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Abstract: Aggregation operators are fundamental concept for information fusion in real-life prob-
lems. Many researchers developed aggregation operators for multi-criteria decision-making (MCDM)
under uncertainty. Unfortunately, the existing operators can be utilized under strict limitations and
constraints. In this manuscript, we focused on new prioritized aggregation operators which remove
the strict limitations of the existing operators. The addition of reference parameters associated with
membership and non-membership grades in the linear Diophantine Fuzzy sets provide a robust
modeling for MCDM problems. The primary objective of this manuscript is to introduce new ag-
gregation operators for modeling uncertainty by using linear Diophantine Fuzzy information. For
this objective we develop aggregation operators (AO) namely, "linear Diophantine Fuzzy prioritized
weighted average" (LDFPWA) operator and "linear Diophantine Fuzzy prioritized weighted geo-
metric" (LDFPWG) operator. Certain essential properties of new prioritized AOs are also proposed.
A secondary objective is to discuss a practical application of third party reverse logistic provider
(3PRLP) optimization problem. The efficiency, superiority, and rationality of the proposed approach
is analyzed by a numerical example to discuss 3PRLP. The symmetry of optimal decision and ranking
of feasible alternatives is followed by a comparative analysis.

Keywords: prioritized AOs; linear Diophantine fuzzy numbers; reverse logistics; symmetry of
optimal decision; MCDM

1. Introduction

The problem of vague and misleading information has become a major issue for
decades. Aggregation of data is important for decision-making in corporate, administrative,
social, medical, technological, psychological, and artificial intelligence fields. Awareness of
the alternative has traditionally been seen as a crisp number or linguistic number. However,
due to its uncertainty, the data cannot easily be aggregated. MCDM is a commonly used
cognitive activity tool, the main aim of which is to decide between a finite number of
alternatives using the preference information provided by decision makers (DM). The
MCDM method, however, tends to be ambiguous and inaccurate, because it involves the
complexity of human reasoning abilities, finding it challenging for DMs in the review
process which provide accurate evaluation. It is really essential to resolve this problem, in
addition to dealing with unpredictability, Zadeh [1] has pioneered the sort of Fuzzy set (FS)
theory. Atanassov [2,3] initiated the novel idea of intuitionistic Fuzzy set (IFS) Yager [4–6]
introduced Pythagorean Fuzzy set (PFS) as an extension of IFS. IFS and PFS were newly
generalized by Yager and the q-ROFS concept was developed. The limitation of q-ROFS
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would be that the total of the member-ship degree (MD) power and the non-membership
degree (NMD) power of q may be less than or identical to one. Clearly, the greater the
rung q, the more the bounding condition is fulfilled by orthopairs and, thus, the greater
the space of Fuzzy data that can be expressed by q-ROFSs [7]. In ability to cope with both
the complete absence of clarity and flouted information q-ROFs are more efficient than PFS
and IFS.

Alcantud and Garcia [8] introduced a new criterion for soft set based decision making
problems under incomplete information. Xu et al. [9,10] introduced many averaging and ge-
ometric operators related to IFS. Hashmi et al. [11] investigated clustering analysis and med-
ical diagnosis based on m-polar neutrosophic set and m-polar neutrosophic topology. Wang
and Liu [12], Zhang et al. [13], Zhao [14] et al., and Garg [15] introduced many decision
making approaches for numerous extensions of Fuzzy sets. Mahmood et al. [16] proposed
spherical Fuzzy decision-making approach with diagnosis application. Feng et al. [17] intro-
duced Lexicographic orders for IFNs. Recently, Akram et al. [18,19] introduced Extensions
of Dombi aggregation operators and Einstein geometric operators. Peng and Yang [20]
presented novel features and properties of IFSs and their significant results. A robust
MCDM approach based on PFS-TOPSIS is suggested by Zhang and Xu [21]. Karaaslan
and Ozlu [22] introduced some correlation coefficients of dual type-2 hesitant Fuzzy sets.
Sitara et al. [23] developed q-rung picture Fuzzy graph structures and new decision-making
analysis based on graph structures.

Riaz and Hashmi [24] introduced the concept of linear Diophantine Fuzzy set (LDFS)
as a generalized concept of IFS, PFS, and q-ROFS. Due to presence of reference parameters,
LDFS is a new approach towards soft computing, uncertain decision-making analysis, opti-
mization, and real-world problems. LDFSs have been extended to algebraic structures and
LDF-coding theory [25], LDF-relations with decision making [26], q-LDFS with emergency
decision support system for COVID19 [27]. Pamucar [28] introduced normalized weighted
geometric Dombi Bonferoni mean operator with interval grey numbers. Pamucar and
Jankovic [29] established hybrid interval rough weighted power-Heronian operator for
MCDM. Riaz et al. introduced the certain extensions of AOs like q-ROFS Einstein [30], pri-
oritized [31], Einstein prioritized and some hybrid AOs [32,33]. Riaz et al. [34] introduced
novel concept of bipolar picture Fuzzy.

IFSs, PFSs, and q-ROFs each have their own restrictions in terms of the sum of
membership and non-membership degrees. Because of the varied conditions on the
membership and non-membership degrees of IFSs, PFSs, and q-ROFs, decision makers are
unable to freely evaluate diverse alternatives. To overcome this study gap, the LDFS theory
has been suggested, in which decision maker can select grades freely ranging from 0 to 1
because of reference parameters. If we have a linear prioritized relationship among the
criterion in LDF data. We do not have a tool for dealing with this type of issue; to deal with
this form of MCDM, we will propose several types of prioritized AOs to aggregate LDF
data.

Several prioritized AOs were introduced by Yager [35]. According to Yager, in such
situations, we should not permit the budget advantage to reduce the effectiveness of
protection, where we select a child’s bike based on safety and cost criteria. Then there’s a
sort of priority relationship between these two criterion, with protection taking precedence.
This situation is known as an aggregation problem since the attributes have a priority
relationship. The AOs in question, such as the average operator and the geometric operator,
are significant because we want to consider higher priority criteria, such as safety in the
case of the former, are no longer viable. In this case, Yager [35] provided prioritized AOs
by modeling attribute prioritization in terms of criterion weights based on fulfillment of
the higher importance attributes. New aggregation operators and decision-making method
are developed by numerous researchers [36–40].

To choose a suitable 3PRLP as a business partner, a manufacturer must first evaluate
the 3PRLPs. The business (i.e., the shipper) would weigh the relative weights of the 3PRLPs
and assign the transporting volumes to the 3PRLP with the highest weight. In general,
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3PRLP assessment is a multi-criteria task that necessitates the consideration of several
physical and intellectual criteria. To put it another way, choosing the right 3PRLP requires
much more than just comparing prices. Despite the fact that there has recently been a
considerable amount of study on 3PRLP evaluations, and numerous evaluation criteria
have been developed. The most widely used parameters, according to Aguezzoul’s Pareto
analysis, are cost, relationship, facilities, efficiency, equipment, framework, adaptability,
and timeliness [41]. Prahinski and Kocabasoglu [42] suggest many justifications for the
intense demand in RLs around the world. Overall, RLs offers companies a tactical strategic
advantage over competitors who do not use it, while also increasing client retention rates.
This type of logistics assures consumers that they can quickly return defective or damaged
goods and that the recycled parts of their goods can be reused. Furthermore, environmental
activists’ and governments’ concerns have compelled business leaders to prioritize efficient
remanufacturing, recycling, and preservation in all areas of RLs [43].

First, we highlight the main objectives of this manuscript as follows: (1) To introduce
new aggregation operators for modeling uncertainty by using linear Diophantine Fuzzy
information. For this objective, we develop new aggregation operators named as LDFPWA
and LDFPWG. These operators remove the strict limitations of the existing operators;
(2) To discuss certain essential properties of new prioritized aggregation operators; (3) To
use the idea of score function for ranking of feasible alternatives; (4) To present a practical
application of third party reverse logistic provider (3PRLP) optimization problem; (5) The
efficiency, superiority, and rationality of the proposed approach is analyzed by a numerical
example. A comparative analysis is presented to discuss the symmetry of optimal decision
and ranking of feasible alternatives.

The rest of the paper is arranged as follows. Section 2 includes research background
and literature related to 3PRLP selection and criterion regarding to 3PRLP. Section 3 consists
of basic concepts of LDFS. Section 4 develops a variety of LDF prioritized AOs. Section 5
presents an MCGDM framework to the suggested AOs, as well as numerical example.
Section 6 summaries the study paper’s key findings.

2. Preliminaries

In this section, we will review some LDFS’s fundamentals.

Definition 1 ([24]). A LDFS < in universe Λ is defined as

< =
{(

ς, 〈Y<(ς), X<(ς)〉, 〈D<(ς), Z<(ς)〉
)

: ς ∈ Λ
}

,

where Y<(ς), X<(ς), D<(ς), Z<(ς) ∈ [0, 1] are the MD, the NMD, and the corresponding
reference parameters, respectively. Moreover,

0 ≤ D<(ς) +Z<(ς) ≤ 1,

and
0 ≤ D<(ς)Y<(ς) +Z<(ς)X<(ς) ≤ 1

for all ς ∈ Λ. The LDFS
<Λ = {(ς, 〈1, 0〉, 〈1, 0〉) : ς ∈ Λ}

is known the absolute LDFS in Λ. The LDFS

<φ = {(ς, 〈0, 1〉, 〈0, 1〉) : ς ∈ Λ}

is known the null LDFS in Λ.

The reference parameters may be used to model or classify specific structures. By
modifying the physical meaning of the reference parameters, we can classify various
systems. In addition,

η<(ς)π<(ς) = 1− (D<(ς)Y<(ς) +Z<(ς)X<(ς))
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is called the indeterminacy degree and its corresponding reference parameter of ς to <.
In this framework, the set of reference parameters is very significant. They help

us to increased the valuation space of MD and NMD functions and parameterize the
model, which gives us variety of taking alternative under different physical situations.
The deficiency in IFS, PFS, and q-ROFS is that they have no parameterizations. This novel
idea enhances the existing methodologies and we can freely choose the grades without
any limitation.

Many researchers [7] worked on the novel idea of q-ROFSs which is the generalization
of IFS and PFS with the condition 0 ≤ Y

q
O(ς) +X

q
O(ς) ≤ 1. When “q” is very large then

graphically this set is coincide with LDFS but the deficiency is that in q-ROFS we have
no parameterizations, which is an additional factor in LDFSs. For small values of “q”,
the valuation space of q-ROFS is less than that of LDFSs and cannot handle uncertainties
completely in decision making problems. For the input data in MADM problems if we have
Y

q
O(ς) and X

q
O(ς) equal to 1, then we cannot deal these inputs with q-ROFS (i.e., 1+ 1 > 1),

but with the suitable choice of reference parameters we can easily deal these types of values
in LDFSs (i.e., (1)(0.6) + (1)(0.3) < 1; the choice of numeric values of reference parameters
is according to the situation and decision-making problem with the condition that there
sum is less than 1). From all the discussion it is clear that our proposed idea is more
suitable and superior to others and contains a variety of reference parameters. We can use
this approach in various applications of engineering, medical, artificial intelligence, and
MADM methods. In Table 1, we can see the comparison between proposed approach with
the existing concepts.

Table 1. Comparison between LDFS with some existing concepts.

