γ1 = 3
2 , γ2 = 1

2 ,
b = 1. From this system, we have

F1(t) =
e−2t

20
,F2(t) =

t
30

,

Φ(t, x(t), y(t)) =
t2 + sin |x(t)|+ cos |y(t)|

100
, and

Ψ(t, x(t), y(t)) =
cos |x(t)|+ sin |y(t)|

50 + t2 .

For any (x, y), (x, y) ∈ H, t ∈ [0, 1], we have

mΦ =
3

100
, mΨ =

1
50

,

|Φ(t, x, y)−Φ(t, x, y)| ≤ 3
100
‖(x− x, y− y)‖,

|Ψ(t, x, y)−Ψ(t, x, y)| ≤ 1
50
‖(x− x, y− y)‖,

and CΦ = 1
10 , CΨ = 1

10 , MΦ = 1
100 , MΨ = 1

50 , q1 = 1
2 ,

‖Φ(t, x, y)‖ ≤ 1
10
‖x‖

1
2 +

1
100

,

‖Ψ(t, x, y)‖ ≤ 1
10
‖y‖

1
2 +

1
50

.

Furthermore, we can obtain m1 = 1
20 , m2 = 1

30 , M1 = 2, K1 = 1
100 , K2 = 1

200 . Then, we
see that

Ω = A4 + A5 + Cv =
1

80× 2
3
4
+

1

80× 2
3
4
+

1
300
√

π
< 1.

Using Theorem 14, the coupled system has a unique solution. By direct calculation, we obtain

Q =

 1

50×2
3
4
+ 1

300
√

π
3

400×2
3
4

1

200×2
3
4

1

75×2
3
4
+ 1

600
√

π

 ≈ (0.0138 0.0045
0.0030 0.0088

)
.

On calculation, we obtain the spectral radius

ρ(Q) = max{|0.01031|, | − 0.00013|} = 0.01031 < 1,

which shows that the matrix Q converges to zero, and using Theorem 15, the solutions of the
problem (39) are Hyers–Ulam stable.

Example 2. Consider the following coupled system of fractional differential equations with p-
Laplacian operator and fractional order differential initial and boundary conditions of the type
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D
1
3
0 L3

(
D

7
3
0 x(t)

)
− e−3tx(t)

30
=

sin |x(t)|+ cos |y(t)|
100 + t3 ,

D
1
3
0 L3

(
D

7
3
0 y(t)

)
− ty(t)

20
=

cos |x(t)|+ sin |y(t)|
1000

.

D
7
3
0 x(t)|t=0 = 0, x(0) = 0, x′′(0) = 0,

x′(1) =
1

4Γ( 3
2 )

∫ 1

0
(1− ξ)

3
2−1 sin(x(ξ))dξ,

D
7
3
0 y(t)|t=0 = 0, y(0) = 0, y′′(0) = 0,

y′(1) =
1

4Γ( 1
2 )

∫ 1

0
(1− ξ)

1
2−1 sin(y(ξ))dξ,

(40)

where p = 3, q = 3
2 , t ∈ [0, 1], α1 = α2 = 7

3 , β1 = β2 = 1
3 , η1 = η2 = 1

4 , γ1 = 3
2 , γ2 = 1

2 ,
b = 1. So, we have

F1(t) =
e−3t

30
,F2(t) =

t
20

,

Φ(t, x, y) =
sin |x(t)|+ cos |y(t)|

100 + t3 , and

Ψ(t, x, y) =
cos |x(t)|+ sin |y(t)|

1000
.

For any (x, y), (x, y) ∈ H, t ∈ [0, 1], we have

mΦ =
1

100
, mΨ =

1
50

,

|Φ(t, x, y)−Φ(t, x, y)| ≤ 1
100
‖(x− x, y− y)‖,

|Ψ(t, x, y)−Ψ(t, x, y)| ≤ 1
50
‖(x− x, y− y)‖,

and CΦ = 1
100 , CΨ = 1

100 , MΦ = 1
50 , MΨ = 1

500 , q1 = 1
2 ,

‖Φ(t, x, y)‖ ≤ 1
100
‖x‖

1
2 +

1
50

,

‖Ψ(t, x, y)‖ ≤ 1
100
‖y‖

1
2 +

1
500

.

Furthermore, we can also obtain m1 = 1
30 , m2 = 1

20 , M1 = 2, K1 = 1
100 , K2 = 1

200 . Then,
we see that

Ω = A4 + A5 + Cv =
1

40× 2
1
2 Γ( 2

3 )
+

1

200× 2
1
2 Γ( 2

3 )
+

1
400
√

π
< 1.

Using Theorem 14, the coupled system has a unique solution. Upon calculation, we obtain

Q =

 13
600
√

2Γ( 2
3 )

+ 1
400Γ( 1

2 )
1

200
√

2Γ( 2
3 )

1
100
√

2Γ( 2
3 )

7
200
√

2Γ( 2
3 )

+ 1
800
√

π

 ≈ (0.0184 0.0039
0.0078 0.0281

)
.

Direct calculation implies the spectral radius

ρ(Q) = max{|0.0306|, |0.0159|} = 0.0306 < 1,

which shows that the matrix Q converges to zero, and using Theorem 15, the solutions of the
problem (40) are Hyers–Ulam stable.
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6. Conclusions

In this paper, we use the coincidence degree method and nonlinear functional analysis
theory to deal with the existence and uniqueness of solutions and the matrix eigenvalue
method in order to investigate Hyers–Ulam stability for a coupled system of fractional
differential equations with nonlinear p-Laplacian operator. Since the system we studied is
more extensive and the initial boundary value conditions used are different from those used
in references [6,14,15], the proofs may be carried out in the case of q-difference similarly.
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