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Abstract: The Lévy walk is a pattern that is often seen in the movement of living organisms; it has
both ballistic and random features and is a behavior that has been recognized in various animals and
unicellular organisms, such as amoebae, in recent years. We proposed an amoeba locomotion model
that implements Bayesian and inverse Bayesian inference as a Lévy walk algorithm that balances
exploration and exploitation, and through a comparison with general random walks, we confirmed
its effectiveness. While Bayesian inference is expressed only by P(h) = P(h|d), we introduce inverse
Bayesian inference expressed as P(d|h) = P(d) in a symmetry fashion. That symmetry contributes to
balancing contracting and expanding the probability space. Additionally, the conditions of various
environments were set, and experimental results were obtained that corresponded to changes in gait
patterns with respect to changes in the conditions of actual metastatic cancer cells.

Keywords: Lévy walk; amoebic motion; metastatic cancer cells; Bayesian inference; inverse Bayesian
inference

1. Introduction

It is known that many patterns of animal foraging are characterized by the Lévy walk.
A Lévy walk is characterized by a non-Gaussian, heavy-tailed, power law distribution [1]
of consistent step size, and its exponent µ is 1 < µ < 3; typically, µ = 2 [2]. Moreover, the
Lévy walk consists of many short step lengths and a few long step lengths.

Lévy walks are different from normal random walks and have both ballistic movement
and random movement. Therefore, a high transfer efficiency [3] enables predators to obtain
more resources, and it is known that many plant and animal foraging patterns, including
those of insects, birds, fish, and humans, follow the Lévy walk.

Recently, the Lévy walk has been observed in not only multicellular animals but also
swarms of animals [4], amoebae, eukaryotic cells [5] and metastatic cancer cells [6]. Of
course, not all cells exhibit a Lévy walk. Many nonmetastatic cells show correlated random
walks [5,7,8]. The probability distribution of the positions of random walks is Gaussian
and can be approximated as a normal distribution, and the prevalence of long ballistic
movement is exponentially attenuated. On the other hand, metastatic cancer cells are
experimentally indicated to show a scale-free Lévy walk [9]. This can be considered a valid
strategy for cancer cell transitions to search more widespread areas. In addition, T cells
searching for parasite-infected cells [10], bacteria [9,11], and even molecular motors within
cells [12] show Lévy walks.

This kind of cell motility is found in general cell motion. Cells are covered with a
cell membrane on their surface and have plasma inside and actin filaments that hold their
shape. When these actin filaments start to break, their plasma flows into the cell membrane,
and the actin filaments polymerize again and cure there. Through this process, amoebic
motility occurs [13,14]. Sabil Huda, Battina Weigelin et al. first indicated that nonmetastatic
cells show random walks and metastatic cells show Lévy walks and then experimented on
how metastatic cell motility changes by suppressing and inhibiting actin polymerization,
showing the Lévy walk. As a result, metastatic cells inhibited their actin polymerization,
changing random walks into Lévy walks [6].

Symmetry 2021, 13, 1140. https://doi.org/10.3390/sym13071140 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-0462-4932
https://doi.org/10.3390/sym13071140
https://doi.org/10.3390/sym13071140
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13071140
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13071140?type=check_update&version=2


Symmetry 2021, 13, 1140 2 of 17

The Lévy walk is related to the optimization of searching an unfamiliar space. To
obtain the greatest effect with limited resources, animals need to balance exploration and
exploitation. Animals must choose to continue exploitation of food sources in their current
position or to move away to obtain better food sources. However, in an unfamiliar space,
there do not seem to be reasonable grounds for this choice, and therefore, dilemmas in
exploration and exploitation occur.

In making this choice, animals use the information of known experience regarding
“this place” and move out toward the unknown. Bayesian inference can be considered
a form of inference inspired by this kind of decision making. Bayesian inference is dif-
ferent from classical probability theory, and prior probability and posterior probability
are introduced to change the probability space. Updating the prior probability by expe-
rience and changing the probability of the unused hypothesis to 0, Bayesian inference
makes top-down decisions by shrinking the probability space. Recently, many experiments
have reported that many animals, including humans, perceive the outside world by using
Bayesian inference.

