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Abstract: The effect of external and internal elastic strain fields on the anisotropic diffusion of radi-
ation defects (RDs) can be taken into account if one knows the dipole tensor of saddle-point config-
urations of the diffusing RDs. It is usually calculated by molecular statics, since the insufficient ac-
curacy of the available experimental techniques makes determining it experimentally difficult. 
However, for an RD with multiple crystallographically non-equivalent metastable and saddle-point 
configurations (as in the case of di-interstitials), the problem becomes practically unsolvable due to 
its complexity. In this paper, we used a different approach to solving this problem. The molecular 
dynamics (MD) method was used to calculate the strain dependences of the RD diffusion tensor for 
various types of strain states. These dependences were used to determine the dipole tensor of the 
effective RD saddle-point configuration, which takes into account the contributions of all real sad-
dle-point configurations. The proposed approach was used for studying the diffusion characteristics 
of RDs, such as di-interstitials in FCC copper (used in plasma-facing components of fusion reactors 
under development). The effect of the external elastic field on the MD-calculated normalized diffu-
sion tensor (ratio of the diffusion tensor to a third of its trace) of di-interstitials was fully consistent 
with analytical predictions based on the kinetic theory, the parameters of which were the compo-
nents of the dipole tensors, including the range of non-linear dependence of the diffusion tensor on 
strains. The results obtained allowed for one to simulate the anisotropic diffusion of di-interstitials 
in external and internal elastic fields, and to take into account the contribution of di-interstitials to 
the radiation deformation of crystals. This contribution can be significant, as MD data on the pri-
mary radiation damage in copper shows that ~20% of self-interstitial atoms produced by cascades 
of atomic collisions are combined into di-interstitials. 

Keywords: strain; anisotropic diffusion; diffusion tensor; elastodiffusion tensor; dipole tensor;  
symmetry; molecular dynamics; di-interstitial; copper 
 

1. Introduction 
The efficiency of the development of structural and functional materials depends on 

the level of available knowledge of the laws and mechanisms for the formation of radia-
tion microstructures, defects, and properties of the materials. High-dose reactor tests of 
materials for determination of the degree of radiation change (degradation) of their struc-
ture, and properties are very expensive and time-consuming. Moreover, it is difficult to 
obtain a neutron spectrum in a fission reactor relevant to a fusion reactor environment. 
To support the development of advanced materials for nuclear fusion technology, theo-
retical, modelling, and simulation research is necessary to determine parameters of mate-
rials and to build physically based models of material property changes under irradiation 
in conditions specific to fusion reactors. 

To build physical models of crystal deformation under damaging radiation (e.g., ra-
diation creep, radiation void swelling), it is necessary to determine the effect of external 
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and internal elastic strain fields on the anisotropic diffusion of radiation defects [1–4]. This 
effect can be taken into account if one knows the dipole tensor of saddle-point configura-
tions of the diffusing RDs [5–7]. The dipole tensor Pij (i, j = 1, 2, 3) is usually calculated by 
molecular statics [7–13], since the insufficient accuracy of the available experimental tech-
niques makes determining it experimentally difficult. Different techniques within molec-
ular statics have been developed for calculation of the dipole tensor. The first one is to 
calculate this quantity by summing the first moments of the forces acting on the atoms, 
fixed at their perfect lattice positions, in the region surrounding the region of free atoms 
in which the defect is located [7–10]. The second technique uses a direct relation between 
the dipole tensor and the strain derivative of the defect formation energy, calculated at 
constant strain [11]. The third technique uses the proportionality of the dipole tensor to 
the volume-averaged stress caused by a defect in the simulation box with periodic bound-
ary conditions [12,13]. All of these techniques give the same result. However, for an RD 
with multiple crystallographically non-equivalent metastable and saddle-point configu-
rations, the problem of anisotropic diffusion modelling becomes practically unsolvable, 
due to the need to use physically unreasonable simplifications or assumptions. 

