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Abstract: Effective decision-making techniques are essentially dependent on the capacity to balance
(symmetry) requirements and their fulfilment, that is, the capacity to accurately identify a collection
of factors that have the greatest influence on performance. Data envelopment analysis (DEA) is a
useful nonparametric method in operations research for performance estimation by measuring the
efficiency scores of the decision-making units. In this paper, we develop a global search method
(GSM) for selecting the key input and output variables in DEA models. The GSM measures the effects
of variables with respect to the efficiency scores directly, i.e., by considering the average change when
a variable is added or removed from the analysis. It aims to produce DEA models that include only
the key variables with the largest impact on the results. The effectiveness of the GSM is demonstrated
using a case study from 15 US banks, with the results analyzed and discussed. The outcomes indicate
that the GSM yields useful insight for decision-makers to make informed decisions in undertaking
their problems.

Keywords: data envelopment analysis; DEA; data reduction; efficiency measurements; operations
research; search method

1. Introduction

Data envelopment analysis (DEA) has been regarded as a powerful technique to select
and combine models for general k-class classification problems in machine learning [1,2].
The application of DEA as an ensemble for classifiers in machine learning is inspired by
the ROCCH (receiver operating characteristics convex hull) [3] which was mainly for the
two-class classification problem. DEA was first proposed by [1] to construct ensembles
for classifiers and they showed that DEA identified a convex hull that is identical to that
of ROCCH for a classification problem with two classes. From then onwards, DEA has
been utilized as an ensemble of classifiers that can be applicable to problems with multiple
classes [2]. Baumgartner and Serpen [4] had further shown that integrating multiple base
classifiers into an aggregated outcome (or ensemble) has turned out to be an efficient
strategy for achieving superior prediction performance.

The underlying fundamentals of DEA is based on a nonparametric approach that ad-
dresses the issue of determining the efficiency of various “decision-making units” (DMUs)
based on how inputs are converted into outputs [5]. A DMU is rated as fully efficient
(100%) if and only if the performance of other DMUs does not show that some of its inputs
or outputs can be improved without worsening some of its other inputs or outputs [6].
DEA, which is extensively used to investigate a wide range of industries [7,8] and has
lately been implemented in the big-data toolbox [9], employs mathematical programming
to discover efficient DMUs, which constitute an efficient frontier. The efficiency score in
DEA analysis highly relies on the set of input and output variables used in the efficiency
measure. Hence, if DEA is to be fully utilized in evaluating as many different classifiers as
possible, inputs and outputs variables selection in a DEA model is critical. We therefore
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expect to address this problem of DEA by developing a global search method (GSM) for
optimizing variables selection.

The contributions of this paper are as follows. Firstly, this study enhances DEA for
efficiency measurement which is the key concept for performance. Secondly, this paper
generates a searching algorithm for variables selection that include variables with the
largest impact on the DEA results, in which the algorithm is grounded on optimization
approach. Finally this study yields useful managerial insights for decision-makers to make
reliable judgements and to be used as guidelines to adjust or balance (symmetrize) their
strategies and needs with proper allocation of resources.

This paper is organized as follows. Section 2 presents the literature on variables
selection in DEA. Section 3 presents the methodology of the global search method (GSM).
In Section 4, we illustrate this method using sample datasets and discuss the new man-
agerial insights resulting from the GSM. In Section 5, further illustration and validations
on GSM are presented using two established numerical examples and a case study on US
banks. Concluding remarks are presented in Section 6.

2. Past Research on Variables Selection in DEA

It is very important to select the potential variables to be considered in a DEA model.
In general, any resource used by a DMU should be treated as an input variable, and the
outputs come from the performance and activity measures when the DMU converts its
resources to produce products or services. However, how to choose the right input and
output variables has attracted only little attention in the existing literatures. Most of the
existing studies on DEA simply treat the input and output variables as “givens” and then
go on to deal with the analysis. As it was until 1989, Golany and Roll [10] gave an overall
view of DEA that should focus on the choice of variables in addition to the methodology
itself. The attention to variable selection is important because the increasing number of
input and output variables will constrain the weights assigned to the variables, and the
analysis of the results will become less discerning. Jenkins and Anderson [11] applied
regression and correlation analysis to identify which variables were to be omitted from the
DEA model on the basis of the minimum loss of information. Information was related to
the variance of an input or output variable about its mean value. Morita and Avkiran [12]
proposed a statistical approach to find an optimal inputs/outputs combination by using
diagonal layout experiments.