However, Bayesian inference that only shrinks the probability space is also a calcu-
lation procedure that identifies a concept of probability established on infinite attempts
by using finite attempts. Through this process, known and unknown information are
separated, and unknown information is discarded in an open environment. Here, there is
no concept of time. The real environment does not stay the same but is always changing. In
an unknown space, not only updating prior probabilities but also updating the likelihood
of hypotheses is needed.

Therefore, inverse Bayesian inference is introduced as another form of inference [15–19].
Inverse Bayesian inference updates not only the probability of hypotheses but also the likelihood
of hypotheses according to the latest input from the outside. In the process of searching for food
resources, a system introducing both Bayesian and inverse Bayesian inference (BIB) needs to be
constructed to solve the dilemma of exploration and exploitation. Inverse Bayesian inference,
expanding the probability space, and Bayesian inference, shrinking the probability space, can
correspond to exploration and exploitation [20].

In addition, we implemented a model of inhibited actin polymerization inspired by
Sabil Huda et al., 2018 [6], and investigated the change in the foraging pattern. In this
study, we built a model of amoebae imitating metastatic cancer cells and implemented BIB
Inference as a decision maker for foraging. Our motivation is to explain the mechanism of
general amoebic motility through describing the mechanism of cancer metastasis. Previous
studies [6] have shown that when cancer cells metastasize, they do a Lévy walk. In this
study, we use the Lévy walk observed as a mechanism for cancer cells to metastasize
as a starting point, and compare it with the experiments of Sabil Huda et al. in which
they applied various inhibitory conditions to cancer cells and investigated the changes
in behavior related to the Lévy walk. We will show that Bayesian and inverse Bayesian
inference play an important role in understanding the behavior of the Levy walk. We
compared the Bayesian inference model, BIB inference model and random walk model and
investigated the relationships among them.

This paper is structured as follows: In Section 2, we describe the algorithm of the
amoebic foraging model and random walk as well as Bayesian and BIB inference. In
Section 3, we show the results of the experiments. Finally, we compare these results in
Section 4, and we state our conclusions in Section 5.

2. Materials and Methods
2.1. Amoebic Model

In this study, we implemented Bayesian and inverse Bayesian inference in an amoebic
model [21–23] and constructed a model of metastatic cancer cells. The initial state of the
amoeba is square with boundary points (dark gray grid points) at each boundary (Figure 1).
The size of the amoeba is defined as the scale M, which is the distance from the center of
the amoeba to the boundary. A dark gray grid point is the surface of the cell, and a light



Symmetry 2021, 13, 1140 3 of 17

gray grid point is the internal area of the cell filled with plasma, where all grid points are
sustained by actin tissue.

Figure 1. Size of the amoeba: M is defined by how the grids develop from the center of the initial
state of the amoeba, where the number of grid points is 2M(M− 1)− 1.

Amoebic motility is modeled by the following process (In Figure 2): First, one of the
boundary points is chosen (Figure 2- 2©). Then, boundary glid points (dark green) and
internal glid points (light green) are not distinguished to each other and are ready to be
replaced. (Figure 2- 3©) Next, the external grid point invades the amoeba from the outside
and replaces a glid point chosen in the process 2© (Figure 2- 4©). This external grid point
transfers to inside the cell, exchanging its position with each grid point that forms the
amoeba body (Figure 2- 5©). At this time, the trail of external grid point is memorized,
each cell replaced once (yellow glid points) cannot be replaced anymore until the external
glid point finishes their movement. Finally, the white grid point is either deemed to be
discharged at a place exposed in three directions (Figure 2- 6©A) or settles inside the cell
surrounded by its own trails (Figure 2- 6©B). In both cases, all the glid points that are not
surrounded by the other four glid points in the direction up, down, left, and right become
boundary points (Figure 2- 7©). Although the external grid point’s transfer causes the shape
of the cell to change, the overall size of the amoeba does not change, and its volume is
preserved because each grid has just exchanged at its position.