Concepts Remarks

Fuzzy sets [1] It does not consider NMD.
IFSs [2] It cannot be applied if 1 < YI (ς) +XI (ς) ≤ 2 for some ς.
PFSs [5,6] It cannot be applied if 1 < Y 2

P (ς) +X 2
P (ς) ≤ 2 for some ς.

q-ROFSs [7] It is inapplicable for smaller “q” values. with 1 < Y
q
O(ς) +X

q
O(ς) ≤ 2, or if YO(ς) = XO(ς) = 1 for some ς.

LDFSs [24]
(1) It can handle all situations where IFS, PFS, and q-ROFS cannot be used; (2) it takes a parameterizations
approach and operates under the control of reference parameters; (3) MD and NMD can be taken in free manner
from [0, 1].

Definition 2 ([24]). A linear Diophantine Fuzzy number (LDFN) is a tuple Ω̆ = (〈YΩ̆, XΩ̆〉,
〈DΩ̆, ZΩ̆〉) satisfying the following conditions:

(1) 0 ≤ YΩ̆, XΩ̆, DΩ̆, ZΩ̆ ≤ 1;
(2) 0 ≤ DΩ̆ +ZΩ̆ ≤ 1;
(3) 0 ≤ DΩ̆YΩ̆ +ZΩ̆XΩ̆ ≤ 1.

Definition 3 ([24]). Let Ω̆ = (〈YΩ̆, XΩ̆〉, 〈DΩ̆, ZΩ̆〉) be a LDFN, then score function z(Ω̆) can
be define by the mapping z(Ω̆) : LDFN(Λ)→ [−1, 1] and given by

z(Ω̆) =
1
2
[(YΩ̆ −XΩ̆) + (DΩ̆ −ZΩ̆)]

where LDFN(Λ) is an assemblage of LDFNs on Λ.

Definition 4 ([24]). Let Ω̆ = (〈YΩ̆, XΩ̆〉, 〈DΩ̆, ZΩ̆〉) be a LDFN, then accuracy function can be
defined by the mapping ψ : LDFN(Λ)→ [0, 1] and given as

ψ(Ω̆) =
1
2

[(YΩ̆ +XΩ̆
2

)
+ (DΩ̆ +ZΩ̆)

]
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Definition 5 ([24]). Let Ω̆1 and Ω̆2 be two LDFNs then by using the score function and accuracy
function, we have:
(i): If z(Ω̆1) < z(Ω̆2) then Ω̆1 < Ω̆2,
(ii): If z(Ω̆2) < z(Ω̆1) then Ω̆2 < Ω̆1,
(iii): If z(Ω̆2) = z(Ω̆1) then,
(a): If ψ(Ω̆1) < ψ(Ω̆2) then Ω̆1 < Ω̆2,
(b): If ψ(Ω̆2) < ψ(Ω̆1) then Ω̆2 < Ω̆1,
(c): If ψ(Ω̆1) = ψ(Ω̆2) then Ω̆1 = Ω̆2.

Definition 6 ([24]). Let Ω̆ = (〈YΩ̆, XΩ̆〉, 〈DΩ̆, ZΩ̆〉) be a LDFN, another definition of score func-
tion is defined as expectation score function (ESF) on LDFN(Λ) having range H : LDFN(Λ)→
[0, 1] and define as

H (Ω̆) =
1
2

[ (YΩ̆ −XΩ̆ + 1)
2

+
(DΩ̆ −ZΩ̆ + 1)

2

]
Definition 7 ([24]). Let Ω̆i = (〈Yi, Xi〉, 〈Di, Zi〉) be two LDFNs with i = 1, 2. Then
• Ω̆1 ⊆ Ω̆2 ⇔ Y1 ≤ Y2, X2 ≤ X1, D1 ≤ D2, Z2 ≤ Z1;
• Ω̆1 = Ω̆2 ⇔ Y1 = Y2, X1 = X2, D1 = D2, Z1 = Z2;
• Ω̆1 ⊕ Ω̆2 = (〈Y1 +Y2 −Y1Y2, X1X2〉, 〈D1 +D2 −D1D2, Z1Z2〉);
• Ω̆1 ⊗ Ω̆2 = (〈Y1Y2, X1 +X2 −X1X2〉, 〈D1D2, Z1 +Z2 −Z1Z2〉).
• Ω̆c

1 = (〈X1, Y1〉, 〈Z1, D1〉);
• XΩ̆1 =

(
〈1− (1−Y1)

X, X X
1 〉, 〈1− (1−D1)

X, Z X
1 〉
)
;

• Ω̆X
1 =

(
〈Y X

1 , 1− (1−X1)
X〉, 〈DX

1 , 1− (1−Z1)
X〉
)
.

By following figures, one can easily understand that LDFS provide more space to
decision makers for evaluation any alternatives. We provide a pictorial depiction of LDFS
with various combinations of reference parameters and show how its measurement space
is larger than that of IFS and PFS. Figures 1–3 show the comparison of IFS, PFS, and
LDFS, while Figures 4–6 show the graphical view of LDFS with different pairs of constant
reference parameters.

Figure 1. Graphical representation of valuation space of IFSs.
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Figure 2. Graphical representation of valuation space of PFSs.

Figure 3. Graphical representation of valuation space of LDFSs.
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Figure 4. LDFS with 〈D , Z 〉 = 〈0.3, 0.4〉.

Figure 5. LDFS with 〈D , Z 〉 = 〈0.8, 0.1〉.

Figure 6. LDFS with 〈D , Z 〉 = 〈0.5, 0.5〉.

Yager [35] initially gave the idea of prioritized AOs, defined as:
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Definition 8. Let C = {C1, C2, . . . , Cn} be a set of parameters, and there is a prioritization between
the criteria expressed by the linear ordering C1 � C2, . . . � Cn. Clearly state parameter Cj has a
higher priority than Ck if j < k. The value Cj(x) is the performance of any alternative x under
parameter j, Cj(x) ∈ [0, 1], if

PA(Ci(x)) =
n

∑
j=1

wjCj(x) = ṽjwjCj(x), jג =
n

∑
j=1

where wj =
T̆j

jT̆jג
, T̆j = ∏

j−1
k=1(Ck(x)) (j = 2 . . . , n), T̆1 = 1, then PA is called the prioritized

average operator.

3. Linear Diophantine Fuzzy Prioritized Aggregation Operators

Within this section, we present the notion of (LDFPWA) operator and (LDFPWG)
operator. Then we go over some of the most appealing aspects of the suggested operators,
such as idempotency and monotonicity.

3.1. LDFPWA Operator

Definition 9. Assume that Ω̆j = (〈Yj, Xj〉, 〈Dj, Zj〉) is the family of LDFNs, and LDFPWA:
£n → £, be a n dimension mapping. If

LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n) =
˘̄h1

jג ˘̄hj
Ω̆1 ⊕

˘̄h2

jג ˘̄hj
Ω̆2 ⊕ . . . ,⊕

˘̄hn

jג ˘̄hj
Ω̆n (1)

then the mapping LDFPWA is called linear Diophantine Fuzzy prioritized weighted averaging
(LDFPWA) operator, where ˘̄hj = ∏

j−1
k=1H (Ω̆k) (j = 2 . . . , n), ˘̄h1 = 1 and H (Ω̆k) is the

expectation score function of kth LDFN.

We may also consider LDFPWA using the theorem below based on LDFNs
operational law.

Theorem 1. Assume that Ω̆j = (〈Yj, Xj〉, 〈Dj, Zj〉) is the family of LDFNs, we can find
LDFPWA by

LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n) =

(〈
1−∏

n

j=1(1−Yj)

˘̄hj
jג

˘̄hj , ∏
n

j=1X

˘̄hj
jג

˘̄hj
j

〉
,
〈

1−∏
n

j=1(1−Dj)

˘̄hj
jג

˘̄hj , ∏
n

j=1Z

˘̄hj
jג

˘̄hj
j

〉)
(2)

Proof. Definition 9 and Theorem 1 are easily preceded by the first statement. This is shown
in the following aspects.

LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n)

=

( ˘̄h1

jג ˘̄hj
Ω̆1 ⊕

˘̄h2

jג ˘̄hj
Ω̆2 ⊕ . . . ,

˘̄hn

jג ˘̄hj
Ω̆n

)

=

(〈
1−∏

n

j=1(1−Yj)

˘̄hj
jג

˘̄hj , ∏
n

j=1X

˘̄hj
jג

˘̄hj
j

〉
,
〈

∏
n

j=1(1−Dj)

˘̄hj
jג

˘̄hj ,

∏
n

j=1Z

˘̄hj
jג

˘̄hj
j

〉)

We used mathematical induction to prove this theorem.
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For n = 2

˘̄h1

jג ˘̄hj
Ω̆1 =

(〈
1− (1−Y1)

˘̄h1
jג

˘̄hj , X

˘̄h1
jג

˘̄hj
1

〉
,
〈

1− (1−D1)

˘̄h1
jג

˘̄hj , Z

˘̄h1
jג

˘̄hj
1

〉)

˘̄h2

jג ˘̄hj
Ω̆2 =

(〈
1− (1−Y2)

˘̄h1
jג

˘̄hj , X

˘̄h1
jג

˘̄hj
2

〉
,
〈

1− (1−D2)

˘̄h1
jג

˘̄hj , Z

˘̄h1
jג

˘̄hj
2

〉)
Then

˘̄h1

jג ˘̄hj
Ω̆1 ⊕

˘̄h2

jג ˘̄hj
Ω̆2 =

(〈
1− (1−Y1)

˘̄h1
jג

˘̄hj , X

˘̄h1
jג

˘̄hj
1

〉
,
〈

1− (1−D1)

˘̄h1
jג

˘̄hj , Z

˘̄h1
jג

˘̄hj
1

〉)
⊕

(〈
1− (1−Y2)

˘̄h1
jג

˘̄hj , X

˘̄h1
jג

˘̄hj
2

〉
,
〈

1− (1−D2)

˘̄h1
jג

˘̄hj , Z

˘̄h1
jג

˘̄hj
2

〉)

=

(〈
1− (1−Y1)

˘̄h1
jג

˘̄hj + 1− (1−Y2)

˘̄h1
jג

˘̄hj −
(
(1− (1−Y1)

˘̄h1
jג

˘̄hj

)(
(1− (1−Y2)

˘̄h1
jג

˘̄hj

)
,

X

˘̄h1
jג

˘̄hj
1 .X

˘̄h1
jג

˘̄hj
2

〉
,
〈

1− (1−D1)

˘̄h1
jג

˘̄hj + 1− (1−D2)

˘̄h1
jג

˘̄hj −
(
(1− (1−D1)

˘̄h1
jג

˘̄hj

)
(

1− (1−D2)

˘̄h1
jג

˘̄hj

)
, Z

˘̄h1
jג

˘̄hj
1 .Z

˘̄h1
jג

˘̄hj
2

〉)

=

(〈
1− (1−Y1)

˘̄h1
jג

˘̄hj (1−Y2)

˘̄h1
jג

˘̄hj , X

˘̄h1
jג

˘̄hj
1 .X

˘̄h1
jג

˘̄hj
2

〉
,

〈
1− (1−D1)

˘̄h1
jג

˘̄hj (1−D2)

˘̄h1
jג

˘̄hj , Z

˘̄h1
jג

˘̄hj
1 .Z

˘̄h1
jג

˘̄hj
2

〉)

=

(〈
1−∏

2

j=1(1−Yj)