While there is no consensus on how best to select the variables, many guidelines have
been proposed in the literature suggesting limiting the number of variables relative to the
number of DMUs. In general, a rough rule of thumb in the envelopment model of DEA
is to choose n (= the number of DMUs) equal to or greater than max{m × s, 3 × (m + s)},
where m and s are the inputs and outputs variables respectively (see [13] for more details).
The challenge in DEA is to find a ‘parsimonious’ model, using as many input and output
variables as needed but as few as possible. The greater the number of input and output
variables in a DEA, the higher is the dimensionality of the linear programming solution
space, and the less discerning is the analysis [11].

Several methods have been proposed that involve the analysis of correlation among
the variables, with the goal of choosing a set of variables that are not highly correlated
with one another. These methods purport those variables which are highly correlated
with existing model variables are merely redundant and should be omitted from further
analysis. Unfortunately, Nunamaker [14] figured out that these methods yield results
which are often inconsistent in the sense that removing variables that are highly correlated
with others can still have a large effect on the analysis results. In addition, a parsimonious
model typically shows generally low correlations among the input and output variables,
respectively [15,16]. Appa et al. [17] proposed a method of adding variables to the DEA
model one at a time. They claimed that high statistical correlation was an indicator that a
particular variable influenced the performance. The authors did note that the observation
of high statistical correlation alone was not sufficient. After that, Jenkins and Anderson [11]
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applied regression and correlation analysis to identify which variables were to be omitted
from the DEA model on the basis of the minimum loss of information. Information was
related to the variance of an input or output variable about its mean value. Their statistical
approach using partial correlation analysis resulted in a measure of information contained
in each variable. The authors found that the DEA results could vary greatly according to
which highly correlated variables were included or omitted from the DEA model.

At the same time, some investigations start to evaluate the marginal impact on the
efficiencies of an adding or omitting a given variable, and focusing on evaluating the
statistical significance of the changes in the efficiencies [18]. Another statistical approach
for variable selection was developed by [19]. They focused on the inner models which
data differed in one single input or output variable. They evaluated a reduced DEA model
without one particular variable, and an extended model that included one variable. Then,
for each DMU, the efficiency scores were calculated under both the reduced and extended
model. A statistical test was conducted to determine the significance of the efficiency
contribution of the particular variable being evaluated. Amirteimoori et al., [20] developed
an approach that aggregates selected high correlated inputs/outputs to reduce the total
number of variables and increase the degree of discrimination. While Ref. [21] pointed out
that such approach is unstable due to the epsilon is not unique, they have improved the
approach to only one step iteration.

In contrast to correlation based methods, which look at the input and output variables
before applying DEA to determine the likely effect on the efficiency scores after the appli-
cation of DEA, other approaches examine directly the effect on the efficiency scores when
the input and output DEA variables are changed. The initial model was compared with
those of a new model in which one additional variable was added. Ref. [22] developed a
“stepwise” selection approach to examine the changes in the efficiencies as variables are
added and removed from the DEA model, often with a focus on determining when the
changes in the efficiencies can be considered statistically significant.

In addition, their approach has not considered the rule of thumb, and each selection
step is only based on the minimum efficiency change with the last step that is just local
optimal—it may not lead to the optimal global decision. Toloo et al. [21] developed selecting
models of performance measures in DEA; their models applied the rule of thumb to keep
the balance between the number of DMUs and the number inputs/outputs by solving a
series of mixed-integer linear programming (MILP) model. However, whether viewing
from individual DMU or aggregate, such a model is still unable to determine exactly which
variables should be selected, because they consider those performance measures “appear
the most often” and take the risk of losing important managerial information.

In this study, we advance the work on variable reduction methods in DEA by formaliz-
ing a “global search method (GSM)” for the selection process, and examine the managerial
insights gained from using this method. Our proposed GSM measures the effect of in-
fluence of variables directly on the efficiencies by considering their average change as
variables are added or removed from the analysis. This method is intended to produce
DEA models that include only those variables with the largest impact on the DEA results.
Moreover, it is useful for models which do not have sufficient number of DMUs and violate
the rules of DEA. This can happen in niche classifications (e.g., markets) where the number
of comparable DMUs is few, or new classifications (e.g., industries) where the number
of measures far exceeds the total number of DMUs. This method is easy to understand,
and therefore, it is useful to managers and decision-makers, as it does not need extensive
additional calculations.

3. A Global Search Method for Selecting Variables in DEA

We begin by describing the procedures of GSM. The GSM aims to optimize the
number of DEA variables and to find the key input and output variables which influence
the efficiency scores. We now explain in detail the GSM procedure for effective omission of
DEA inputs and outputs.
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This approach starts by considering all possible combinations of input and output
variables in the DEA model. Assume an original DEA model that has m inputs and s
outputs, the total number of DMUs is n. The rule of thumb in [13] provides a guidance
for determining a numerical relation between the number of DMUs and number of in-
puts/outputs, i.e.,

n ≥max{3(m + s), m × s} (1)

Set a1 input variables and a2 output variables are planned to be kept in the model,
where a1, a2 ∈ N∗. The selection procedure will be divided into N cases that depends on
the condition of formula (1).