In this paper, we used a different method for solving this problem. It was demon-
strated in [14] that the molecular dynamics (MD) method can be successfully used to study 
anisotropic diffusion of point defects in metals under external stress fields. We used the 
MD method to calculate the strain dependences of the RD diffusion tensor Dij for various 
types of strain states given by the strain tensor εkl (k, l = 1, 2, 3). These dependences were 
used to determine the RD elastodiffusion tensor dijkl, the components of which are the co-
efficients for linear terms of the expansions in the degrees of strain of the calculated strain 
dependences. The crystal symmetry and the defect diffusion mechanism determine the 
symmetry of the tensor, which corresponds to the dipole tensor of the effective saddle-
point configuration of the defect, which takes into account the contributions of all real 
saddle-point configurations. Figure 1 schematically illustrates the idea of the proposed 
method for calculation of Pij. 

 
Figure 1. A schematic illustrating the idea of the proposed method for calculation of the dipole ten-
sor of the radiation defect saddle-point configuration. 

For crystals of a cubic crystal system, the diffusion tensor for small strains can be 
written as [1]: 

( ) ( )ε = δ + ε0ij kl ij ijkl klD D d , (1) 

where D(0) = 1/3 Tr Dij(0) is a third of the trace of the tensor Dij, in the absence of external 
strains, and δij is the Kronecker symbol (here and hereafter, the Einstein summation con-
vention for a set of indexed terms is used). The tensor dijkl has the same symmetry as the 
tensor of elastic constants of the crystal cijkl, which means that it has three independent 
components, d11, d12, d44 (in the Voigt notation), for cubic crystal system crystals. As the 
three independent values defining the tensor dijkl, it is more convenient to choose its three 
eigenvalues: d(1) = d11 + 2d12, d(2) = d11 − d12, d(4) = 2d44. 
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The strain tensor can be represented in the form [1] (here and hereafter, a crystallo-
graphic coordinate system (CCS) with axes along 100 is used, unless otherwise speci-
fied): 

α
αε = ε α = ,    1 6ij ijV , (2) 

where 

    
    = = =     
    

     
     
     = = =     
     
     

1 2 3

4 5 6

V V V

V V V

1 0 0 1 0 0 1 0 0
0 1 0 , 0 1 0 , 0 1 0 ,
0 0 1 0 0 0 0 0 2
0 1 0 0 0 1 0 0 0
1 0 0 ,  0 0 0 , 0 0 1 .
0 0 0 1 0 0 0 1 0

 (3) 

Rewriting Equation (1), taking into account (2, 3), gives: 
α α

α αε = δ + ε( )( ) (0)ij ij ijD D d V . (4) 

Thus, for a full determination of dijkl in the cubic crystal system crystals, it is sufficient 
to consider only three specific strain states, for example, V1, V2, V4. Knowing dijkl, we could 
determine the dipole tensor of the effective RD saddle-point configuration [1], allowing 
us to simulate the diffusion of defects in elastic fields of any arbitrary type, including in-
homogeneous ones (e.g., dislocation fields). 

In this paper, the proposed method was used to determine the dipole tensor of the 
effective saddle-point configuration of di-interstitials in an FCC copper crystal. Copper 
and copper-based alloys (e.g., CuCrZr alloy) are planned to be used as functional materi-
als of fusion reactors [15–17], since these materials possess excellent thermal and electrical 
conductivity. Di-interstitials are one of the most frequently formed types of self-interstitial 
atomic clusters under damaging irradiation (cluster analysis of MD data, spatial distribu-
tions of self-interstitial atoms (SIAs) produced by atomic collision cascades with damag-
ing energies from 1 to 50 keV in Cu, suggested that ~20% of SIAs are combined into di-
interstitials [18–20]). They have multiple different metastable and saddle-point configura-
tions, which makes them convenient to demonstrate the physical advantages of the 
method used on this type of RDs. The components Pij for di-interstitials are approximately 
twice as large as for single SIAs [10]. This leads to a stronger elastic interaction of the di-
interstitials with external elastic fields compared to single SIAs, since in the linear approx-
imation, the interaction energy is equal to [5,11]. 

=− εint
ij ijE P . (5) 

Therefore, the contribution of di-interstitials to crystal radiation deformation under 
cascade-forming irradiation becomes significant, despite the fact that less of them are gen-
erated as compared to single SIAs. 