˘̄hj
jג

˘̄hj , ∏
2

j=1X

˘̄hj
jג

˘̄hj
j

〉
,
〈

1−∏
2

j=1(1−Dj)

˘̄hj
jג

˘̄hj , ∏
2

j=1Z

˘̄hj
jג

˘̄hj
j

〉)

This reveals that Equation (2) is valid for n = 2; now suppose that Equation (2) is true
for n = k, i.e.,

LDFPWA(Ω̆1, Ω̆2, . . . Ω̆k)

=

(〈
1−∏

k

j=1(1−Yj)

˘̄hj
jג

˘̄hj , ∏
k

j=1X

˘̄hj
jג

˘̄hj
j

〉
,
〈

1−∏
k

j=1(1−Dj)

˘̄hj
jג

˘̄hj , ∏
k

j=1Z

˘̄hj
jג

˘̄hj
j

〉)

Now n = k + 1, by operational laws of LDFNs we have,
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LDFPWA(Ω̆1, Ω̆2, . . . Ω̆k+1) = LDFPWA(Ω̆1, Ω̆2, . . . Ω̆k)⊕
˘̄hj

jג ˘̄hj
Ω̆k+1

=

(〈
1−∏

k

j=1(1−Yj)

˘̄hj
jג

˘̄hj , ∏
k

j=1X

˘̄hj
jג

˘̄hj
j

〉
,
〈

1−∏
k

j=1(1−Dj)

˘̄hj
jג

˘̄hj , ∏
k

j=1Z

˘̄hj
jג

˘̄hj
j

〉)
⊕

(〈
1− (1−Yk+1)

˘̄hk+1
jג

˘̄hj , X

˘̄hk+1
jג

˘̄hj
k+1

〉
,
〈

1− (1−Dk+1)

˘̄hk+1
jג

˘̄hj , Z

˘̄hk+1
jג

˘̄hj
k+1

〉)

=

(〈
1−∏

k

j=1(1−Yk)

˘̄hj
jג

˘̄hj + 1− (1−Yk+1)

˘̄hk+1
jג

˘̄hj −
(

1−∏
k

j=1(1−Yk)

˘̄hj
jג

˘̄hj

)(
1− (1−Yk+1)

˘̄hk+1
jג

˘̄hj

)
,

∏
k

j=1X

˘̄hj
jג

˘̄hj
k .X

˘̄hk+1
jג

˘̄hj
k=1

〉
,
〈

1−∏
k

j=1(1−Dk)

˘̄hj
jג

˘̄hj + 1− (1−Dk+1)

˘̄hk+1
jג

˘̄hj −

(
1−∏

k

j=1(1−Dk)

˘̄hj
jג

˘̄hj

)(
1− (1−Dk+1)

˘̄hk+1
jג

˘̄hj

)
, ∏

k

j=1Z

˘̄hj
jג

˘̄hj
k .Z

˘̄hk+1
jג

˘̄hj
k=1

〉)

=

(〈
1−∏

k

j=1(1−Yk)

˘̄hj
jג

˘̄hj (1−Yk+1)

˘̄hk+1
jג

˘̄hk+1 , ∏
k

j=1X

˘̄hj
jג

˘̄hj
k .X

˘̄hk+1
jג

˘̄hj
k+1

〉
,

〈
1−∏

k

j=1(1−Dk)

˘̄hj
jג

˘̄hj (1−Dk+1)

˘̄hk+1
jג

˘̄hk+1 , ∏
k

j=1Z

˘̄hj
jג

˘̄hj
k .Z

˘̄hk+1
jג

˘̄hj
k+1

〉)

=

(〈
1−∏

k+1

j=1 (1−Yj)

˘̄hj

∑k+1
j=1

˘̄hj , ∏
k+1

j=1 X

˘̄hj
jג

˘̄hj
j

〉
,
〈

1−∏
k+1

j=1 (1−Dj)

˘̄hj

∑k+1
j=1

˘̄hj , ∏
k+1

j=1 Z

˘̄hj
jג

˘̄hj
j

〉)

This shows that for n = k + 1, Equation (2) holds. Then,

LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n)

=

(〈
1−∏

n

j=1(1−Yj)

˘̄hj
jג

˘̄hj , ∏
n

j=1X

˘̄hj
jג

˘̄hj
j

〉
,
〈

1−∏
n

j=1(1−Dj)

˘̄hj
jג

˘̄hj , ∏
n

j=1Z

˘̄hj
jג

˘̄hj
j

〉)

A few of LDFPWA’s promising properties are described below.

Theorem 2. (Monotonicity) Assume that Ω̆j = (〈Yj, Xj〉, 〈Dj, Zj〉) and Ω̆∗j = (〈Y ∗j , X ∗
j 〉,

〈D∗j , Z ∗j 〉) are the assemblages of LDFNs, where ˘̄hj = ∏
j−1
k=1H (Ω̆k), ˘̄h

∗
j = ∏

j−1
k=1H (Ω̆∗k ) (j =

2 . . . , n), ˘̄h1 = 1, ˘̄h
∗
1 = 1, H (Ω̆k) is the expectation score function of Ω̆k LDFN, and H (Ω̆∗k ) is

the expectation score function of Ω̆∗k LDFN. If Y ∗j ≥ Yj and X ∗
j ≤ Xj for all j, then

LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n) ≤ LDFPWA(Ω̆∗1 , Ω̆∗2 , . . . Ω̆∗n)

Proof. Here, Y ∗j ≥ Yj and X ∗
j ≤ Xj for all j, if Y ∗j ≥ Yj.

⇔ Y ∗j ≥ Yj ⇔ 1−Y ∗j ≤ 1−Yj

⇔ (1−Y ∗j )

˘̄hj
jג

˘̄hj ≤ (1−Yj)

˘̄hj
jג

˘̄hj

⇔ ∏
n
j=1(1−Y ∗j )

˘̄hj
jג

˘̄hj ≤ ∏
n
j=1(1−Yj)

˘̄hj
jג

˘̄hj
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⇔ 1−∏
n
j=1(1−Yj)

˘̄hj
jג

˘̄hj ≤ 1−∏
n
j=1(1−Y ∗j )

˘̄hj
jג

˘̄hj

Again,
D∗j ≥ Dj and Z ∗j ≤ Zj for all j, if D∗j ≥ Dj.
⇔ D∗j ≥ Dj ⇔ 1−D∗j ≤ 1−Dj

⇔ (1−D∗j )

˘̄hj
jג

˘̄hj ≤ (1−Dj)

˘̄hj
jג

˘̄hj

⇔ ∏
n
j=1(1−D∗j )

˘̄hj
jג

˘̄hj ≤ ∏
n
j=1(1−Dj)

˘̄hj
jג

˘̄hj

⇔ 1−∏
n
j=1(1−Dj)

˘̄hj
jג

˘̄hj ≤ 1−∏
n
j=1(1−D∗j )

˘̄hj
jג

˘̄hj

Now,
X ∗

j ≤ Xj.

⇔ (X ∗
j )

˘̄hj
jג

˘̄hj ≤ (Xj)

˘̄hj
jג

˘̄hj

⇔ ∏
n
j=1(X

∗
j )

˘̄hj
jג

˘̄hj ≤ ∏
n
j=1(Xj)

˘̄hj
jג

˘̄hj

Additionally,
Z ∗j ≤ Zj.

⇔ (Z ∗j )

˘̄hj
jג

˘̄hj ≤ (Zj)

˘̄hj
jג

˘̄hj

⇔ ∏
n
j=1(Z

∗
j )

˘̄hj
jג

˘̄hj ≤ ∏
n
j=1(Zj)

˘̄hj
jג

˘̄hj

Let
Ω̆ = LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n)

and
Ω̆∗ = LDFPWA(Ω̆∗1 , Ω̆∗2 , . . . Ω̆∗n)

We get that Ω̆∗ ≥ Ω̆. So,

LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n) ≤ LDFPWA(Ω̆∗1 , Ω̆∗2 , . . . Ω̆∗n)

Theorem 3. (Idempotency) Assume that Ω̆j = (〈Yj, Xj〉, 〈Dj, Zj〉) is the assemblage of LDFNs,

where ˘̄hj = ∏
j−1
k=1H (Ω̆k) (j = 2 . . . , n), ˘̄h1 = 1 and H (Ω̆k) is the expectation score function of

kth LDFN. If all Ω̆j are equal, i.e., Ω̆j = Ω̆ for all j, then

LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n) = Ω̆
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Proof. From Definition 9, we have

LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n) =
˜̄̆h1

jג ˘̄hj
Ω̆1 ⊕

˘̄h2

jג ˘̄hj
Ω̆2 ⊕ . . . ,⊕

˘̄hn

jג ˘̄hj
Ω̆n

=
˘̄h1

jג ˘̄hj
Ω̆⊕

˘̄h2

jג ˘̄hj
Ω̆⊕ . . . ,⊕

˘̄hn

jג ˘̄hj
Ω̆

=
jג ˘̄hj

jג ˘̄hj
Ω̆

= Ω̆

Corollary 1. If Ω̆j = (〈Yj, Xj〉, 〈Dj, Zj〉), j = (1, 2, . . . n) is the assemblage of largest LDFNs,
i.e., Ω̆j = (1, 0) for all j, then

LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n) = (1, 0)

Proof. We can easily obtain Corollary similar to the Theorem 3.

Corollary 2. (Non-compensatory) If Ω̆1 = (〈Y1, X1〉, 〈D1, Z1〉) is the smallest LDFN, i.e,.
Ω̆1 = (〈0, 1〉, 〈0, 1〉), then

LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n) = (〈0, 1〉, 〈0, 1〉)

Proof. Here, Ω̆1 = (〈0, 1〉, 〈0, 1〉) then by definition of the score function, we have,

H (Ω̆1) = 0

Since,
˘̄hj = ∏

j−1

k=1H (Ω̆k) (j = 2 . . . , n), and ˘̄h1 = 1

H (Ω̆k) is the score of kth LDFN.
We have,

˘̄hj = ∏
j−1
k=1H (Ω̆k) = H (Ω̆1)×H (Ω̆2)× . . .×H (Ω̆j−1) = 0×H (Ω̆2)× . . .×H (Ω̆j−1) (j = 2 . . . , n)

∏
j

k=1
˘̄hj = 1

From Definition 9, we have

LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n) =
˘̄h1

jג ˘̄hj
Ω̆1 ⊕

˘̄h2

jג ˘̄hj
Ω̆2 ⊕ . . . ,⊕

˘̄hn

jג ˘̄hj
Ω̆n

=
1
1

Ω̆1 ⊕
0
1

Ω̆2 ⊕ . . .
0
1

Ω̆n

= Ω̆1 = (0, 1)

The Corollary 2 implied that if the higher priority requirements were met by the
smallest LDFN, incentives would not be given to other criteria, even if they were met.