N =

{
card (

{
(a1, a2)

∣∣a1 + a2 ≤ n
3
}
), i f 3(m + s) ≥ ms

card ({(a1, a2)|a1a2 ≤ n}), i f 3(m + s) < ms
(2)

where card(A) denotes to count the number of elements in a set A. For each case I, where
I = {1, 2, 3, . . . , N}. NI represents the number of possible combinations of inputs and
outputs, where:

NI =

(
m
a1

)
∗
(

s
a2

)
(3)

The algorithm for selection procedure is conducted by the following steps.

• Step 1: Run the original DEA model that includes the full set of m input variables and
s output variables. Record the efficiency scores of each DMU for this run (set E∗).

• Step 2: Run a set of k = 1, ... , NI DEA analyses, keep setting a1 input variables and a2
output variables at a time in each run. For each analysis, record the efficiency scores
of each DMU (set EI,k) for all k runs.

• Step 3: Calculate, for each DMU, the average differences ADI in the respective DMU
efficiency scores by

ADI =
1
n
(E∗ − EI,k) (4)

• Step 4: Choose the optimal variables combination CI * to be kept by selecting the
variable with the minimum average difference in the efficiency scores from above.

CI* = min {ADI} (5)

• Step 5: For the variables selected to be kept, label the DEA results EI* based on the
efficiency scores of the DMUs for the remaining input and output variables.

Through steps 1 to 5, the optimal variables combination CI* and the corresponding
DEA results EI * are worked out by searching through all the variables’ combinations
for case I, which means the optimal a1 input variables and a2 output variables have been
selected to remain in the model with the minimum average difference in the efficiency
scores. Figure 1 shows the flow chart of the GSM algorithm for case I.
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Figure 1. The flow chart of the GSM algorithm for case I.

Then, for all N cases, calculate all the possible efficiency scores under all combinations
of the input and output variables by comparing the changes in efficiency with that of the
original model. The total number of possible combinations of the input is:

Tc =
N

∑
I=1

NI (6)

Theoretically, the method reiterates until only one input and one output variable
remain in the model (i.e., for case I = 1). From the practical viewpoint, how many cases
should be evaluated depends on the decision criterion to create a parsimonious DEA model.
It should also be noted that the GSM procedure does not rely on the particular form of
the DEA model. This procedure can be used with either CRS or VRS, or with static or
stochastic data, as long as the same model is used consistently in all steps. The complexity
analysis of this method is attached in Appendix A.

4. Results

The proposed GSM of DEA variables can easily be demonstrated by using an example.
We consider the data sets from eighteen logistics companies (as shown in Table 1), with the
labels of DMU1 to DMU18. The data set contained information of six input variables and
three output variables. In this case, the inputs are the following operations indicators.

• I1: total asset
• I2: total capital
• I3: total current liabilities
• I4: total operating expenses
• I5: no. of employees
• I6: selling, general & administrate
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The outputs are the following variables:

• O1: operating income
• O2: net sales or revenues
• O3: net profit

Table 1. Data of 18 logistics companies.

DMU I1 I2 I3 I4 I5 I6 O1 O2 O3

DMU1 7,173,039 4,665,546 2,220,173 11,430,109 11,000 1,076,631 815,161 12,245,269 577,488
DMU2 153,707 145,476 7181 7277 280 2194 905 8182 4457
DMU3 939,409 902,449 36,960 290,085 18 32,467 415,204 705,289 379,699
DMU4 493,906 307,173 147,059 517,766 1549 37,473 17,141 534,907 26,262
DMU5 35,333 25,084 9826 22,173 97 4559 1912 24,085 1441
DMU6 466,368 396,445 70,260 530,222 493 24,630 39,389 569,611 25,323
DMU7 98,994 66,529 32,388 112,552 83 16,247 9994 122,546 9641
DMU8 719,315 505,479 192,045 293,421 2288 162,686 142,624 436,045 150,716
DMU9 638,625 528,936 72,211 173,320 1392 32,952 17,494 190,814 15,970
DMU10 466,216 334,537 125,959 225,573 1445 46,286 27,270 252,843 21,727
DMU11 213,201 166,998 38,928 134,985 563 27,054 28,037 163,022 16,580
DMU12 2,187,708 2,117,114 69,256 257,920 371 29,239 350,222 608,142 481,361
DMU13 74,547 69,426 5518 67,645 1540 18,799 6234 73,879 4441
DMU14 130,826 94,929 35,848 227,195 276 15,628 2880 230,075 2418
DMU15 522,852 232,016 266,412 222,264 762 22,885 9358 231,622 12,690
DMU16 305,799 232,079 69,433 277,171 551 13,413 10,697 287,868 8080
DMU17 27,951,845 25,189,736 2,700,867 8,688,422 8916 909,224 2,510,523 11,198,945 2,861,949
DMU18 930,044 748,004 163,564 492,289 573 33,756 65,324 557,613 35,763