Figure 2. From the initial state of the amoeba to the first invasion and the discharge of the white grid
point, one of the boundary points is chosen, transferring inside the cell and exchanging its position
with each grid point that forms the amoeba body. The white grid point will soon be deemed to
be discharged at a place exposed in three directions or will settle inside the cell, surrounded by its
own trails.

The exchange between a white grid point and green grid point corresponds to the
hollow space, which generates an outflow of surrounding plasma when the depolymeriza-
tion of actin filaments occurs on the surface of the cell. After this exchange, plasma drift is
expressed by grid points changing places where actin tissues are broken. The white grid



Symmetry 2021, 13, 1140 4 of 17

points that transfer inside the cell avoid their own trails. This means that the plasma that
drifts into a space is not easily broken because of rapid repolymerization.

Thus, amoebae change their shape sequentially for each invasion of a white grid
point. Although white grid points transfer inside a cell randomly, avoiding their own
trails causes discharge in the opposite of the invading direction. This enables amoebae
to move in the direction from which the white grid point invaded (Figure 3). Therefore,
inference about the direction from which the white grid point invaded represents foraging
for food resources.

Figure 3. An example white grid point invades from the top right into the amoeba in its initial state.

In this study, the frequency of white grid point invasion was defined as 2M times each
size of the amoeba model. The white grid point invades 8 times if M = 4 and 12 times if
M = 5 for every inference.

2.2. Bayesian and Inverse Bayesian Inference

Here, we construct an amoebic foraging model that implements Bayesian inference,
inverse Bayesian inference, and random walks. Bayesian inference is a statistical infer-
ence method using prior information acquired from past data. From conditional prob-
ability P(A|B); that is, P(A|B) = P(A,B)/P(B), the Bayesian formula is obtained by the

following: Pt(hi
∣∣dj

)
=

Pt(dj|hi)Pt(hi )

Pt(di )
where h represents hypothesis and d is direction selec-

tion. Both h-hypothesis and d-direction have four patterns that are simply up, down, left,
and right. In other words, each h and d has four parameters, which are marked with 0~3 in
the program. This is described in further detail in Figure 4. In addition, the probability of
choosing a data point Pt(dj

)
derived by adding the probabilities of choosing dj from all

hypotheses is expressed by: Pt(hi
∣∣dj

)
=

Pt(dj|hi)Pt(hi )

Pt(di )
.
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Figure 4. Process of an amoeba choosing a direction.

By assigning these equations,

Pt(hi
∣∣dj

)
=

Pt(dj
∣∣hi)Pt(hi )

∑3
k=0 Pt(dj|hk)Pt(hk )

, (1)

is obtained. We use (1) as the basic formula of Bayesian inference. In Bayesian inference,
the probability of a hypothesis P(h) is called the prior probability, and the probability
of the hypothesis updated by experience is called the posterior probability. The idea of
Bayesian inference is the process of using the posterior probability to obtain the next
prior probability.

Pt+1(hi) = Pt(hi
∣∣dj

)
. (2)

In BIB inference, after the application of (1) and (2), a hypothesis of lower probability
is chosen randomly and assigned as P(di), from t to t − τ, to each likelihood and then
updated. The probability of di approximated from the empirical frequency is P

(
dj, τ

)
.