Theorem 4. Assume that Ω̆j = (〈Yj, Xj〉, 〈Dj, Zj〉) and β j = (〈φj, ϕj〉, 〈Kj, Mj〉) are two fam-

ilies of LDFNs, where ˘̄hj = ∏
j−1
k=1H (Ω̆k) (j = 2 . . . , n), ˘̄h1 = 1 and H (Ω̆k) is the expectation

score function of kth LDFN. If r > 0 and β = (〈Yβ, Xβ〉, 〈Dβ, Zβ〉) is an LDFN, then
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1. LDFPWA(Ω̆1 ⊕ β, Ω̆2 ⊕ β, . . . Ω̆n ⊕ β) = LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n)⊕ β

2. LDFPWA(rΩ̆1, rΩ̆2, . . . rΩ̆n) = r LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n)

3. LDFPWA(Ω̆1 ⊕ β1, Ω̆2 ⊕ β2, . . . Ω̆n ⊕ βn) = LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n) ⊕ LDFPWA
(β1, β2, . . . βn)

4. LDFPWA(rΩ̆1 ⊕ β, rΩ̆2 ⊕ β, . . .⊕ rΩ̆n ⊕ β) = r LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n)⊕ β

Proof. Here, we just proof 1 and 3,
1. Since,

Ω̆j ⊕ β =

((
1− (1−Yj)(1−Yβ), XjXβ

)
,
(

1− (1−Dj)(1−Dβ), ZjZβ

))

By Theorem 1,
LDFPWA(Ω̆1 ⊕ β, Ω̆2 ⊕ β, . . . Ω̆n ⊕ β)

=

(〈
(1−∏

n

j=1

(
(1−Yj)(1−Yβ)

) ˘̄hj
jג

˘̄hj , ∏
n

j=1

(
XβXj

) ˘̄hj
jג

˘̄hj

〉
,

〈
(1−∏

n

j=1

(
(1−Dj)(1−Dβ)

) ˘̄hj
jג

˘̄hj , ∏
n

j=1

(
ZβZj

) ˘̄hj
jג

˘̄hj

〉)

=

(〈
(1−

(
1−Yβ

) ˘̄hj
jג

˘̄hj ∏
n

j=1

(
1−Yj

) ˘̄hj
jג

˘̄hj ,
(
Xβ

) ˘̄hj
jג

˘̄hj ∏
n

j=1

(
Xj

) ˘̄hj
jג

˘̄hj

〉
,

〈
(1−

(
1−Dβ

) ˘̄hj
jג

˘̄hj ∏
n

j=1

(
1−Dj

) ˘̄hj
jג

˘̄hj ,
(
Zβ

) ˘̄hj
jג

˘̄hj ∏
n

j=1

(
Zj

) ˘̄hj
jג

˘̄hj

〉)

=

(〈
(1−

(
1−Yβ

)
∏

n

j=1

(
1−Yj

) ˘̄hj
jג

˘̄hj ,
(
Xβ

)
∏

n

j=1

(
Xj

) ˘̄hj
jג

˘̄hj

〉
,

〈
(1−

(
1−Dβ

)
∏

n

j=1

(
1−Dj

) ˘̄hj
jג

˘̄hj ,
(
Zβ

)
∏

n

j=1

(
Zj

) ˘̄hj
jג

˘̄hj

〉)

Now, by operational laws of LDFNs,

LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n)⊕ β

=

(〈
(1−∏

n

j=1(1−Yj)

˘̄hj
jג

˘̄hj , ∏
n

j=1X

˘̄hj
jג

˘̄hj
j

〉
,
〈
(1−∏

n

j=1(1−Dj)

˘̄hj
jג

˘̄hj , ∏
n

j=1Z

˘̄hj
jג

˘̄hj
j

〉
⊕

(〈Yβ, Xβ〉, 〈Dβ, Zβ〉)
)

=

(〈
(1−

(
1−Yβ

)
∏

n

j=1

(
1−Yj

) ˘̄hj
jג

˘̄hj ,
(
Xβ

)
∏

n

j=1

(
Xj

) ˘̄hj
jג

˘̄hj

〉
,

〈
(1−

(
1−Dβ

)
∏

n

j=1

(
1−Dj

) ˘̄hj
jג

˘̄hj ,
(
Zβ

)
∏

n

j=1

(
Zj

) ˘̄hj
jג

˘̄hj

〉)



Symmetry 2021, 13, 1152 14 of 31

Thus,

LDFPWA(Ω̆1 ⊕ β, Ω̆2 ⊕ β, . . . Ω̆n ⊕ β) = LDFPWA(Ω̆1, Ω̆2, . . . Ω̆n)⊕ β

3. According to Theorem 1,
q-ROFPWA(α1 ⊕ β2, α2 ⊕ β2, . . . αn ⊕ βn)

=

(〈
1−∏

n

j=1

(
(1−Yj)(1− φj)

) ˘̄hj
jג

˘̄hj , ∏
n

j=1

(
ϕjXj

) ˘̄hj
jג

˘̄hj

〉
,

〈
1−∏

n

j=1

(
(1−Dj)(1−Kj)

) ˘̄hj
jג

˘̄hj , ∏
n

j=1

(
MjZj

) ˘̄hj
jג

˘̄hj

〉)

=

(〈
1−∏

n

j=1

(
1− φj

) ˘̄hj
jג

˘̄hj ∏
n

j=1

(
1−Yj

) ˘̄hj
jג

˘̄hj , ∏
n

j=1

(
ϕj

) ˘̄hj
jג

˘̄hj ∏
n

j=1

(
Xj

) ˘̄hj
jג

˘̄hj

〉
,

〈
1−∏

n

j=1

(
1−Kj

) ˘̄hj
jג

˘̄hj ∏
n

j=1

(
1−Dj

) ˘̄hj
jג

˘̄hj , ∏
n

j=1

(
Mj

) ˘̄hj
jג

˘̄hj ∏
n

j=1

(
Zj

) ˘̄hj
jג

˘̄hj

〉)

Now,
LDFPWA(α1, α2, . . . αn)⊕ LDFPWA(β1, β2, . . . βn)

=

(〈
1−∏

n

j=1(1−Yj)

˘̄hj
jג

˘̄hj , ∏
n

j=1X

˘̄hj
jג

˘̄hj
j

〉
,
〈

1−∏
n

j=1(1−Dj)

˘̄hj
jג

˘̄hj , ∏
n

j=1Z

˘̄hj
jג

˘̄hj
j

〉)
⊕

(〈
1−∏

n

j=1(1− φj)

˘̄hj
jג

˘̄hj , ∏
n

j=1 ϕ

˘̄hj
jג

˘̄hj
j

〉
,
〈

1−∏
n

j=1(1−Kj)

˘̄hj
jג

˘̄hj , ∏
n

j=1M

˘̄hj
jג

˘̄hj
j

〉)

=

(〈
1−∏

n

j=1

(
1− φj

) ˘̄hj
jג

˘̄hj ∏
n

j=1

(
1−Yj

) ˘̄hj
jג

˘̄hj , ∏
n

j=1

(
ϕj

) ˘̄hj
jג

˘̄hj ∏
n

j=1

(
Xj

) ˘̄hj
jג

˘̄hj

〉
,

〈
1−∏

n

j=1

(
1−Kj

) ˘̄hj
jג

˘̄hj ∏
n

j=1

(
1−Dj

) ˘̄hj
jג

˘̄hj , ∏
n

j=1

(
Mj

) ˘̄hj
jג

˘̄hj ∏
n

j=1

(
Zj

) ˘̄hj
jג

˘̄hj

〉)

Thus,

LDFPWA(α1⊕ β2, α2⊕ β2, . . . αn⊕ βn) = LDFPWA(α1, α2, . . . αn)⊕LDFPWA(β1, β2, . . . βn)

3.2. LDFPWG Operator

Definition 10. Assume that Ω̆j = (〈Yj, Xj〉, 〈Dj, Zj〉) is the assemblage of LDFNs, and LDF-
PWG: £n → £, be a n dimension mapping. If

LDFPWG(Ω̆1, Ω̆2, . . . Ω̆n) = Ω̆

˘̄h1
jג

˘̄hj
1 ⊗ Ω̆

˘̄h2
jג

˘̄hj
2 ⊗ . . . ,⊗Ω̆

˘̄hn
jג

˘̄hj
n (3)

then the mapping LDFPWG is called linear Diophantine Fuzzy prioritized weighted geometric
(LDFPWG) operator, where ˘̄hj = ∏

j−1
k=1H (Ω̆k) (j = 2 . . . , n), ˘̄h1 = 1 and H (Ω̆k) is the

expectation score function of kth LDFN.

We may also consider LDFPWG using the theorem below based on LDFNs
operational law.
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Theorem 5. Assume that Ω̆j = (〈Yj, Xj〉, 〈Dj, Zj〉) is the family of LDFNs, we can find
LDFPWG by

LDFPWG(Ω̆1, Ω̆2, . . . Ω̆n) =

(〈
∏

n

j=1Y

˘̄hj
jג

˘̄hj
j , 1−∏

n

j=1(1−Xj)

˘̄hj
jג

˘̄hj

〉
,
〈

∏
n

j=1D

˘̄hj
jג

˘̄hj
j , 1−∏

n

j=1(1−Zj)

˘̄hj
jג

˘̄hj

〉)
(4)

Proof. Definition 10 and Theorem 5 are easily preceded by the first statement. This is
shown in the following aspects.

LDFPWG(Ω̆1, Ω̆2, . . . Ω̆n)

= Ω̆

˜̄̆h1
jג

˘̄hj
1 ⊗ Ω̆

˘̄h2
jג

˘̄hj
2 ⊗ . . . ,⊗Ω̆

˘̄hn
jג

˘̄hj
n

=

(〈
∏

n

j=1Y

˘̄hj
jג

˘̄hj
j , 1−∏

n

j=1(1−Xj)

˘̄hj
jג

˘̄hj

〉
,

〈
∏

n

j=1D

˘̄hj
jג

˘̄hj
j , 1−∏

n

j=1(1−Zj)

˘̄hj
jג

˘̄hj

〉)

We used mathematical induction to prove this theorem.
For n = 2

Ω̆

˘̄h1
jג

˘̄hj
1 =

(〈
Y

˘̄h1
jג

˘̄hj
1 , 1− (1−X1)

˘̄h1
jג

˘̄hj

〉
,
〈

D

˘̄h1
jג

˘̄hj
1 , 1− (1−Z1)

˘̄h1
jג

˘̄hj

〉)

Ω̆

˘̄h2
jג

˘̄hj
2 =

(〈
Y

˘̄h1
jג

˘̄hj
2 , 1− (1−Xj)

˘̄h1
jג

˘̄hj

〉
,
〈

D

˘̄h1
jג

˘̄hj
2 , 1− (1−Zj)

˘̄h1
jג

˘̄hj

〉)
Then

Ω̆

˘̄h1
jג

˘̄hj
1 ⊗ Ω̆

˘̄h2
jג

˘̄hj
2

=

(〈
Y

˘̄h1
jג

˘̄hj
1 , 1− (1−X1)

˘̄h1
jג

˘̄hj

〉
,
〈

D

˘̄h1
jג

˘̄hj
1 , 1− (1−Z1)

˘̄h1
jג

˘̄hj

〉)
⊗

(〈
Y

˘̄h1
jג

˘̄hj
2 , 1− (1−Xj)

˘̄h1
jג

˘̄hj

〉
,
〈

D

˘̄h1
jג

˘̄hj
2 , 1− (1−Zj)

˘̄h1
jג

˘̄hj

〉)

=

(〈
Y

˘̄h1
jג

˘̄hj
1 .Y

˘̄h1
jג

˘̄hj
2 , 1− (1−X1)

˘̄h1
jג

˘̄hj + 1− (1−Xj)

˘̄h1
jג

˘̄hj −
(

1− (1−X1)

˘̄h1
jג

˘̄hj

)
(

1− (1−Xj)