4.1. Search the Best Combination in All Possible Cases

In this conciliation, first we ignore the rule of thumb and let N = 8, try to consider all
possible combinations of input and output variables in the DEA model and run the GSM
model with all cases from step 1 to step 5. Figure 2 shows the trend of average change of
efficiency with number of omitted variables. It indicates that as the number of variables
decreases, the average of the efficiency change will increase.

Figure 2. The average efficiency change will increase if more variables are omitted.

Table 2 shows the optimal combinations in all possible cases. As for managers, the
GSM model not only gives a method of efficiency analysis for decision-making, but also
gives alternative options even the number of variables are determined. When examining
which of the input and output variables can be kept and the effect on the previously efficient
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DMUs as they do, provides valuable managerial information. We can also see the output
variable “net sales or revenues” has vital effect on the analysis, because, among all the
optimal cases, such a variable has always been kept and never been omitted.

Table 2. Optimal combinations in all possible cases.

No. of Kept
Variables Inputs Outputs Average Efficiency

Change

2 I6 O2 0.3107

3
I2 O2, O3 0.2769

I6, I4 O1 0.0406

4
I2 O1, O2, O3 0.2718

I1, I6 O1, O3 0.0389
I1, I4, I5 O1 0.0169

5
I2, I3, I4, I6 O2 0.0053

I2, I4, I6 O2, O3 0.0152
I2, I4 O1, O2, O3 0.0486

6
I2, I4, I6 O1, O2, O3 0.0152

I2, I3, I4, I6 O2, O3 0.0036
I1, I2, I4, I5, I6 O1 0.0017

7
I2, I3, I4, I6 O1, O2, O3 0.0117

I1, I2, I3, I4, I6 O1, O3 1.04E-09
I1, I2, I3, I4, I5, I6 O2 0.0017

8
I1, I2, I3, I4, I6 O1, O2, O3 9.94E−10

I1, I2, I3, I4, I5, I6 O2, O3 9.63E−10
9 I1, I2, I3, I4, I5, I6 O1, O2, O3 0

4.2. Search the Best Combination under the Rule of Thumb

In this sample, m = 6, s = 3, and n = 18. By applying the rule of thumb, here 3(m + s) = 27,
ms = 18. Hence we have

n < max{3(m + s), ms} = 3(m + s) (7)

This indicates that the number of inputs/outputs should be omitted to match the
condition in (1). Denote a1 input variables and a2 output variables will be kept, then it
will match

(a1 + a2) ≤
n
3
= 6, where a1, a2 ∈ N∗ (8)

Therefore, the total optimal number of input/output variables should be no more than
6. Here, if the manager chose six variables of inputs and outputs to keep, this indicates that
three variables need to be omitted from total nine inputs/outputs variables. Considering
that at least one input and one output should be kept in normal DEA model, and then the
possible cases are shown in the following Table 3.

Table 3. Possible cases of combinations with six variables.

Cases No. of Inputs (a1) No. of Outputs (a2) No. of
Combinations

Case1 5 1 18
Case2 4 2 45
Case3 3 3 20

In Table 3, for each case, the number of combinations can be calculated by (3). By
using the GSM model to do the analysis, the best combination for each case can be easily
figured out by comparing the efficiency scores with the original DEA model. As a result,
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the optimal input variables and output variables have been selected to remain in the
model with minimum average difference in efficiency scores. Table 4 shows the optimal
combination for each case with six variables.

Table 4. Optimal combinations with six variables.

Cases Inputs Outputs Average Efficiency
Change

Case1 I2, I3, I4, I5, I6 O2 0.0017
Case2 I2, I3, I4, I6 O2, O3 0.0036
Case3 I2, I4, I6 O1, O2, O3 0.0152

From Table 4, we can find that the combination (I2, I3, I4, I5, I6 and O2) in Case 1
shows the minimum average difference in efficiency scores and hence it is selected as the
optimal combination when six variables are selected to be remained. This is due to about
99.83% of the information has been kept after omitting three variables. It means that the
input variable “total assets” and output variables “operating income” and “net profit”,
which have less contribution to the efficiency scores, could be omitted with a minimum
loss of information and no change in DEA scores.