Inverse Bayesian inference is expressed by:

Pt+1(dj
∣∣hs

)
= Pt(dj, τ

)
. (3)

The amoeba model determines the direction of t + 1 by using the posterior probability
P(h|d) and the likelihood. τ is a value that refers to the number of times that the amoeba
chose a direction in the past. Note that expressions (2) and (3) constitute an explicit
symmetry structure such as a pair of P(h) = P(h|d) and P(d|h) = P(d). In previous models
based on Bayesian inference, only P(h) = P(h|d) is implemented, and then the probability
space is perpetually contracted dependent on the system’s own experience. It results in
rapid approach of the steady state. In contrast, in our model, P(d|h) = P(d), which is called
inverse Bayesian inference, is also added. That formula is defined to satisfy the symmetrical
structure, by replacing d with h and h with d. Additionally, P(d|h) = P(d) reveals expansion
of the probability space and entails cancelling the steady state. The symmetry implemented
by a pair of P(h) = P(h|d) and P(d|h) = P(d) can balance contraction and expansion of the
probability space under a disturbed environment.

In the amoeba model, for any h,

Pt(hmax) > Pt(h). (4)

We choose a hypothesis hmax satisfying (4), and for any d,

Pt(dmax|hmax) > Pt(d
∣∣hmax). (5)

We randomly choose dmax satisfying (5). Regarding the center of gravity of the amoeba
body as the origin, with quadrants 1–4 corresponding to each d = 0~3, the amoeba chooses
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a boundary point relative to quadrants dmax + 1, and the white grid point is allowed to
invade. Finally, amoebic motility implementing Bayesian inference is constructed. Figure 5
shows both algorithms simply.

Figure 5. The relationship between BIB inference and exploration vs. exploitation.

In Bayesian inference, the prior probability of the hypothesis is updated (Figure 6). A
hypothesis is defined by its likelihood based on the data, but Bayesian inference does not
change the hypothesis itself. Only the probability of the hypothesis is changed.

Figure 6. Example of a prior probability being updated in Bayesian inference.

In inverse Bayesian inference, the past data of τ direction choices are referred to, and
the likelihood is updated (Figure 7). The algorithm is shown in Figure 6. BIB inference
makes decisions by applying both Bayesian and inverse Bayesian inference alternately.

Figure 7. Example of likelihood being updated by inverse Bayesian inference.

Moreover, we added a new model of BIB amoeba. The original model determines the
direction by choosing dmax acquired from the changing probability of the hypothesis based
on the latest input information through the BIB inference process. This means that actin
polymerization and depolymerization are perfectly controlled in real amoebae. On the other
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hand, the condition that actin polymerization is controlled by a chemical inhibitor can be
implemented as a process in which the dmax acquired by Bayesian inference does not work,
and the direction is therefore determined randomly. Thus, a new model is added, which
ignores inference results with a probability of ν, where ν is the probability of randomness
in choosing the direction of quadrants 1–4; that is, dmax is used with a probability 1− ν. It
is expected that random walk-like motility will appear because inference does not work.

2.3. Analysis: Step Length

Step length is the length of straight-line movement in the foraging trail. The step
length is calculated from the foraging data acquired in the experiment. Here, if the angle is
formed by two continuous vectors acquired by two position coordinates updated by t = 10
is 40◦ or less, the distance is counted as one step (Figure 8).

Figure 8. Example of step length.

2.4. AIC

We examined whether the step length distribution was a power law distribution or
exponential distribution. Two probability density functions are given, one for the truncated
power law distribution, f (x) = (µ − 1)/(xmin

1 − µ − xmax
1 − µ)x−µ, and the other for the

exponential distribution, f (x) = λexp(−λ(x− xmin)), where xmin is determined by using
Kolmogorov-Smirnov statistics and xmax is defined as the maximum value of the data.
After best-fit exponents for the truncated power law () and the exponential distribution
(λ) and log-likelihood are calculated, the AIC and Akaike weight for both models are
calculated. Finally, the better-fitting model is determined based on the Akaike weight. We
calculated the Akaike weight for the truncated power law distribution, 0.0 ≤ wpl ≤ 1.0,
where the larger wpl is, the higher the likelihood of the truncated power law distribution is.
In contrast, 1-wpl represents the likelihood for the exponential distribution.