˘̄h1
jג

˘̄hj

)〉
,
〈

D

˘̄h1
jג

˘̄hj
1 .D

˘̄h1
jג

˘̄hj
2 , 1− (1−Z1)

˘̄h1
jג

˘̄hj + 1− (1−Zj)

˘̄h1
jג

˘̄hj −(
1− (1−Z1)

˘̄h1
jג

˘̄hj

)(
1− (1−Zj)

˘̄h1
jג

˘̄hj

)〉)

=

(〈
Y

˘̄h1
jג

˘̄hj
1 .Y

˘̄h1
jג

˘̄hj
2 , 1− (1−X1)

˘̄h1
jג

˘̄hj (1−Xj)

˘̄h1
jג

˘̄hj

〉
,

〈
D

˘̄h1
jג

˘̄hj
1 .D

˘̄h1
jג

˘̄hj
2 , 1− (1−Z1)

˘̄h1
jג

˘̄hj (1−Zj)

˘̄h1
jג

˘̄hj

〉)

=

(〈
∏

2

j=1Y

˘̄hj
jג

˘̄hj

j , 1−∏
2

j=1(1−Xj)

˘̄hj
jג

˘̄hj

〉
,
〈

∏
2

j=1D

˘̄hj
jג

˘̄hj

j , 1−∏
2

j=1(1−Zj)

˘̄hj
jג

˘̄hj

〉)
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This shows that Equation (4) is true for n = 2, now assume that Equation (4) holds for
n = k, i.e.,

LDFPWG(Ω̆1, Ω̆2, . . . Ω̆k)

=

(〈
∏

k

j=1Y

˘̄hj
jג

˘̄hj
j , 1−∏

k

j=1(1−Xj)

˘̄hj
jג

˘̄hj

〉
,
〈

∏
k

j=1D

˘̄hj
jג

˘̄hj
j , 1−∏

k

j=1(1−Zj)

˘̄hj
jג

˘̄hj

〉)

Now n = k + 1, by operational laws of LDFNs we have,

LDFPWG(Ω̆1, Ω̆2, . . . Ω̆k+1) = LDFPWG(Ω̆1, Ω̆2, . . . Ω̆k)⊗ Ω̆

˘̄hj
jג

˘̄hj
k+1

=

(〈
∏

k

j=1Y

˘̄hj
jג

˘̄hj
j , 1−∏

k

j=1(1−Xj)

˘̄hj
jג

˘̄hj

〉
,
〈

∏
k

j=1D

˘̄hj
jג

˘̄hj
j , 1−∏

k

j=1(1−Zj)

˘̄hj
jג

˘̄hj

〉)
⊗

(〈
Y

˘̄hk+1
jג

˘̄hj
k+1 , 1− (1−Xk+1)

˘̄hk+1
jג

˘̄hj

〉
,
〈

D

˘̄hk+1
jג

˘̄hj
k+1 , 1− (1−Zk+1)

˘̄hk+1
jג

˘̄hj

〉)

=

(〈
∏

k

j=1Y

˘̄hj
jג

˘̄hj
k .Y

˘̄hk+1
jג

˘̄hj
k+1 , 1−∏

k

j=1(1−Xk)

˘̄hj
jג

˘̄hj (1−Xk+1)

˘̄hk+1
jג

˘̄hk+1

〉
,

〈
∏

k

j=1D

˘̄hj
jג

˘̄hj
k .D

˘̄hk+1
jג

˘̄hj
k+1 , 1−∏

k

j=1(1−Zk)

˘̄hj
jג

˘̄hj (1−Zk+1)

˘̄hk+1
jג

˘̄hk+1

〉)

=

(〈
∏

k+1

j=1 Y

˘̄hj
jג

˘̄hj
j , 1−∏

k+1

j=1 (1−Xj)

˘̄hj

∑k+1
j=1

˘̄hj

〉
,
〈

∏
k+1

j=1 D

˘̄hj
jג

˘̄hj
j , 1−∏

k+1

j=1 (1−Zj)

˘̄hj

∑k+1
j=1

˘̄hj

〉)

This shows that for n = k + 1,Equation (2) holds. Then,
LDFPWG(Ω̆1, Ω̆2, . . . Ω̆n)

=

(〈
∏

n

j=1Y

˘̄hj
jג

˘̄hj
j , 1−∏

n

j=1(1−Xj)

˘̄hj
jג

˘̄hj

〉
,
〈

∏
n

j=1D

˘̄hj
jג

˘̄hj
j , 1−∏

n

j=1(1−Zj)

˘̄hj
jג

˘̄hj

〉)

A few of LDFPWG’s promising properties are described below.

Theorem 6. (Monotonicity) Assume that Ω̆j = (〈Yj, Xj〉, 〈Dj, Zj〉) and Ω̆∗j = (〈Y ∗j ,

X ∗
j 〉, 〈D∗j , Z ∗j 〉) are the assemblages of LDFNs, where ˘̄hj = ∏

j−1
k=1H (Ω̆k), ˘̄h

∗
j = ∏

j−1
k=1H (Ω̆∗k )

(j = 2 . . . , n), ˘̄h1 = 1, ˘̄h
∗
1 = 1, H (Ω̆k) is the expectation score function of Ω̆k LDFN, and

H (Ω̆∗k ) is the expectation score function of Ω̆∗k LDFN. If Y ∗j ≥ Yj and X ∗
j ≤ Xj for all j, then

LDFPWG(Ω̆1, Ω̆2, . . . Ω̆n) ≤ LDFPWG(Ω̆∗1 , Ω̆∗2 , . . . Ω̆∗n)

Proof. We can easily obtain similar to the Theorem 2.

Theorem 7. (Idempotency) Assume that Ω̆j = (〈Yj, Xj〉, 〈Dj, Zj〉) is the assemblage of LDFNs,

where ˘̄hj = ∏
j−1
k=1H (Ω̆k) (j = 2 . . . , n), ˘̄h1 = 1 and H (Ω̆k) is the expectation score function of

kth LDFN. If all Ω̆j are equal, i.e., Ω̆j = Ω̆ for all j, then

LDFPWG(Ω̆1, Ω̆2, . . . Ω̆n) = Ω̆
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Proof. From Definition 9, we have

LDFPWG(Ω̆1, Ω̆2, . . . Ω̆n) = Ω̆

˜̄̆h1
jג

˘̄hj
1 ⊗ Ω̆

˘̄h2
jג

˘̄hj
2 ⊗ . . . ,⊗Ω̆

˘̄hn
jג

˘̄hj
n

= Ω̆

˜̄̆h1
jג

˘̄hj ⊗ Ω̆
˘̄h2
jג

˘̄hj ⊗ . . . ,⊗Ω̆
˘̄hn
jג

˘̄hj

= Ω̆
jג

˘̄hj
jג

˘̄hj

= Ω̆

Corollary 3. If Ω̆j = (〈Yj, Xj〉, 〈Dj, Zj〉) j = (1, 2, . . . n) is the assemblage of largest LDFNs,
i.e., Ω̆j = (〈1, 0〉, 〈1, 0〉) for all j, then

LDFPWG(Ω̆1, Ω̆2, . . . Ω̆n) = (〈1, 0〉, 〈1, 0〉)

Proof. We can easily obtain Corollary similar to the Theorem 3.

Corollary 4. (Non-compensatory) If Ω̆1 = 〈Y1, X1〉 is the smallest LDFN, i.e., Ω̆1 = (〈0, 1〉,
〈0, 1〉), then

LDFPWG(Ω̆1, Ω̆2, . . . Ω̆n) = (〈0, 1〉, 〈0, 1〉)

Proof. Here, Ω̆1 = (〈0, 1〉, 〈0, 1〉) then by definition of the score function, we have,

H (Ω̆1) = 0

Since,
˘̄hj = ∏

j−1

k=1H (Ω̆k) (j = 2 . . . , n), and ˘̄h1 = 1

H (Ω̆k) is the score of kth LDFN.
We have,
˘̄hj = ∏

j−1
k=1H (Ω̆k) = H (Ω̆1)×H (Ω̆2)× . . .×H (Ω̆j−1) = 0×H (Ω̆2)× . . .×H (Ω̆j−1)

(j = 2 . . . , n)

∏
j

k=1
˘̄hj = 1

From Definition 9, we have

LDFPWG(Ω̆1, Ω̆2, . . . Ω̆n) = Ω̆

˘̄h1
jג

˘̄hj
1 ⊗ Ω̆

˘̄h2
jג

˘̄hj
2 ⊗ . . . ,⊗Ω̆

˘̄hn
jג

˘̄hj
n

= Ω̆
1
1
1 ⊗ Ω̆

0
1
2 ⊗ . . . Ω̆

0
1
n

= Ω̆1 = (0, 1)

The Corollary 4 implied that if the higher priority requirements were met by the
smallest LDFN, incentives would not be given to other criteria, even if they were met.

Theorem 8. Assume that Ω̆j = (〈Yj, Xj〉, 〈Dj, Zj〉) and β j = (〈φj, ϕj〉, 〈Kj, Mj〉) are two fam-

ilies of LDFNs, where ˘̄hj = ∏
j−1
k=1H (Ω̆k) (j = 2 . . . , n), ˘̄h1 = 1 and H (Ω̆k) is the expectation

score function of kth LDFN. If r > 0 and β = (〈Yβ, Xβ〉, 〈Dβ, Zβ〉) is an LDFN, then

1. LDFPWG(Ω̆1 ⊕ β, Ω̆2 ⊕ β, . . . Ω̆n ⊕ β) = LDFPWG(Ω̆1, Ω̆2, . . . Ω̆n)⊕ β



Symmetry 2021, 13, 1152 18 of 31

2. LDFPWG(rΩ̆1, rΩ̆2, . . . rΩ̆n) = r LDFPWG(Ω̆1, Ω̆2, . . . Ω̆n)

3. LDFPWG(Ω̆1 ⊕ β1, Ω̆2 ⊕ β2, . . . Ω̆n ⊕ βn) = LDFPWG(Ω̆1, Ω̆2, . . . Ω̆n) ⊕ LDFPWG
(β1, β2, . . . βn)

4. LDFPWG(rΩ̆1 ⊕ β, rΩ̆2 ⊕ β, . . .⊕ rΩ̆n ⊕ β) = r LDFPWG(Ω̆1, Ω̆2, . . . Ω̆n)⊕ β

Proof. The proof of this theorem is same as Theorem 4.

4. Proposed Methodology

Letq = {q1,q2, . . . ,qm} be the assemblage of alternatives and q̂′ = {q̂′1, q̂′2, . . . , q̂′n}
is the assemblage of criterion. Priorities are assigned between the criteria provided by the
linear orientation in this case. q̂′1 � q̂

′
2 � q̂

′
3 . . . q̂′n indicates criteria q̂′J has a high priority

than q̂′i if j > i. Υ = {Υ1, Υ2, . . . , Υp} is a assemblage of decision-makers (DM) and DMs
are not given the same priority. Prioritization is provided by a linear pattern between the
DMs given as, Υ1 � Υ2 � Υ3 . . . Υp shows DM Υζ has a high importance than Υ$ if ζ > $.