4.3. Find the Key Input and Output Variables

The GSM model can also be used to identify the key variables i.e., the factors that play
a significant role in the company’s operations. Identification of key variables is important
to managers because this can help them focus on the primary issue of the company. In
Table 2, I4 and O2 are identified as the key input and key output; this is because, after the
omission of the other variables, the remaining two variables can still keep about 68.93%
(where the average efficiency change is 31.07%) of information from the original model
with nine variables. However, in most applications this modest change in efficiencies is
outweighed by the gains that result in developing a more parsimonious model.

5. Further Illustration and Validations

In this section, the proposed GSM method is further tested and validated using two
established numerical examples then followed by a case study. The examples from [11,22]
are used here.

5.1. Example 1: Compared with Partial Correlation in Jenkins and Anderson

We begin with a simple exercise using the CCR-I primal model and compare our
results with Jenkins and Anderson [11]. In Table 5, there are six inputs, two outputs and
only eight DMUs.

Table 5. Data for Example 1.

DMU I1 I2 I3 I4 I5 I6 O1 O2

A 1.5 2.7 70 2.3 1.8 3.3 85 82
B 0.5 0.2 70 1.5 1.1 0.5 96 93
C 2.5 2.6 75 2.2 2.4 3.2 78 87
D 1.8 1.5 75 1.8 1.6 2.3 87 88
E 0.9 0.4 80 0.5 1.4 2.6 89 94
F 0.6 0.2 80 1.3 0.9 2.8 93 93
G 1.4 0.6 85 1.4 1.3 2.1 92 91
H 1.7 1.7 90 0.3 1.7 1.8 97 92

In order to compare with the method of partial correlation in [11], we omitted the
same number of input variables and kept all outputs. Table 6 shows the results of GSM
and Jenkins and Anderson’s [11].
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Table 6. The results of GSM model and partial correlation.

No. of Input
Variables GSM Partial Correlation

Inputs Kept E* Inputs Kept E*

2 I3, I5 0.005 I1, I3 0.063
3 I3, I4, I5 0 I1, I3, I6 0.063
4 I2, I3, I4, I5 0 I3, I4, I5, I6 0
5 I1, I2, I3, I4, I5 0 I2, I3, I4, I5, I6 0

From Table 6, we can see the advantage of the GSM model with less efficiency change.
If considering two input variables to be kept, the GSM model selects I3 and I5, the partial
correlation model selects I1 and I3. However, the GSM analysis shows that if I3 and I5 are
to be kept as to retain as much information as possible (measured by average efficiency
change), I3 and I5 are the best pair to be kept. The most surprising result is perhaps the
choice of variables to keep, which is certainly not accurate from the partial correlation, and
how much information is retained by a judicious choice of fewer variables. The partial
correlation is indirectly related to the resulting changes in efficiencies, while the GSM model
can retain as much as information when choosing the same number of input variables.

5.2. Example 2: Compared with Wagner and Shimsak

In this section, we conduct a further analysis by comparing our GSM model with other
related variables selection methods, i.e., stepwise [22] and selective measures [21]. Using
the data provided earlier in Table 1 above, we obtain the following results.

Table 7 shows the results of GSM and stepwise. As a general view, GSM model is
able to choose the more important variables with less efficiency change, and the results
of GSM have 5.63% improvement compared with stepwise model. If we want to choose
the ‘core’ variable of the DEA model, which means to select one representative input and
output variable with least information lost. The GSM model selects I6 and O2 with average
efficiency change of 0.302, which is less than 0.304 from the stepwise method that chooses
I4 and O2. In addition, the GSM method can provide valuable and accurate managerial
information to the decision-maker that is not available from traditional DEA analysis.

Table 7. Results of GSM and Stepwise.

No. of Variables
to Be Kept

GSM Stepwise Improved by
(%)Input Kept Output Kept E* Input Kept Output Kept E*

2 I6 O2 0.302 I4 O2 0.304 0.13%
3 I1, I6 O1 0.197 I2, I4 O2 0.290 9.21%
4 I1, I4, I5 O1 0.174 I2, I4, I6 O2 0.288 11.48%
5 I1, I4, I5 O1, O3 0.173 I2, I3, I4, I6 O2 0.288 11.49%
6 I1, I2, I4, I5, I6 O1 0.217 I2, I3, I4, I5, I6 O2 0.288 7.10%

7 I1, I2, I3, I4, I5,
I6 O2 5.45E−16 I1, I2, I3, I4, I5,

I6 O2 5.45E−16 0.00%

8 I1, I2, I3, I4, I5,
I6 O2, O3 1.86E−16 I1, I2, I3, I4, I5,

I6 O2, O3 1.86E−16 0.00%

Average - - - - - - 5.63%

To compare with selective measures method [21], for instance now, here if managers
choose to keep five input/output variables, then the results are shown in Table 8.
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Table 8. GSM model vs other methods.