2. Simulation Technique 
2.1. Molecular Dynamic Model 

The MD techniques used in this work closely follow the ones described in [21], which 
contains their detailed explanations. Di-interstitial diffusion was simulated using intera-
tomic interaction potential [22], since it describes the set of experimental data on the bulk 
properties of copper crystals and their self-point defects well [22,23]. The model crystallite 
was a microcanonical ensemble with periodic boundary conditions. The crystal lattice 
constant a, before the onset of strains, was chosen in such a way that at a given tempera-
ture T, the pressure P in the crystallite was equal to zero, with an accuracy of 0.1 eV/nm3. 
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The time step value was chosen in such a way that the mean atom displacement per iter-
ation was ~0.005a. Verlet integration was used to integrate the equations of motion [24]. 
The locations of the two SIAs making up the di-interstitial were determined by analyzing 
the number of atoms in the Wigner–Seitz cells (WSC). The position of the di-interstitial 
was taken to be that of one of the two SIAs. 

The model crystallites were rectangular parallelepipeds. Their characteristics (edge 
directions, lengths, number of atoms in the crystallite) are summarized in Table 1. The 
model crystallites were strained by giving the model crystallite atoms displacements ui = 
εij xj, where xj are the atomic coordinates before straining. 

Table 1. Characteristics of model crystallites used in simulating strain states Vα (α = 1, 2, 4). The 
values of ε1, ε2, ε4 were set to 0, ±0.001, ±0.005. 

Strain State Number of Atoms Edge Directions Edge Lengths 

V1 4000 + 2 
[100] 10(1 + ε1)a 
[010] 10(1 + ε1)a 
[001] 10(1 + ε1)a 

V2 4000 + 2 
[100] 10(1 + ε2)a 
[010] 10(1 − ε2)a 
[001] 10a 

V4 3920 + 2 
[110] + ε47 2(1 )a  

[110]  − ε47 2(1 )a  
[001] 10a 

2.2. Calculated Diffusion Characteristics 
To calculate the RD diffusion tensor Dij, each simulated diffusion trajectory of the 

defect was divided into several isochronous intervals of duration τ. The value of τ for each 
temperature and strain was set from a compromise between the need for a large number 
of isochronous intervals to increase the calculation accuracy and the need for a sufficient 
number of jumps to be contained within the isochronous intervals to reproduce the main 
correlations and physical features of the RD diffusion [21]. For each isochronous interval, 
the di-interstitial displacement vector Rnm was calculated; here, n is the trajectory number, 
and m is the isochronous interval number. Next, the quantity D = Rnm⊗Rnm/2τ was cal-
culated; here, D is the matrix defining the tensor Dij in the CCS, and the operation … 
denotes averaging over all n and m. The diffusivity D was defined as Tr Dij/3. The errors 
of D and the tensor components Dij were estimated as standard errors for the specified set 
of n and m. A total of 100 diffusion trajectories were simulated for each given set of strain 
state and temperature. The total physical simulation time of 100 trajectories ranged from 
8.49 µs to 6.61 ns, with a change in T from 300 K to 1100 K (2.06 µs at 500 K). The data set 
obtained allowed for calculating the diffusion characteristics with such high accuracy that 
the effect of crystal strains on them was made significant, even at the 0.1% strain. 

The tracer diffusivity Dtr (self-diffusivity per one SIA) was calculated by the Einstein–
Smoluchowski relation [25], using the initial and end positions of the model crystallite 
atoms for each of the 100 program runs simulating the di-interstitial diffusion. For each 
dataset, the self-diffusivity intermediate values were calculated. The final Dtr value was 
obtained by their averaging. The Dtr error was estimated as the standard error for the 
specified set of 100 intermediate values. 

The correlation factor f tr was calculated as the ratio of Dtr to D. Since the value of f tr 
is sensitive to the defect diffusion mechanism, it can be used to indicate changes in the di-
interstitial diffusion mechanism with changes in temperature or cluster size. For example, 
in the case of a one-dimensional diffusion of crowdions, f tr = 0 [26], whereas in the case of 
a three-dimensional diffusion of 100 dumbbells under Johnson’s mechanism, f tr = 0.44 
[27]. The di-interstitial diffusion mechanism can be mixed when the di-interstitial makes 
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a specific number of jumps along one of the directions 110, subsequently changing this 
migration direction. 