DMs give a matrix according to their own standpoints D(p) = (B
(p)
ij )m×n, where B

(p)
ij is

given for the alternatives qi ∈ q with respect to the attribute q̂′j ∈ q̂
′

by Υp DM. If all
performance criteria are the same kind, there is no need for normalization; however, since
MCGDM has two different types of evaluation criteria (benefit kind attributes τb and cost
kinds attributes τc), the matrix D(p) has been transformed into a normalize matrix using

the normalization formula Y(p) = (P
(p)
ij )m×n,

(P
(p)
ij )m×n =

(B
(p)
ij )c; j ∈ τc

B
(p)
ij ; j ∈ τb.

(5)

where (B
(p)
ij )c show the compliment of B

(p)
ij .

The suggested operators will be implemented to the MCGDM, which will require the
preceding steps. Pictorial view of Algorithm is given in Figure 7.

Figure 7. Pictorial view of Algorithm.

Step 1:
Acquire a decision matrix D(p) = (B

(p)
ij )m×n in the form of LDFNs from the decision

makers.



Symmetry 2021, 13, 1152 19 of 31

q̂′1 q̂′2 q̂′n



K1 q1 (
〈
Y 1

11, X 1
11
〉
,
〈
D1

11, Z 1
11
〉
) (

〈
Y 1

12, X 1
12
〉
,
〈
D1

12, Z 1
12
〉
) · · · · · · (

〈
Y 1

1n, X 1
1n
〉
,
〈
D1

1n, Z 1
1n
〉
)

q2 (〈Y 1
21, X 1

21〉, 〈D1
21, Z 1

21〉) (〈Y 1
22, X 1

22〉, 〈D1
22, Z 1

22〉) · · · · · · (〈Y 1
2n, X 1

2n〉, 〈D1
2n, Z 1

2n〉)
...

...
. . . . . .

...
qm (〈Y 1

m1, X 1
m1〉, 〈D1

m1, Z 1
m1〉) (〈Y 1

m2, X 1
m2〉, 〈D1

m2, Z 1
m2〉) · · · · · · (〈Y 1

mn, X 1
mn〉, 〈D1

mn, Z 1
mn〉)

K2 q1 (〈Y 2
11, X 2

11〉, 〈D2
11, Z 2

11〉) (〈Y 2
12, X 2

12〉, 〈D2
12, Z 2

12〉) · · · · · · (〈Y 2
1n, X 2

1n〉, 〈D2
1n, Z 2

1n〉)

q2 (〈Y 2
21, X 2

21〉, 〈D2
21, Z 2

21〉) (〈Y 2
22, X 2

22〉, 〈D2
22, Z 2

22〉) · · · · · · (〈Y 2
2n, X 2

2n〉, 〈D2
2n, Z 2

2n〉)
...

...
. . . . . .

...
qm (〈Y 2

m1, X 2
m1〉, 〈D2

m1, Z 2
m1〉) (〈Y 2

m2, X 2
m2〉, 〈D2

m2, Z 2
m2〉) · · · · · · (〈Y 2

mn, X 2
mn〉, 〈D2

mn, Z 2
mn〉)

Kp q1 (〈Y p
11, X p

11〉, 〈D
p
11, Z p

11〉) (〈Y p
12, X p

12〉, 〈D
p
12, Z p

12〉) · · · · · · (〈Y p
1n, X p

1n〉, 〈D
p
1n, Z p

1n〉)

q2 (〈Y p
21, X p

21〉, 〈D
p
21, Z p

21〉) (〈Y p
22, X p

22〉, 〈D
p
22, Z p

22〉) · · · · · · (〈Y p
2n, X p

2n〉, 〈D
p
2n, Z p

2n〉)
...

...
. . . . . .

...
qm (〈Y p

m1, X p
m1〉, 〈D

p
m1, Z p

m1〉) (〈Y p
m2, X p

m2〉, 〈D
p
m2, Z p

m2〉) · · · · · · (〈Y p
mn, X p

mn〉, 〈D
p
mn, Z p

mn〉)

Step 2:
Two kinds of criterion are described in the decision matrix: (τc) cost type indicators

and (τb) benefit type indicators. There is no need for normalization if all indicators are of
the same kind, but in MCGDM, there may be two types of criteria. The matrix was updated
to the transforming response matrix in this case Y(p) = (P

(p)
ij )m×n using the normalization

formula given in Equation (5).
Step 3:

Calculate the values of ˘̄h
(p)
ij by following formula.

˘̄h
(p)
ij = ∏

p−1

k=1H (P
(k)
ij ) (p = 2 . . . , n), (6)

˘̄h
(1)
ij = 1

Step 4:
Wij = LDFPWA(P

(1)
ij , P(2)

ij , . . . P(p)
ij )

=

(〈
1−∏

p
z=1(1−Y z

ij )

˘̄hz
j

jג
˘̄hz
j , ∏

p
z=1(X

z
ij )

˘̄hz
j

jג
˘̄hz
j

〉
,
〈

1−∏
p
z=1(1−Dz

ij)

˘̄hz
j

jג
˘̄hz
j , ∏

p
z=1(Z

z
ij )

˘̄hz
j

jג
˘̄hz
j

〉)
(7)

or
Wij = LDFPWG(P

(1)
ij , P(2)

ij , . . . P(p)
ij )

=

(〈
∏

p
z=1(Y

z
ij )

˘̄hz
j

jג
˘̄hz
j , 1−∏

p
z=1(1−X z

ij )

˘̄hz
j

jג
˘̄hz
j

〉
,
〈

∏
p
z=1(D

z
ij)

˘̄hz
j

jג
˘̄hz
j , 1−∏

p
z=1(1−Z z

ij )

˘̄hz
j

jג
˘̄hz
j

〉)
(8)

Use one of the above mentioned AOs, to get one cumulative matrix W(p) = (Wij)m×n

by aggregating all LDF decision matrices Y(p) = (P
(p)
ij )m×n.

Step 5:
Values of ˘̄hij determine by using given formula.

˘̄hij = ∏
j−1

k=1H (Wik) (j = 2 . . . , n), (9)
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˘̄hi1 = 1

Step 6:
Aggregate the LDF values Wij for each alternative qi by the LDFPWA (or LDFPWG)

operator:

Wi = LDFPWA(Pi1, Pi2, . . . Pin)

=

(〈
1−∏

n

j=1(1−Yj)

˘̄hj
jג

˘̄hj , ∏
n

j=1X

˘̄hj
jג

˘̄hj
j

〉
,
〈

1−∏
n

j=1(1−Dj)

˘̄hj
jג

˘̄hj , ∏
n

j=1Z

˘̄hj
jג

˘̄hj
j

〉)
(10)

or
Wi = LDFPWG(Pi1, Pi2, . . . Pin)

=

(〈
∏

n

j=1Y

˘̄hj
jג

˘̄hj
j , 1−∏

n

j=1(1−Xj)

˘̄hj
jג

˘̄hj

〉
,
〈

∏
n

j=1D

˘̄hj
jג

˘̄hj
j , 1−∏

n

j=1(1−Zj)

˘̄hj
jג

˘̄hj

〉)
(11)

Step 7:
Compute all cumulative alternative assessment scores.

Step 8:
The alternatives were rated using the score feature, and the best option was chosen.

5. Case Study

RLs is described as the method of transporting things from their original point of
origin to their final destination for purposes, such as value capture and re-use. Materials
are transferred from vendors to end users through supply chain networks. The on-time
delivery (OTD) metric is used by supply chain professionals to assess the efficacy of the
flow. It is a fairly standard supply chain measurement that focuses on ensuring rapid and
convenient delivery to the final user from the time the order is placed. However, the supply
chain’s task does not end until the service reaches the end consumer. Customers return
products for a variety of reasons, including purchasing the wrong item, receiving a faulty
item, receiving an item that does not match the company’s logo and no longer needing
the product. In such situations, you must plan for the return product’s shipment and
refer it through different procedures like recycling, inspection, repairing, and dismantling.
Many of these methods require the material to move backwards across the supply chain.
There are many benefits of introducing RLs that benefit both customers and manufacturers.
RLs is the procedure of restoring, reshaping, or recycling products that have reached the
end of their useful lives. It could be used as an asset recovery tool for manufacturers,
allowing them to derive as much value as possible from their products and obtain a second
return on investment. Companies would benefit from RLs in the form of tax cuts and
favorable media attention for doing their part to keep recycled products out of landfills.
The single significant explanation for RLs is the increased value that businesses can see
as a result of lower material costs. RLs have increased in importance since the start of the
e-commerce era.

Shopping carts have also been supplanted in recent years by online retailers, with
sales estimated to reach 414 million by 2018. Returns account for at least 30% of all products
bought online, compared to 8.89% in traditional stores. This rapid rise in returned goods
causes a lot of uncertainty in RLs, placing a lot of challenges on supply chains to effectively
manage and implement logistics costs. As a result, you must meticulously plan and
develop your reverse logistics. Metrics can be used to track reverse flow in your supply
chain. The number of returns, product type and condition, dollar value, and amount of
revenue returned are all included. An in-depth analysis of these indicators would help in
the detection of problem areas, as well as the transformation of the risk of returns into an
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opportunity to develop the business. The benefits far outweigh the costs of implementing
a reverse logistics strategy. Is the supply chain willing to take a step back?

RLs necessitates the same efficiencies as conventional “forward”logistics (customer
support, storage, system integration, and so on). If you streamline the way goods pass back
into the supply chain, you’ll see cost savings, happy consumers, and increased efficiency.

1. RLs provides a range of cost-cutting opportunities, ranging from lowering shipping
prices to reselling products that would have been discarded if returned. Your profit margins
will increase if money is reclaimed from recycled and resold materials and the rest of the
system is running smoothly.

2. How your company handles returns can have a big effect on how customers view
your brand. A defective product may be the source of a bad experience. It is as critical
to deal with errors as it is to make sales. You must make things right if a consumer has a
negative experience with some item. If you have choices for consumers who want to return
products in a way that is convenient for them, it can go a long way toward increasing
customer loyalty. These may include, among other things, a full refund regardless of
the reason for the return, the right to return without the original receipt if returning to a
physical store, and the ability to return without the original packaging.

3. Customer satisfaction would skyrocket if you had a streamlined system in place for
consumers to quickly return goods and order replacements. It can also help to expedite the
process of repairing, refurbishing, or reusing products, thus removing the need to purchase
new ones.

4. RLs will help you find ways to reuse, resell, or recycle items that would otherwise
end up in landfills. This raises the brand’s social and environmental obligations while still
rising profit margins. By remanufacturing or refurbishing your products, you can extend
their existence.

As a company grows, it faces new challenges, such as increased potential customers,
new locations, revamped manufacturing processes, and other factors. Meeting such issues
with capital and overhead spending is not always the most cost-effective option for some
companies. It is also preferable for such companies to look beyond their systems to
third-party service providers to provide the enhanced functionality that they need to
continue expanding. This is where 3PRLPs come into play. 3PRLPs are a range of facilities
and processes that an external agency offers to an organization for a variety of reasons,
including cost reduction, increased efficiencies, and capability expansion. 3PRLP services
are usually adaptable and flexible to meet the needs of individuals, which means they
can be used on an as-needed or long-term basis, depending on the company’s goals and
strategies. Businesses seek 3PRLP services for a variety of purposes. As a company grows,
the demand for storage space often outstrips the company’s ability to meet it. 3PRLP
warehouse management can be a viable option for businesses that are experiencing storage
space issues. Other companies can face increasing shipping costs, as well as increased
investments in infrastructure and automobiles. 3PRLPs vast fleets of specialized trucks
and facilities are often a much more cost-effective choice. Then there are US businesses
trying to expand into the Canadian market; a good 3PRLP will be able to help with many
of the logistical challenges that these scenarios involve. Customer support, delivery times,
refunds, order tracking, technical services, stock management, and other issues are just
a few of the many reasons why businesses may choose to work with a 3PRLP. As you
would expect, the more obstacles a company faces as it expands, the more value a 3PRLP
associate can have. Supply chain experts are constantly striving to find new ways to
improve efficiency, increase speed, and reduce logistics costs of which transportation
typically makes up the largest component. Logistic cost breakdown is given in Figure 8.
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Figure 8. Logistic cost breakdown.