DMU GSM Model Step-Wise Selective
Measures E*

Variables to Be Kept

I2, I3, I4, I6, O2 I2, I4, I6, O2, O3 I2, I4, O1, O2, O3 I2, I3, I4, I6, O2 I2, I4, I5, I6, O2 All

DMU1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
DMU2 0.46245 0.46281 0.46281 0.46245 0.46245 0.46281
DMU3 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
DMU4 0.93322 0.93322 0.88721 0.93322 0.93322 0.93322
DMU5 0.75687 0.75687 0.75687 0.75687 0.75687 0.75687
DMU6 1.00000 1.00000 0.86486 1.00000 1.00000 1.00000
DMU7 0.93591 0.93591 0.93591 0.93591 1.00000 1.00000
DMU8 0.85763 0.85763 0.85763 0.85763 0.85763 0.85763
DMU9 0.45843 0.45843 0.45843 0.45843 0.45843 0.45843
DMU10 0.69527 0.69527 0.69527 0.69527 0.69527 0.69527
DMU11 0.81139 0.81139 0.81139 0.81139 0.81139 0.81139
DMU12 0.96979 1.00000 1.00000 0.96979 0.96979 1.00000
DMU13 1.00000 0.79007 0.79007 1.00000 0.79007 1.00000
DMU14 1.00000 1.00000 0.94100 1.00000 1.00000 1.00000
DMU15 0.74907 0.74907 0.74907 0.74907 0.74907 0.74907
DMU16 0.93189 0.93189 0.80683 0.93189 0.93189 0.93189
DMU17 0.56520 0.56520 0.55444 0.56520 0.56520 0.56520
DMU18 0.74498 0.74498 0.69470 0.74498 0.74498 0.74498

average change
with E* 0.0053 0.0152 0.0486 0.0053 0.0134 0

The results in Table 8 indicate that, when choosing five variables to keep, the GSM
model gives three alternative options: four inputs and one output, three inputs and two
outputs, two inputs and three outputs, while the stepwise model and selective measures
can give only one choice. Overall, if the manager chooses four inputs and one output to
keep, both GSM and stepwise selected inputs: “total capital”, “total current liabilities”,
“total operating expenses, selling, general & administrate” and output: “net sales or
revenues”. This option is the best choice because it has smallest information lost and
kept 99.47% information compared with original model. However, stepwise does not
consider the rule of thumb, and each selection step is only based on the minimum efficiency
change with the last step that is just local optimal, so it may not lead to the optimal global
decision in some cases. As for selective measures, it has greater efficiency change and may
lose more managerial information, because this approach mainly focuses on maximizing
its individual or aggregate efficiency, not considering the information losing from the
global views. In addition, selective measures cannot determine exactly which variables
and how many should be selected, because they consider those performance measures
“appear the most often”, while, here, in order to compare the result, we choose the result
case with smallest efficiency change, even though doing so may incur the risk of losing
important information.

From the above analysis, we can see that our GSM model has shown a great advance in
performance variables selection in the normal DEA model. First, it has considered the rule
of thumb to keep the balance between the number of DMUs and the number of variables.
Second, it can determine the exactly which variables to be selected and alternative options
for different decision-making. Third, it can help decision-makers to find the key input and
output variables that make the main contribution to improving efficiency.

5.3. Case Study: US Banks

The GSM model helps to select variables in DEA and provides a framework for a
number of alternative implementations. As previously mentioned, as long as a normal
DEA model is used in each step, the GSM algorithm can be used with a variety of efficiency
models. In this section, we conduct the analysis in the banking industry using the model
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by [23]. The data used in this model were captured from fifteen US banks with six ratios in
2011. The GSM is suitable to be applied to this US banks example because there are many
ratios in the analysis of efficiency. Most of the time, the number of DMUs is not enough to
meet the minimum criteria. Therefore, the use of GSM here helps greatly to overcome this
problem. Table 8 shows the fifteen US banks with six ratios. The ratios are as follows.

• R1: Current Ratio
• R2: Return on Total Assets
• R3: Price Earning Ratio
• R4: Profit Margin
• R5: Equity/Total Assets
• R6: Dividend Pay-Out

Table 9 shows the ratios of the banks and Table 10 shows the efficiency scores of each
DMU. The last row in Table 10 indicates the average change in the efficiency score. At
the beginning, the analysis of the ratio model containing all six ratio variables yields four
efficient banks (B6, B12, B14, and B15). For Case 1, removing “Current Ratio” shows the
smallest average change in the efficiency scores (2.62E−10). When it is omitted from the
model, the same four banks remain efficient. For Case 2 with four ratio variables, “Current
Ratio” and “Profit Margin” are selected to be dropped with an average change in efficiency
score of 0.008 resulting in the same efficient banks.