In Section 3 if wpl is near 0, it is nearly an exponential distribution; if wpl is near 1, it is
nearly a power law distribution.

3. Results
3.1. Experimental Condition of Foraging

An amoebic foraging model implementing random walks, Bayes and BIB was evalu-
ated for each foraging pattern and step length distribution. In the random walk model, the
entrance point is chosen randomly. In the Bayes and BIB models, amoebae forage randomly
τ times to give the likelihood of prior probability. Each experiment is performed 50 times
with t = 5000. In our experiment, the initial values of the probability of the hypothesis and
likelihood are given below (Table 1).
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Table 1. Initial value of hypothesis and likelihood.

d0 d1 d2 d3

h0 0.4 0.2 0.2 0.2
h1 0.2 0.4 0.2 0.2
h2 0.2 0.2 0.4 0.2
h3 0.2 0.2 0.2 0.4

3.2. Step Length Distribution and Foraging Pattern

We show the graph of the relationship between the step length and its frequency and
the pattern of foraging in each model. The trendlines are calculated by both a power law
function and exponential function. In the graph, the blue curve is an exponential curve, and
the green curve is a power law curve. In addition, the graph is a double logarithmic chart.

3.3. Details of the Distribution

We show the coefficient µ of the power distribution and the coefficient λ of the
exponential distribution obtained by the approximation of each experimental data point.

Table 2 shows the data for random walk, Bayesian foraging, BIB foraging τ, and
the size of amoeba M from bottom to top. wpl is a value that is 1 if the step length
frequency distribution can be approximated as a power distribution by AIC and 0 if it can
be approximated by an exponential distribution. When wpl = 1, the focus is on whether
the value of the parameter µ related to the power function is close to 2, and when wpl = 0,
the focus is on whether the value of the parameter λ related to the exponential function
is close to 1. In Table 2, µ is close to 2 for BIB M6, τ = 50 and 75, and M4 and 8, τ = 100,
suggesting a Lévy walk. On the other hand, Random M6 is close to λ = 1 at wpl = 0, so it
closely approximates the exponential distribution. In addition, BIB M6, τ = 200, shows a
dissociation from µ = 2.407700 and µ = 2.

Table 2. Results of each graph.

µ λ wpl

Random M6 2.644600 1.038069 0.00000
Bayes M6 2.287500 0.708772 1.00000

BIB M6 τ = 50 1.968700 0.297233 1.00000
BIB M6 τ = 75 2.114100 0.451981 1.00000

BIB M6 τ = 100 2.205200 0.529439 1.00000
BIB M6 τ = 200 2.407700 0.719001 1.00000
BIB M8 τ = 100 2.091800 0.451882 1.00000
BIB M4 τ = 100 2.051100 0.423548 1.00000

4. Discussion
4.1. Comparison of Random, Bayesian and BIB Foraging
4.1.1. Random Walk

In Figure 9A, the step length distribution of the random walk seems to be close to
the exponential trendline. Additionally, in the foraging pattern example in Figure 9B, the
random walk is composed of many short steps and turns, and a long step characterizing a
Levy walk does not appear, which means that the cell cannot search in a large space. In
Table 2, AIC-wpl = 0.00000 indicates that the step length distribution is a random walk. In
addition, near λ = 1, the distribution is better approximated by an exponential function.
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Figure 9. Step length distribution and foraging pattern of (A,B) random walk, (C,D) Bayes, and
(E,F) BIB foraging. τ = 50.

4.1.2. Bayesian Foraging

We consider Bayesian foraging as well. In Figure 9C, even though the distribution
does not fit an exponential function better than a random walk, it is far from a power law
distribution. On the other hand, AIC;wpl = 1.00000 indicates that it is approximated well
by a power law distribution. However, the foraging pattern in Figure 9D confirms that the
cell occasionally changes its traveling direction and forages in only one direction.