2.3. Specific Features of the Diffusion Tensor in FCC Crystals 
During the diffusion of a di-interstitial in an FCC Cu crystal, its constituent SIAs usu-

ally make jumps to the first nearest neighbors (NN). Since the share of jumps to the second 
NN is a hundredths of a percent of the total number at the considered temperatures and 
strains, it was further assumed that the di-interstitial makes jumps only to the first NN. If 
the di-interstitial makes a random walk with probability nk of making a jump in the direc-
tion k (k = 1, 2…6 for jump directions parallel to the directions [110], [110] , [101], [101] , 
[011], [011] , respectively, n1 + n2 +…+ n6 = 1), the normalized diffusion tensor  ijD  in the 
CCS takes the form: 

 − − − − 
 = = − − − − 
 − − − − 


5 6 1 2 3 4

1 2 3 4 5 6

3 4 5 6 1 2

1
3 1
2

1

n n n n n n
n n n n n n

D
n n n n n n

DD . (6) 

One can see from (6) that =Tr 3ijD , while the absolute values of the components can-
not exceed 3/2. 

3. Results 
3.1. Diffusivity 

Figure 2 shows the MD-calculated dependences D(T) and f tr(T) for di-interstitials in 
Cu in the absence of external elastic fields (here and hereafter, the data inaccuracy in the 
figures is not indicated, since it was smaller than the size of the symbols presented on the 
graphs). The dependence D(T) was non-linear in Arrhenius coordinates (Figure 2a): the 
parameters of Arrhenius approximations at low and high temperatures differed (Table 2). 
Despite the low activation energy, which is usually inherent in one-dimensional diffusion 
of self-point defects in metals, di-interstitial diffusion is essentially three-dimensional: ftr 
values are markedly different from zero and increase with temperature (Figure 2b) from 
0.17 at 300 K to 0.36 at 700 K. 

   
(a) (b) 

Figure 2. MD-calculated temperature dependences of the di-interstitial (a) diffusivity and (b) tracer correlation factor in 
Cu. The dashed lines denote Arrhenius approximations (parameters are given in Table 2). 
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Table 2. Parameters of Arrhenius approximations (preexponential factor D0, activation energy EA) 
of calculated dependences D(T) for di-interstitials in Cu. 

T Range D0, cm2/s EA, eV 
[300 K, 400 K] 4.03 × 10‒4 0.046 
[500 K, 700 K] 2.83 × 10‒4 0.032 

Figure 3 shows the MD-calculated dependences D(εα), where α = 1, 2, 4, for the di-
interstitials in Cu at 500 K. These dependences were approximated well by the expres-
sions: 

  
Figure 3. Dependences D(εα) for α = 1, 2, 4, in Cu at 500 K. Symbols are MD data. The dashed curves 
are the approximations (7), (8), and (9). 

2
1 1 1( ) (0)(1 9.98 171 )D Dε = − ε + ε , (7) 

ε = ε+ 2
2 2( ) (0 )( )1 4275D D , (8) 

ε = + ε 2
4 4( ) (0 )(1 36715 )D D , (9) 

where D(0) = 1.33·10–4 cm2/s. The dependences D(ε2) and D(ε4) are even, since due to the 
crystal’s symmetry, its rotation by 90° around the axis [001] is equivalent to a change in 
the sign of the strain state to the opposite, while the crystal rotation cannot change the 
properties of its defects. 

3.2. Normalized Diffusion Tensor  ijD  

For εij = 0, = δ
ij ijD  within the calculation inaccuracy for the considered T. Strain state 

V1 does not change the symmetry of the crystal, so = δ
ij ijD  must also be true. Strain states 

V2 and V4 lower the symmetry of the crystal, which should lead to a change in  ijD , im-
posing certain relations for its components (Table 3). For the MD-calculated dependences 

αε ( )ijD , these relations are actually fulfilled within the framework of the calculation inac-
curacy (Figures 4 and 5). 
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Table 3. Relations for the components of the normalized diffusion tensor, 
ijD  (i, j = 1, 2, 3), under 

strain states Vα (α = 1, 2, 4) following from the crystal symmetry. 