The 3PRLP selection procedure involves a number of criteria; as a result, this short-
listing method can be viewed as an MCDM task. Present research on the 3PRLP selection
issue indicates academic and industrial interest. A large number of MCDMs have been de-
veloped in recent years. Models were created in the context of the 3PRLP evaluation issue.
Realistic RLs outsourcing assessments are often prepared in an imprecise and ambiguous
setting due to a variety of factors, such as partial ignorance, imprecise assessment, and
partial or unavailable decision-making for additional details [44]. The term “outsourcing”
has been used in the American Glossary since at least 1981, when it was first used as
“outside resourcing”. Logistics outsourcing is one of a company’s biggest accomplishments.
Nowadays, a logistics contract provider outsources many companies at the same time,
resulting in the benefits of economic balance, which can assist the organization in lowering
its costs. Despite these challenges, Yang et al. addressed how reduction in cost is rarely the
primary goal of outsourcing in MCDM [45].

Numerous academics have outlined several modules of 3PRLP outsourcing:

(1) the benefits and drawbacks of using a third-party logistics supplier [46];
(2) evaluating and choosing 3PRLPs for long-term partnership [41].

The current research project focuses on the second module, which is concerned with
the evaluation and selection of 3PRLPs in the decision-making process while considering
sustainability perspectives. Adoption of 3PRLP is critical for maximizing the product
cycle’s life span and returns, which aids in reducing environmental threats and addressing
resource-related issues. According to reports, bureaucrats in developing countries have
been encouraging and rendering sustainable development guidelines obligatory for the
implementation of 3PRLP setups in SCM [47]. Many studies have been conducted to
determine the best way to choose a 3PRLP from different perspectives [48–50]. Crisp values
are seldom suitable for modeling such real-world decision-making situations. To deal with
uncertain and ambiguous data, the Fuzzy set (FS) theory and its extensions have been
widely used in real-world MCDM applications. In a Fuzzy world, Zarbakhshnia et al. [51]
used the SWARA Fuzzy method to evaluate the requirements and COPRAS to grade
3PRLPs as sustainable. According to Liu et al. [52], the BWM should examine the array
of 3PRLPs on IVPHFSs. Bai and Sarkis [53] pioneered a multi-method and multi-stage
decision-making tool based on TOPSIS, VIKOR, and neighbourhood rough collection and
Zarbakhshnia et al. recently developed a framework for evaluating 3PRLPs under FSs [54].
For determining the best S3PRLP for the automotive industry, Zhang and Su proposed
model with dominance degree [55]. To assess and pick the best 3PRLPs, Efendigil et al.
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introduced a approach incorporating Fuzzy AHP and ANN [56]. Furthermore, Cheng and
Lee used the ANP technique to choose 3PRLP for high-tech manufacturing [57]. Ho et al.
recently introduced a approach incorporating quality feature implementation and the
Fuzzy AHP to evaluate and pick the best 3PRLPs [58]. Chai et al. gave a comprehensive
literature review on 3PRLPs [59].

Several researchers have spent the last two decades seeking to identify the critical
requirements for analyzing and selecting 3PRLP. The researchers typically employed survey
methodology to capture the key factors. In this article, we use the five criterion for selecting
best 3PRLP given in Table 2, references regarding these five criteria also given.

Table 2. Criterion and their references.

Criteria Literature Nature

Cost (q̂′1) Govindan et al. [60], Boyson et al. [61], Langley et al. [62] Non-beneficial
Meade and Sarkis [63], Gunasekaran et al. [64], Efendigil et al. [56]
Stock et al. [65], Ha and Krishnan [66]

Experience (q̂′2) Ha and Krishnan [66], Amin and Zhang [67], Darvish et al. [68], Beneficial
Amin and Razmi [69], Saen [44], Chen [70]

Quality (q̂′3) Govindan et al. [60], Boyson et al. [61], Stock et al. [65],
Saen [44], Mavi et al. [71], Li et al. [72] Beneficial

Eco-design Kuo et al. [73], Amindoust et al. [74], Shen et al. [75] Beneficial
production (q̂′4) Govindan et al. [76], Kannan et al. [77], Jabbour et al. [78]

Reputation (q̂′5) Saen [44], Mavi et al. [71], Kannan et al. [79], Sen et al. [80] Beneficial

5.1. Numerical Example

Consider a set of alternatives q = {q1,q2,q3,q4} and a set of criterion q̂′ =
{q̂′1, q̂′2, q̂′3, q̂′4, q̂′5}, where

q̂′1= cost,
q̂′2= experience,
q̂′3= quality,
q̂′4= eco-design production,
q̂′5= reputation.

Priorities are assigned among the criterion provided by the linear orientation. That is,
q̂′1 � q̂

′
2 � q̂

′
3 � q̂

′
4 � q̂

′
5 indicates that the criterion are linearly ordered such that q̂′j has

a high priority than q̂′i if j > i.
In this example, we use LDFNs as input data for ranking the given alternatives under

the given attributes. Here three DMs are involved, i.e., Υ1, Υ2 and Υ3. DMs are not given
the same priority. Prioritization is provided by a linear pattern between the DMs given as,
Υ1 � Υ2 � Υ3 shows DM Υζ has a high importance than Υ$ if ζ > $.
Step 1:

Acquire a decision matrix D(p) = (B
(p)
ij )m×n in the form of LDFNs from the decision

makers, given in Tables 3–5.
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Table 3. LDF decision matrix from K1.

q̂′
1 q̂′

2 q̂′
3 q̂′

4 q̂′
5

q1 (〈0.20, 0.85〉, 〈0.15, 0.65〉) (〈0.95, 0.55〉, 〈0.75, 0.15〉) (〈0.85, 0.10〉, 〈0.50, 0.10〉) (〈0.75, 0.25〉, 〈0.60, 0.10〉) (〈0.85, 0.20〉, 〈0.80, 0.10〉)
q2 (〈0.10, 0.70〉, 〈0.25, 0.35〉) (〈0.60, 0.45〉, 〈0.65, 0.15〉) (〈0.65, 0.15〉, 〈0.30, 0.30〉) (〈0.55, 0.35〉, 〈0.40, 0.35〉) (〈0.65, 0.10〉, 〈0.15, 0.25〉)
q3 (〈0.20, 0.65〉, 〈0.35, 0.15〉) (〈0.70, 0.50〉, 〈0.30, 0.40〉) (〈0.50, 0.20〉, 〈0.45, 0.45〉) (〈0.65, 0.45〉, 〈0.25, 0.25〉) (〈0.75, 0.60〉, 〈0.30, 0.30〉)
q4 (〈0.30, 0.50〉, 〈0.15, 0.60〉) (〈0.60, 0.55〉, 〈0.15, 0.15〉) (〈0.65, 0.35〉, 〈0.20, 0.30〉) (〈0.85, 0.15〉, 〈0.40, 0.40〉) (〈0.85, 0.95〉, 〈0.10, 0.30〉)

Table 4. LDF decision matrix from K2.

q̂′
1 q̂′

2 q̂′
3 q̂′

4 q̂′
5

q1 (〈0.85, 0.45〉, 〈0.40, 0.35〉) (〈0.85, 0.75〉, 〈0.25, 0.45〉) (〈0.95, 0.85〉, 〈0.35, 0.65〉) (〈0.75, 0.25〉, 〈0.80, 0.65〉) (〈0.70, 0.25〉, 〈0.45, 0.25〉)
q2 (〈0.65, 0.35〉, 〈0.30, 0.45〉) (〈0.65, 0.50〉, 〈0.35, 0.25〉) (〈0.70, 0.30〉, 〈0.35, 0.55〉) (〈0.65, 0.35〉, 〈0.25, 0.35〉) (〈0.50, 0.65〉, 〈0.35, 0.20〉)
q3 (〈0.25, 0.75〉, 〈0.30, 0.30〉) (〈0.75, 0.95〉, 〈0.25, 0.45〉) (〈0.65, 0.25〉, 〈0.35, 0.25〉) (〈0.45, 0.75〉, 〈0.45, 0.25〉) (〈0.60, 0.35〉, 〈0.65, 0.15〉)
q4 (〈0.85, 0.60〉, 〈0.20, 0.45〉) (〈0.65, 0.70〉, 〈0.30, 0.65〉) (〈0.35, 0.65〉, 〈0.45, 0.45〉) (〈0.30, 0.85〉, 〈0.30, 0.40〉) (〈0.30, 0.70〉, 〈0.25, 0.45〉)

Table 5. LDF decision matrix from K3.

q̂′
1 q̂′

2 q̂′
3 q̂′

4 q̂′
5

q1 (〈0.75, 0.35〉, 〈0.45, 0.30〉) (〈0.65, 0.25〉, 〈0.65, 0.20〉) (〈0.65, 0.20〉, 〈035., 0.15〉) (〈0.85, 0.15〉, 〈0.30, 0.30〉) (〈0.65, 0.15〉, 〈0.35, 0.25〉)
q2 (〈0.25, 0.75〉, 〈0.30, 0.30〉) (〈0.75, 0.25〉, 〈0.20, 0.35〉) (〈0.35, 0.15〉, 〈0.65, 0.20〉) (〈0.25, 0.65〉, 〈0.40, 0.40〉) (〈0.60, 0.75〉, 〈0.20, 0.30〉)
q3 (〈0.85, 0.60〉, 〈0.20, 0.45〉) (〈0.60, 0.80〉, 〈0.50, 0.30〉) (〈0.25, 0.60〉, 〈0.35, 0.40〉) (〈0.35, 0.90〉, 〈0.25, 0.10〉) (〈0.50, 0.85〉, 〈0.45, 0.45〉)
q4 (〈0.70, 0.65〉, 〈0.15, 0.35〉) (〈0.45, 0.70〉, 〈0.25, 0.45〉) (〈0.15, 0.75〉, 〈0.30, 0.30〉) (〈0.40, 0.60〉, 〈0.20, 0.50〉) (〈0.40, 0.35〉, 〈0.50, 0.20〉)
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Step 2:
Normalize the decision matrices acquired by DMs using Equation (5). There are two

types of criterion. q̂′1 is cost type criteria and others are benefit type criterion, given in
Tables 6–8.
Step 3:

Calculate the values of ˘̄h
(p)
ij by Equation (6).