This heavily depends on the initial likelihood of Bayesian inference. In Bayesian
inference, each of four initial likelihoods, which are the hypotheses with the highest
probability in each direction, are configured. Because Bayesian inference does not update
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its likelihood based on experience as inverse Bayesian inference does, once the experiment
starts, the probabilities of hypotheses h0 ∼ h3 soon bias one of the directions comparatively,
and the cell, unable to move in the remaining three directions, shows ballistic movement
in one direction. This can also be seen in the foraging pattern example in Figure 9E. This
means that the cell keeps searching without exploiting resources in the current environment
or balancing exploration and exploitation. However, from the perspective of the animal
action strategy, this foraging bias in one direction without widespread searching cannot be
regarded as an efficient foraging pattern and does not have scale-free characteristics. In this
context, we judge that Bayesian foraging does not fit the other features of the Lévy walk.

4.1.3. BIB Foraging

We consider Bayesian foraging as well. As shown in Figure 9E, the step length
distribution of BIB foraging is nearly a power law distribution, and the models of any τ
and M show wpl = 1.00000 and a µ of approximately 2 and can be approximated by a power
law distribution. Comparing the difference of the maximum step length with the size of M,
each distribution satisfying the power-law distribution indicates scale-free characteristics.
In fact, µ is often 2 for many animals, so it can be said that this foraging model of BIB
inference replicates the Lévy walk. At first glance, it appears that the data do not fit well
on the line of the power distribution on the graph, but we judged the goodness of fit by the
value of µ, which is an evaluation value of the Akaike criterion. Regarding the comparison
of BIB and Bayes only, we evaluate Lévy walk-like movements with not only AIC but also
trail patterns comprehensively.

In Figure 9F, there are both ballistic movements and random movements. These can
be substituted with exploration and exploitation. Random movement is an exploitative
behavior composed of many short steps for the purpose of obtaining food resources, and
ballistic movement is exploratory behavior that contains a few long steps for the sake of
finding potential feeding grounds. Considering the above, we can say that the random
walk is dedicated to exploitation and the Bayes Only model is dedicated to exploration. Of
course, both exploration and exploitation are important in the foraging behavior of animals,
but it is impossible for animals to behave well if they are biased toward one or the other.
The BIB model, on the other hand, can be said to have a good balance between exploration
and exploitation in that it supports exploration by repeating exploitation for a certain
period of time in one place and periodically taking long steps to another remote place.

4.2. Comparison of BIB Foraging by τ

In BIB foraging, it was confirmed that the Lévy walk was performed in all models of
τ = 50, 75, 100, 200, but it was also found that the behavior changed depending on the
value of τ. Comparing Figure 10, from τ = 50 to τ = 200, the linearity of the distribution
increases, but the maximum step length tends to decrease.
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Figure 10. Step length distribution and foraging pattern of BIB foraging with (A,B) τ = 50,
(C,D) τ = 75, (E,F) τ = 100, (G,H) τ = 200.
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At τ = 200, µ = 2.4 and the ideal value of µ = 2 are slightly dissociated. This can
be explained by the relationship between the value of τ and the update of the likelihood
by inverse Bayesian inference. The magnitude of τ is a measure of how well the amoebae
remember their own course choices. In the BIB model, before the start of BIB walking, the
grid was randomly invaded a number of times τ. Therefore, past data was referred to
immediately after the start of walking in the BIB model, and the larger the value of τ is, the
more random equality is indicated. That is, the larger the value of τ is, the more evenly
distributed the likelihood updated by inverse Bayesian inference is in the four directions,
and conversely, the smaller the value of τ is, the larger the bias in the four directions.

Therefore, a small value of τ is greatly affected by a small bias, and suddenly, a
very long step appears while greatly changing the probabilities of the four hypotheses.
Therefore, the linearity of the power distribution is somewhat impaired, but a wider range
can be searched. On the other hand, if the value of τ is large, the likelihood is updated
stably, and the surroundings are searched “moderately”. Therefore, the linearity of the
exponentiation distribution is more stable than that of a small τ, but the maximum step
length is small, and a wider range of searching cannot be performed.