Table 9. Fifteen US banks with six ratios.

Bank Name R1 R2 R3 R4 R5 R6

B1 CITIGROUP INC 0.62 0.78 6.86 15.15 9.58 0.72

B2 ZIONS
BANCORPORATION 0.19 0.98 9.30 −19.70 13.14 2.28

B3 CAPITAL ONE
FINANCIAL CORP 0.05 2.23 6.18 26.67 14.40 2.89

B4 DISCOVER FINANCIAL
SERVICES 0.10 5.10 5.88 19.06 11.98 4.93

B5 ASSOCIATED
BANC-CORP. 0.04 0.84 13.87 −4.20 13.07 5.01

B6 FIRST MIDWEST
BANCORP, INC 0.10 0.52 20.64 −10.33 12.07 8.14

B7 WEBSTER FINANCIAL
CORP 0.02 1.12 11.79 11.84 9.86 9.23

B8 SUNTRUST BANKS 0.06 0.42 14.40 0.24 11.35 9.70
B9 METLIFE, INC. 0.64 1.25 4.74 8.06 7.52 11.31

B10 MORGAN STANLEY 1.62 0.82 6.28 20.54 9.35 13.82

B11 WELLS FARGO &
COMPANY 0.12 1.80 8.97 22.50 10.78 15.65

B12 TD AMERITRADE
HOLDING CORP 15.73 5.94 13.04 37.61 24.03 17.91

B13 PRUDENTIAL FINANCIAL
INC 0.12 0.85 6.49 27.06 6.05 18.94

B14 PNC FINANCIAL
SERVICES GROUP 0.05 1.50 9.88 26.20 13.73 19.67

B15 US BANCORP 0.05 1.95 10.78 23.29 10.28 20.07
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Table 10. GSM in US banks with ratios.

Case 5 Case 4 Case 3 Case 2 Case 1 E*

Ratio Kept R6 R3, R4 R2, R3, R6 R2, R3, R5, R6 R2, R3, R4, R5, R6 All 6 Ratios

B1 0.0359 0.4874 0.3722 0.4574 0.4874 0.4874
B2 0.1136 0.4506 0.4995 0.6235 0.6235 0.6235
B3 0.144 0.7091 0.4355 0.5993 0.7091 0.7091
B4 0.2456 0.5068 0.8586 0.8586 0.8586 0.8586
B5 0.2496 0.7052 0.7042 0.7833 0.7833 0.7833
B6 0.4056 1 1 1 1 1
B7 0.4599 0.7192 0.7033 0.7033 0.7192 0.7192
B8 0.4833 0.7598 0.8136 0.8136 0.8136 0.8136
B9 0.5635 0.3167 0.5674 0.5745 0.5745 0.5745
B10 0.6886 0.5461 0.6886 0.701 0.7165 0.7165
B11 0.7798 0.6598 0.7975 0.7995 0.8071 0.8071
B12 0.8924 1 1 1 1 1
B13 0.9437 0.7195 0.9437 0.9437 0.9748 0.9748
B14 0.9801 0.7385 0.9801 1 1 1
B15 1 0.7616 1 1 1 1

Average change
with E* 0.0940 0.0457 0.0223 0.0080 2.62E−10 0

For Case 3, the ratio variables of “Return on Total Assets”, “Price Earning Ratio” and
“Dividend Pay-Out” are kept and the average change in the efficiency score is 0.0223. For
Case 4 with two ratio variables, “Return on Total Assets” and “Price Earning Ratio” are
kept and the average change in the efficiency score is 0.0457. For Case 5 with only one
variable (“Dividend Pay-Out”) kept, a fairly large average change in the efficiency score of
0.094 occurs. The efficiency scores for some DMUs (e.g., B6) are reduced by as much as 59%.
In this case, there is only one efficient bank, i.e., B15. When the GSM algorithm is taken to
its conclusion, there will always be one ratio variable identified as the most important for
the efficiency score. In this US banks analysis, the key variable that has been identified for
these banks is “Dividend Pay-Out” (the single remaining ratio). Managerially, we interpret
this result as indicating that the core strategy for banks is to focus their capability of making
profits, therefore gaining greater “Dividend Pay-Out”.