Strain State Components  ijD  

V1 = δ
ij ijD  

V2 ( ) ( ) ( ) ( )ε = −ε ε = −ε = = =      
11 2 22 2 33 2 33 2 23 13 12, , 0D D D D D D D  

V4 ( ) ( ) ( ) ( )= ε = −ε = = ε = − −ε       
11 22 4 4 23 13 12 4 12 4, , 0, ii iiD D D D D D D D  

 
Figure 4. Dependences ε

1( )ijD  in Cu at 500 K. Symbols are MD data. 

  
(a) (b) 

Figure 5. Dependences ( )ijD αε  in Cu at 500 K: (a) α = 2; (b) α = 4. Symbols are MD data. The dashed curves are the 

Equations (15) and (16). 

3.3. Elastodiffusion and Dipole Tensors 
The eigenvalues of the elastodiffusion tensor d(α) can be obtained by adjusting their 

values in such a way that expression (4) would describe the calculated dependences 
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αε ( )ijD  in the region of the small εα, in which the linear nature of such dependences is 
observed. For the specified region, the expressions following from (4) are valid: 

ε = + ε(1)
1 1( ) (0) ,D D d  (10) 

ε − ε = ε  ( 2 )
11 2 22 2 2( ) ( ) 2 / (0 ),D D d D  (11) 

ε = ε ( 4 )
1 2 4 4( ) / (0 ).D d D  (12) 

Using Equations (10)–(12) to adjust the MD data presented in Figures 3 and 5 in the 
region |εα| ≤ 0.1 % gave, for d(α)/(D(0)β), the values 4.945 eV, –2.693 eV, 14.085 eV for α = 
1, 2, 4, respectively. 

In [1], it was analytically shown that the eigenvalues of the elastodiffusion tensor in 
cubic crystal system crystals could be determined if the dipole tensors of the defect in the 
stable e

ijP  and saddle-point s
ijP  configurations are known. Table 4 shows the relations 

obtained in [1] connecting d(α) with e
ijP  and s

ijP  for different symmetries of the defect 
saddle-point configurations. 

Table 4. Eigenvalues of the elastodiffusion tensor for various symmetries of the defect saddle-point 
configurations. 

Symmetry d(1)/(D(0)β) d(2)/(D(0)β) d(4)/(D(0)β) 
Cubic −s eTr( )ij ijP P  0 0 

Tetragonal −s eTr( )ij ijP P  −s s
1 1 22P P  0 

Trigonal −s eTr( )ij ijP P  0 s
122P  

Orthorhombic −s eTr( )ij ijP P  −s s
11 33( ) / 2P P  s

12P  

Di-interstitial diffusion is characterized by a combination of different diffusion mech-
anisms; hence, a di-interstitial has multiple different saddle-point configurations. How-
ever, using the relations in Table 4, it is possible to obtain the dipole tensor of the effective 
saddle-point configuration to which all real saddle-point configurations contribute (each 
with its own weight). 

All three calculated eigenvalues d(α) were nonzero for Cu, which corresponded, ac-
cording to Table 4, to the orthorhombic symmetry of the effective saddle-point configura-
tion of the di-interstitial. Therefore, for the components s

ijP , the following expressions are 
true: 

= = + + β

= + − β

= β
= =

s s e (1) (2)1 1
11 22 3 3

s e (1) (2)1 1
33 3 3
s (4)

12
s s

23 13

Tr ( 2 ) / ( (0) ),

Tr ( 4 ) / ( (0) ),

/ ( (0) ),
0.

ij

ij

P P P d d D

P P d d D

P d D
P P

 (13) 

The molecular statics calculation gave =eTr 100.74 eVijP  for a stable di-interstitial con-

figuration. Substituting the calculated values of d(α) and eTr ijP  to (13), we get 

 
 =  
 
 

s

33.43 14.09 0
[eV] 14.09 33.43 0

0 0 38.82
ijP  
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4. Discussion 
Knowledge of the dipole tensor of the defect saddle-point configuration allows cal-

culation of its diffusion tensor for any strain state and simulation of the RD anisotropic 
diffusion in mechanical fields, generated by external crystal loads and / or internal sources 
(dislocations, sub-boundaries, etc.), by the object kinetic Monte Carlo (OKMC) method, 
taking into account both the effects of elastic crystal anisotropy and crystal symmetry [28]. 
The probabilities nk used in the OKMC method can be represented as [28]: 