In an unknown space, referring to all past data and memories and taking an absolute
view of them cannot enable a response to completely unknown events that have never
been experienced before. Unexpected things always happen in the real world. It is a daily
occurrence that events do not correspond to any past data. In this case, it is important not
to stick to past data too closely in order to accept something completely unknown. The
magnitude of the value of τ is considered to correspond to this idea.

If τ is too small, it will be affected by the bias of the latest data too greatly, and the
hypothesis will be determined quickly. On the other hand, if τ is too large, it approaches a
random walk with an exponential distribution. It is difficult to draw a conclusion in this
experiment, but τ most likely has an optimal value under certain conditions such as the
individual and the environment. If µ = 2.00000 is the ideal setting for τ, it is reasonable to
consider that there is an optimal value between τ = 50 and 75 in this experiment.

4.3. Comparison of Amoebae by Size

In our study, experiments with amoeba models of different sizes (M = 4, 6, 8) were
conducted. This time, in each direction decision, white grid points invade a number of
times twice as large as M. Although in the initial state of square amoeba, the number of
grids on each side is theoretically

√
2 M in each direction, it changes its shape for each

invasion and increases in thickness more than a straight line (Figure 11).

Figure 11. Comparison of amoeba.

Therefore, considering this increase, this value is configured. In Table 2, all amoebas
satisfy wpl = 1.00000 and µ is nearly 2, indicating Lévy walk behavior. This may be one
of the reasons why BIB inference is effective in exploration regardless of the cell size and
the scale of the animal itself. On the other hand, the value of this number of invasions
is arbitrary, so it should be confirmed in another experiment how many invasions are
appropriate for each size. In fact, when Figure 12A,C,E are compared, the maximum step
length (right end of the horizontal axis) is significantly smaller than for the other sizes of
M, such as when M = 8. Additionally, this time, the number of invasions was set to be
proportional to the value of M in relation to the height index of the side of the amoeba, but
the movement of the amoeba itself was actually realized by repeating the movements of
two cells for each invasion. Therefore, the value was set to be proportional to M2, which
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is related to the number of grids in the area of the amoeba. Considering this, the most
appropriate value was chosen according to the value of each M and the size of the amoeba.

Figure 12. Step length distribution and foraging pattern of BIB foraging with (A,B) M = 6, (C,D) M = 4,
(E,F) M = 8.

4.4. Model Reproduction of Chemical Inhibitors

A clear difference was also seen depending on the value of ν. Figure 13G shows
the change in wpl with respect to a continuous change in ν. The value of wpl begins to
decrease as the estimation of the model that was performing a Lévy walk without inhibition
becomes 5% (ν = 0.05) randomly; when it reaches 20% (ν = 0.2), wpl becomes 0.00000, and it
can be seen that wpl decreases sharply near ν = 0.05 to 0.2. Looking at the walking patterns
in Figure 13B,D,F, the ballistic movement disappears as ν increases, and the behavior
approaches random walk-like behavior from Lévy-walk-like behavior.
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Figure 13. Step length distribution and foraging pattern of BIB foraging with M6 and τ = 100:
(A,B) ν = 0, (C,D) ν = 0.2, (E,F) ν = 0.5. (G) Approximating the change in the vertical axis wpl with
respect to the change in the horizontal axis ν by the sigmoid function y = 1

1+ea(x−b) . For each value of
ν, wpl is acquired 40 times, and the average is plotted.
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For the amoebae, the walking pattern changed from a Lévy walk to random walk by
inhibiting the BIB inference estimation result by 20%. This is in line with Sabil Huda’s
experimental results showing that the survival strategy of metastatic cells is impeded
and effective exploratory behavior is not possible. What is important to note about the
results of this experiment is that the interference with the BIB inference mechanism, which
may be involved in the decision making regarding the directional selection of the Lévy
walk, produced results similar to the fact that actual cancer cells changed from Lévy walk
behavior to a random walk when their behavior was interfered with by actin inhibitors, as
observed in previous studies.