6. Implications

According to the illustrations and case studies presented in Section 5, the implications
pertaining to the proposed method can be deduced. Effective decision-making approaches
are fundamentally based on the ability to precisely identify a set of factors or criteria that
have the greatest effect on performance. Knowledge of these factors is needed by decision-
makers in taking appropriate strategy to improve their performance. This study sheds light
on how the suggested methodology, which is based on the information regarding changes
in efficiency ratings, is useful for evaluating efficiency, as well as offering prescriptive
recommendations that managers can follow in controlling the performance of their business.
This study improves the DEA method for measuring efficiency, which is a crucial notion in
performance. It provides a searching method for variable selection, which includes factors
having the greatest influence on the DEA findings, and the methodology is based on an
optimization method.

This research provides important management insights for decision-makers to make
trustworthy decisions and to utilize as recommendations to alter or symmetrize their plans
and needs with effective resource allocation. According to the results of the preceding
investigation, the proposed GSM model outperformed the standard DEA model in terms
of performance variable selection. The GSM model examined the general guidelines of
maintaining a symmetry between the number of DMUs and the number of variables. The
model also specifies which variables should be used and provides alternatives for various
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decision-making scenarios. The method can assist decision-makers in identifying the
important input and output factors that have the greatest impact on efficiency.

7. Concluding Remarks

In conclusion, the present study has proposed a GSM model to select the optimal
combinations of input and output variables in DEA efficiency analysis. This method acts
directly upon information regarding the change in the efficiency scores and it provides
tips for DMUs as to which input or output variable has the most influence in maintaining
the efficiency. Nevertheless, it is significant to note that the process of making a strategic
decision is complex and can be affected by many factors (e.g., negotiation, persuasion and
environment). Therefore, in future it is suggested to focus on the efficient variables selection
and their impacts on ensemble selection with the issue of fuzzy and big datasets, which will
help decision-makers to refine the performance estimation. In particular, investigations as
to whether the required number of variables in terms of classes can be relaxed are required
and the effect of using different DEA models needs further analysis.
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650912/B130).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A.

Appendix A.1. Complexity Analysis of GSM

The quality of the performance of the algorithm can be evaluated using computational
time of the big O-notation analysis [24]. The big O-notation analysis calculates the worst-
case computational time of an algorithm, say function f (n) = an2 + bn + c where n represents
independent variable of an algorithm with constants a, b, and c. It is used to present the
asymptotic efficiency of a particular algorithm such as f (n) ≤ cg(n) if there are positive
constants n0 and c [25]. Function f (n) resides below function g(n) with constant c under a
sufficiently large n. f (n) = O(g(n)) indicates an asymptotic upper bound of function f (n),
which is also a member of the set O(g(n)). In other words, f (n) is said to have an asymptotic
upper bound at n2 as n grows very large, which can be inferred as O(n2).

The time complexity of GSM for a total of N = m + s − 1 cases, with m inputs and s
outputs as its independent variables, is analyzed asymptotically in the following section.

Suppose NI is defined with assumption of a1 ⊆ m and a2 ⊆ s, as shown in Figure 1.
I consists of m and s variables for each round of processing. The time of looping N cases
is at most m × s × N, as shown in line 4. In other words, the time required in computing
EI* is ms(m + s − 1) under the situation of N = m + s − 1. Note that another set of NI cases
is formed for each I, as shown in line 7. The worst scenario happens when I is equivalent
to N − 1, or at the last case of N, where a1 = m and a2 = s. Its time of looping is at most
of ms(m + s − 1) × N. As such, the time required in computing EI,k is expected to be
ms(m + s − 1)(m + s − 1). Algorithm A1 shows the algorithm of the GSM.
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Algorithm A1 The algorithm of the GSM

1: Procedure Global Search Method
2: Create a combination of m and s variables (C*)
3: set I = {1, 2, 3, . . . , N}
4: while I < N do
5: Compute EI* based on m and n variables

6: set NI =

{(
m
a1

)
∗
(

s
a2

)
||a1 + a2 = I + 1

}
7: while k < NI do
8: Compute EI,k based on a1 and a2 variables
9: end while
10: set ADI = 1

n ∑k=0NI(EI* − EI,k)
11: set CI*← a1 and a2 of min(ADI)
12: end while
13: return C*

The computational of each ADI is based on averaging NI cases with the summation
of EI* − EI,k, as shown in line 10. The expected time until the (NI − 1)-th case is at most
m + s − 1. The combination of variables of a1 and a2 for an identified minimum ADI is
assigned to CI*, which occurs at the end of the lopping of a particular I. Note that the time
to assign values to both CI* and NI (as in line 6, Figure 1) is at most 1.

In short, an optimized combination variables m and s is yielded through C* at the end
of the GSM procedure. As function f (n) is an increasing function in yielding C*, the constant
variable c as well as other variables become insignificant as compared with m3s + ms3, as
required in computing variable EI,k when m and s grow very large in values. Function f (n),
which represents the GSM procedure, is asymptotically equivalent to O(m3s + ms3) as both
m and s grow to infinity.
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