( )
( )
− β

=
− β

int

int

exp

exp
k

k
i

i

E
n

E
, (14) 

where int
kE  is the interaction energy of the defect saddle-point configuration for the mi-

gration direction k, with the strain field εij calculated by Equation (5). Applying Equation 
(14) to (6), and introducing the designation = − β εs s

3 3 1 1 2( )x P P , = βεs
12 42y P , we ob-

tain for non-zero components  ijD  under strain states V2 and V4: 

+ − + += = =
+ + +

  
11 22 33

3 1 ch  sh  3 1 ch  sh  3ch  ,  ,  
2 1 2ch  2 1 2ch  1 2ch  

x x x x xD D D
x x x

 for V2; (15) 

+
= = = =

+ + +
   

11 22 33 12

ch 1 sh 3 3 3,  ,  
2 ch 2 ch 2 2 ch 2

y y
D D D D

y y y
 for V4. (16) 

Figure 5 shows the dependences (15) and (16) and the corresponding MD depend-
ences. Equations (15) and (16) that use the dipole tensor as a parameter described the MD 
data with high accuracy for all the considered strain values, including in the region of 
nonlinear dependence  ijD  on strains, which favorably distinguishes them from expres-
sion (4) that uses the elastodiffusion tensor as a parameter, which accurately described the 
MD data for |ε4| ≤ 0.001 only. Therefore, the dipole tensor of the effective saddle-point 
configuration of the di-interstitial for FCC Cu obtained in this study allowed for simulat-
ing of di-interstitial anisotropic diffusion in different elastic fields with high accuracy. 

As a specific result, we note how it followed from Equations (15) and (16) that, with 
an increase in |ε2| and |ε4|, the tensor  ijD  tended to a form corresponding to two-di-
mensional (in the planes (100) for ε2 > 0 and (010) for ε2 < 0) and one-dimensional (in the 
directions [110] for ε4 > 0 and [110]  for ε4 < 0) diffusion of di-interstitials, respectively: 

 
 =  
 
 


0 0 0

3 0 1 0
2

0 0 1
ijD  for ε2 > 0, 

 
 =  
 
 


1 0 0

3 0 0 0
2

0 0 1
ijD  for ε2 < 0, 

 
 =  
 
 


1 1 0

3 1 1 0
2

0 0 0
ijD  for ε4 > 0, 

 − 
 = − 
 
 


1 1 0

3 1 1 0
2

0 0 0
ijD  for ε4 < 0. 

5. Conclusions 
A new method for calculation of the dipole tensor of the saddle-point configuration 

of radiation defects was proposed. In this method, the molecular dynamics method was 
used to calculate the strain dependences of the RD diffusion tensor for homogeneous elas-
tic fields of different types. These dependences were used to determine the RD elastodiffu-
sion tensor. The crystal symmetry and the RD diffusion mechanism determined the tensor 
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symmetry. This corresponded to the dipole tensor of the effective RD saddle-point con-
figuration, which takes into account the contributions of all real saddle-point configura-
tions. 

The proposed approach was used for studying di-interstitial diffusion characteristics 
in copper. The symmetry of the calculated dipole tensor of the effective saddle-point con-
figuration was orthorhombic. For all the strain states considered, the effect of the external 
elastic strain field on the MD-calculated normalized di-interstitial diffusion tensor (ratio 
of diffusion tensor to a third of its trace) was fully consistent with theoretical expressions, 
the parameters of which were the components of the dipole tensor, including those out-
side the range of linear dependence of the diffusion tensor on strains. 

The results obtained allowed for simulation of di-interstitial anisotropic diffusion in 
external and internal elastic fields and for taking into account the di-interstitial contribu-
tion to crystal radiation deformation. This contribution is significant, since, as MD data on 
the primary radiation damage in copper showed, ~20% of self-interstitial atoms produced 
by cascades of atomic collisions are combined into di-interstitials. 

The equations given in the present work are ready to use to study the defect diffusion 
characteristics in FCC and BCC crystals. However, one can apply the proposed approach 
to crystals of systems other than the cubic one. 
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