˘̄h
(1)
ij =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



˘̄h
(2)
ij =


0.7875 0.7500 0.7875 0.7500 0.8375
0.6750 0.6625 0.6250 0.5625 0.6125
0.5625 0.5250 0.5750 0.5500 0.5375
0.6625 0.5125 0.5500 0.6750 0.4250



˘̄h
(3)
ij =


0.3052 0.3263 0.3544 0.4969 0.5548
0.3122 0.3727 0.3438 0.3094 0.3063
0.3516 0.2100 0.3594 0.2613 0.3695
0.3313 0.2050 0.2338 0.2278 0.1488


Step 4:

Use LDFPWA to aggregate all individual LDF decision matrices Y(p) = (P
(p)
ij )m×n

into one cumulative assessments matrix of the alternatives W(p) = (Wij)m×n using Equation (7)
given below.

q̂′1 q̂′2 q̂′3


q1 (〈0.6971, 0.4180〉, 〈0.5112, 0.2547〉) (〈0.8990, 0.5435〉, 〈0.6080, 0.2417〉) (〈0.8848, 0.2463〉, 〈0.4250, 0.2128〉)
q2 (〈0.6209, 0.2181〉, 〈0.3787, 0.2737〉) (〈0.6486, 0.4182〉, 〈0.5019, 0.2069〉) (〈0.6287, 0.1869〉, 〈0.3942, 0.3388〉)
q3 (〈0.6751, 0.2786〉, 〈0.2588, 0.3018〉) (〈0.7441, 0.6356〉, 〈0.3438, 0.3617〉) (〈0.5151, 0.2621〉, 〈0.4037, 0.3697〉)
q4 (〈0.5625, 0.4881〉, 〈0.5180, 0.1650〉) (〈0.6007, 0.6083〉, 〈0.2097, 0.2649〉) (〈0.5243, 0.4680〉, 〈0.2999, 0.3398〉)

q̂′4 q̂′5


q1 (〈0.7767, 0.2233〉, 〈0.6408, 0.2381〉) (〈0.7959, 0.2066〉, 〈0.6887, 0.1466〉)
q2 (〈0.5460, 0.3877〉, 〈0.3584, 0.3578〉) (〈0.5993, 0.2507〉, 〈0.2273, 0.2397〉)
q3 (〈0.5610, 0.5808〉, 〈0.3174, 0.2190〉) (〈0.6736, 0.5514〉, 〈0.4506, 0.2669〉)
q4 (〈0.6941, 0.3277〉, 〈0.3440, 0.4109〉) (〈0.7408, 0.7961〉, 〈0.1895, 0.3222〉)

Step 5:
Evaluate the values of ˘̄hij by using Equation (9).

˘̄hij =


1 0.6339 0.4314 0.3074 0.2272
1 0.6269 0.3958 0.2471 0.1334
1 0.5884 0.3076 0.1759 0.0914
1 0.6068 0.2939 0.1481 0.0852


Step 6:

Aggregate the LDF values Wij for each alternative qi by the LDFPWA operator using
Equation (10) given in Table 9.
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Table 6. Normalized LDF decision matrix from K1.

q̂′
1 q̂′

2 q̂′
3 q̂′

4 q̂′
5

q1 (〈0.85, 0.20〉, 〈0.65, 0.15〉) (〈0.95, 0.55〉, 〈0.75, 0.15〉) (〈0.85, 0.10〉, 〈0.50, 0.10〉) (〈0.75, 0.25〉, 〈0.60, 0.10〉) (〈0.85, 0.20〉, 〈0.80, 0.10〉)
q2 (〈0.70, 0.10〉, 〈0.35, 0.25〉) (〈0.60, 0.45〉, 〈0.65, 0.15〉) (〈0.65, 0.15〉, 〈0.30, 0.30〉) (〈0.55, 0.35〉, 〈0.40, 0.35〉) (〈0.65, 0.10〉, 〈0.15, 0.25〉)
q3 (〈0.65, 0.20〉, 〈0.15, 0.35〉) (〈0.70, 0.50〉, 〈0.30, 0.40〉) (〈0.50, 0.20〉, 〈0.45, 0.45〉) (〈0.65, 0.45〉, 〈0.25, 0.25〉) (〈0.75, 0.60〉, 〈0.30, 0.30〉)
q4 (〈0.50, 0.30〉, 〈0.60, 0.15〉) (〈0.60, 0.55〉, 〈0.15, 0.15〉) (〈0.65, 0.35〉, 〈0.20, 0.30〉) (〈0.85, 0.15〉, 〈0.40, 0.40〉) (〈0.85, 0.95〉, 〈0.10, 0.30〉)

Table 7. Normalized LDF decision matrix from K2.

q̂′
1 q̂′

2 q̂′
3 q̂′

4 q̂′
5

q1 (〈0.45, 0.85〉, 〈0.35, 0.40〉) (〈0.85, 0.75〉, 〈0.25, 0.45〉) (〈0.95, 0.85〉, 〈0.35, 0.65〉) (〈0.75, 0.25〉, 〈0.80, 0.65〉) (〈0.70, 0.25〉, 〈0.45, 0.25〉)
q2 (〈0.35, 0.65〉, 〈0.45, 0.30〉) (〈0.65, 0.50〉, 〈0.35, 0.25〉) (〈0.70, 0.30〉, 〈0.35, 0.55〉) (〈0.65, 0.35〉, 〈0.25, 0.35〉) (〈0.50, 0.65〉, 〈0.35, 0.20〉)
q3 (〈0.75, 0.25〉, 〈0.30, 0.30〉) (〈0.75, 0.95〉, 〈0.25, 0.45〉) (〈0.65, 0.25〉, 〈0.35, 0.25〉) (〈0.45, 0.75〉, 〈0.45, 0.25〉) (〈0.60, 0.35〉, 〈0.65, 0.15〉)
q4 (〈0.60, 0.85〉, 〈0.45, 0.20〉) (〈0.65, 0.70〉, 〈0.30, 0.65〉) (〈0.35, 0.65〉, 〈0.45, 0.45〉) (〈0.30, 0.85〉, 〈0.30, 0.40〉) (〈0.30, 0.70〉, 〈0.25, 0.45〉)

Table 8. Normalized LDF decision matrix from K3.

q̂′
1 q̂′

2 q̂′
3 q̂′

4 q̂′
5

q1 (〈0.35, 0.75〉, 〈0.30, 0.45〉) (〈0.65, 0.25〉, 〈0.65, 0.20〉) (〈0.65, 0.20〉, 〈0.35, 0.15〉) (〈0.85, 0.15〉, 〈0.30, 0.30〉) (〈0.65, 0.15〉, 〈0.35, 0.25〉)
q2 (〈0.75, 0.25〉, 〈0.30, 0.30〉) (〈0.75, 0.25〉, 〈0.20, 0.35〉) (〈0.35, 0.15〉, 〈0.65, 0.20〉) (〈0.25, 0.65〉, 〈0.40, 0.40〉) (〈0.60, 0.75〉, 〈0.20, 0.30〉)
q3 (〈0.60, 0.85〉, 〈0.45, 0.20〉) (〈0.60, 0.80〉, 〈0.50, 0.30〉) (〈0.25, 0.60〉, 〈0.35, 0.40〉) (〈0.35, 0.90〉, 〈0.25, 0.10〉) (〈0.50, 0.85〉, 〈0.45, 0.45〉)
q4 (〈0.65, 0.70〉, 〈0.35, 0.15〉) (〈0.45, 0.70〉, 〈0.25, 0.45〉) (〈0.15, 0.75〉, 〈0.30, 0.30〉) (〈0.40, 0.60〉, 〈0.20, 0.50〉) (〈0.40, 0.35〉, 〈0.50, 0.20〉)
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Table 9. LDF Aggregated values Wi.

W1 (〈0.8160, 0.3564〉, 〈0.5589, 0.2308〉)
W2 (〈0.6354, 0.2694〉, 〈0.4069, 0.2589〉)
W3 (〈0.6696, 0.3777〉, 〈0.3181, 0.3163〉)
W4 (〈0.5880, 0.5125〉, 〈0.3908, 0.2282〉)

Step 7:
Calculate the score of all LDF aggregated values Wi.

H (W1) = 0.6969

H (W2) = 0.6259

H (W3) = 0.5735

H (W4) = 0.5595

Step 8:
Rank by score function values.

W1 � W2 � W3 � W4

So,
q1 � q2 � q3 � q4

Bar chart for ranking of alternatives is given in Figure 9.

Figure 9. Bar chart for ranking of alternatives.

5.2. Comparative Analysis

In this section, we compare proposed AOs with some existing AOs. The uniqueness
of our proposed operators is that they both yield the same result. We equate our results by
solving the information data with some pre-existing operators and arriving at the same
optimal decision. This demonstrates the robustness and validity of our proposed models.
Because of their reference parameterizations, the presented techniques on LDFNs are more
effective and superior to some existing theories. The beauty of this structure is that it
creates an independence between MD and NMDs and creates categorization criteria due
to parameterizations. Table 10 shows the symmetry of ranking and optimal decision as a
comparison comparative analysis of proposed approach with previous approaches.

(i) LDFS outperforms other current theories such as Fuzzy set, IFS, PFS, and q-ROFS.
(ii) There are several real-world problems that are not addressed by other theories,

and LDFS offered a wider evaluation space to address this.
(iii) Other aggregation operators proposed in the literature fail to aggregate linear

Diophantine Fuzzy information, whereas our proposed aggregation operators are related
to LDFSs. We obtain q1 � q2 � q3 � q4 rating by our proposed aggregation operators;
to validate our optimal option, we run this problem through other existing operators by
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converting LDF data into IFSs. The validity of our suggested aggregation operators is
demonstrated by the fact that we obtain the same optimal decision.

Table 10. Symmetry of ranking and optimal decision.

Authors AOs Ranking of Alternatives The Optimal Alternative

Wang and Liu [12] IFEWA q1 � q4 � q3 � q2 q1
IFEOWA q1 � q2 � q4 � q3 q1

Xu [9] IFWA q1 � q2 � q3 � q4 q1
IFOWA q1 � q2 � q3 � q4 q1
IFHA q1 � q3 � q2 � q4 q1

Xu and Yager [10] IFWG q1 � q2 � q3 � q4 q1
IFOWG q1 � q3 � q2 � q4 q1
IFHG q1 � q2 � q4 � q3 q1

Xu [81] IFBM q1 � q2 � q3 � q4 q1
WIFBM q1 � q4 � q3 � q2 q1

Zhao et al. [14] GIFWA q1 � q2 � q3 � q4 q1
GIFOWA q1 � q2 � q3 � q4 q1

Xu and Xia [82] IGIFCA q1 � q2 � q3 � q4 q1
BSI-GIFOA q1 � q4 � q2 � q3 q1

Proposed LDFEWA q1 � q2 � q3 � q4 q1
LDFEWG q1 � q2 � q3 � q4 q1

6. Conclusions and Future Studies

Aggregation operators play an important role in information fusion for the real-life
problems. A linear Diophantine Fuzzy information is new concept for modeling un-
certainty in decision-making problems due the addition of reference parameters with
membership and non-membership grades. First, we introduced new aggregation operators
for modeling uncertainty by using linear Diophantine Fuzzy information. For this aim
we developed new aggregation operators (AO) namely, “linear Diophantine Fuzzy priori-
tized weighted average” (LDFPWA) operator and “linear Diophantine Fuzzy prioritized
weighted geometric”(LDFPWG) operator. Then we proposed certain essential properties of
new prioritized AOs. Secondly, we discussed a practical application of third party reverse
logistic provider (3PRLP) optimization problem. A numerical example to discuss 3PRLP is
presented to discuss the efficiency, superiority, and rationality of the proposed approach. A
comparative analysis is presented to discuss the symmetry of optimal decision and ranking
of feasible alternatives.
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