Recently, active inference or free energy theorem plays an important role in describing
not only human cognition but also biochemical reaction networks [24–26]. It implies
that cognitive system usually uses Bayesian inference in making decision, and that the
probability of hypothesis is replaced by the conditional probability of hypothesis under
a specific data (i.e., the system’s own experience). It implies that a system removes what
is unexperienced in possible candidates, and that the computation to compare possible
states is accelerated in decision making. Compacting a set of possible states is ubiquitously
found in various biological system, such as biochemical network and neural network. It is
shown that biological real networks are very sparse, compared to complete network [27,28].
However, it is overlooked that even a sparse network is perpetually changed through
time, not to be fallen into the steady state. Since Bayesian inference realizes only the
decision making at the representative case, the process of decision making is falling into the
steady state. However, real process is perpetually changed dependent on the environment.
Thus, it entails modification or cancellation of the likelihood of hypothesis. To implement
such modification or cancelation, we here implement inverse Bayesian inference, and the
likelihood of a hypothesis is perpetually modified dependent of empirical data. Lévy
walk is a typical foraging behavior of animals of which animals show both stationary
and non-stationary behavior. In terms of foraging behavior, stationary behavior in a
closed environment reveals random walk, while non-stationary behavior reveals ballistic
movement escaping from the closed environment. A mixture of stationary and non-
stationary foraging results in a long-tailed distribution of step-length, which is called the
Lévy walk. By focusing on the definition of Lévy walk, it is reasonable that coexistence of
Bayesian and inverse Bayesian (BIB) inference is consistent with Lévy walk. Since foraging
behavior results from searching for food, a specific distribution of food can enable Lévy
walk in the form of steady state. It is consistent with our results in which even only-Bayesian
inference can enable power law distribution. The question arises whether coexistence of
stationary and non-stationary behavior in opened environment can be explained only by
BIB inference. In other words, power law distribution in an opened environment can be
explained only by BIB inference, and that might be true for Lévy walk. In our research,
step length distribution obtained not only by BIB inference but by only-Bayesian inference
shows power law distribution, where the exponent of the power law by BIB inference is
closer to the value of 2.0, representing a typical Lévy walk. This suggests that true Lévy
walk is consistent with only BIB inference.

5. Conclusions

The amoeba model of BIB foraging was able to replicate a cancer metastasis and Lévy
walk at the same time. We found that both BO and BIB models behave differently from
random walk, and that Bayes only is not sufficient for exploratory behavior. Then, the
difference by the size of the amoeba was also clearly shown. Differences in the amount
of memory for the direction of travel were also found to cause changes in the walking
pattern. The results suggest that the amount of memory greatly affects the exploration
of unknown space, and that it is not good to have too little or too much memory. In the
model that mimicked the experiment in which an inhibitor of actin polymerization was
applied to cancer cells, we obtained the result that by inhibiting the BIB inference of the
BIB model that was performing the Levy walk, its gait pattern continuously faded, which
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also corresponded to the results of the mimicked experiment. This experiment may have
shown that BIB inference is an effective means of exploration in an unknown environment.
It also showed that BIB inference is related not only to humans and other large animals but
also to the cellular level of the microscopic world. It was also confirmed that BIB inference
behaves differently from the Bayesian inference-only model in updating not only the prior
probabilities but also the likelihood that the hypothesis will improve the responsiveness to
the unknown. More detailed research on the Lévy walk will continue for various agents,
environments and fields. Further application of BIB inference in the fields of biology and
cognitive science is expected.
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Nomenclature

t time
h hypothesis
d direction
P(h) Probability of hypothesis
P(d) Probability of direction
τ Index of history about direction
µ Index of power law
λ Index of exponential
ν Probability that direction selection is random
M Size of Amoeba
wpl A measure of whether power law or exponential function
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