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Abstract: We provide the maximum number of limit cycles for continuous and discontinuous planar
piecewise differential systems formed by linear Hamiltonian saddles and separated either by one
or two parallel straight lines. We show that when these piecewise differential systems are either
continuous or discontinuous and are separated by one straight line, or are continuous and are
separated by two parallel straight lines, they do not have limit cycles. On the other hand, when these
systems are discontinuous and separated by two parallel straight lines, we prove that the maximum
number of limit cycles that they can have is one and that this maximum is reached by providing
an example of such a system with one limit cycle. When the line of discontinuity of the piecewise
differential system is formed by one straight line, the symmetry of the problem allows to take this
straight line without loss of generality as the line x = 0. Similarly, when the line of discontinuity of
the piecewise differential system is formed by two parallel straight lines due to the symmetry of the
problem, we can assume without loss of generality that these two straight lines are x = ±1.

Keywords: crossing limit cycles; linear Hamiltonian saddles; continuous piecewise linear differential
systems; discontinuous piecewise differential systems

MSC: 34C07; 34C25

1. Introduction

The study of limit cycles of differential systems in R2 (i.e., periodic orbits of a differen-
tial system in R2 isolated in the set of all periodic orbits of that system) goes back essentially
to Poincaré [1] at the end of the nineteenth century and their existence became important
in application due to their relation with real world phenomena, see for instance the limit
cycle of van der Pol equation [2,3], or the one of the Belousov–Zhavotinskii model [4,5].

Continuous piecewise linear differential systems separated by straight lines appear
naturally in control theory (see, for instance, Refs. [6–11]). The easiest continuous piecewise
linear differential systems are the ones formed by two linear differential systems separated
by a straight line and for such systems it is well known that one is the upper bound on the
number of limit cycles that they can have and that this upper bound is reached (see, for
instance, Refs. [12–15] and the references therein).

The unique linear differential systems which are Hamiltonian are linear centers and
linear saddles. In [16] the authors obtained the maximum number of limit cycles of
continuous and discontinuous piecewise differential systems formed by linear centers
and separated by either one or two parallel straight lines. In the present paper we do a
symmetric study for continuous and discontinuous piecewise differential systems formed
by linear Hamiltonian saddles and separated by either one or two parallel straight lines.
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In the following two theorems we prove that if the continuous differential systems are
formed by linear Hamiltonian saddles, then if they are separated by either one straight line
(Theorem 1) or by two parallel straight lines (Theorem 2), they do not have limit cycles.

Theorem 1. A continuous piecewise differential system separated by one straight line and formed
by two linear Hamiltonian saddles does not have limit cycles.

Theorem 2. A continuous piecewise differential system separated by two parallel straight lines
and formed by three linear Hamiltonian saddles does not have limit cycles.

Theorems 1 and 2 are proved in Sections 3 and 4, respectively.
The study of discontinuous piecewise linear differential systems separated by straight

lines goes back to Andronov et al. [17]. Nowadays, they have attracted the attention
of many authors mainly because these systems appear in mechanics, electrical circuits,
economy, etc. (see, for instance, the books [18,19], the surveys [20,21] and the references
therein). To provide an explicit example, consider a planar Coulomb friction damping
vibration system of the form

mẍ + kx + µmgsgn(ẋ) = 0

where x is the displacement of the oscillator mass m, k is the stiffness coefficient of spring,
µ is the coefficient Coulomb friction, g is the gravitational acceleration, and sgn(ẋ) is the
sign function of relative sliding speed ẋ = y for ẋ > 0 and ẋ < 0. Note that this model is
equivalent to

ẋ = y, ẏ = − k
m

x− µg if y > 0

ẋ = y, ẏ = − k
m

x + µg if y < 0,

which is a discontinuous planar piecewise linear differential system separated by the
straight line y = 0.

In planar discontinuous piecewise linear differential systems, we can have two kinds
of limit cycles: The sliding limit cycle and the crossing limit cycle. A sliding limit cycle
contains a segment of the discontinuity lines, and a crossing limit cycle only contains
isolated points of the discontinuity lines. In the present paper we only study crossing limit
cycles, but for simplicity we shall call them limit cycles instead of crossing limit cycles.

The easiest discontinuous piecewise differential systems are the ones formed by two
linear differential systems and separated by a straight line. There are examples of such
systems with three limit cycles, but it is not known if three is the maximum number of limit
cycles that such systems can exhibit (see [22–27]).

We first show, as for the continuous systems, that discontinuous piecewise differential
systems formed by linear Hamiltonian saddles and separated by one straight line do not
have limit cycles.

Theorem 3. A discontinuous piecewise differential system separated by one straight line and
formed by two linear Hamiltonian saddles does not have limit cycles.

Theorem 3 is proven in Section 5. It can be extended to discontinuous systems
separated by two parallel straight lines but in this case the upper bound on the number of
limit cycles is one and this upper bound is reached. Thus, we have proved the extension
of the 16th Hilbert problem on the maximum number of limit cycles for the polynomial
differential systems of a given degree to the class of discontinuous piecewise differential
systems formed by three linear Hamiltonian saddles separated by two parallel straight lines.
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Theorem 4. A discontinuous piecewise differential system separated by two parallel straight lines
and formed by three linear Hamiltonian saddles can have at most one limit cycle. Moreover, there
are systems in this class with one limit cycle, see Figure 1.

Theorem 4 is proven in Section 6. We remark that it is clear from the proof of Theorem 4
that there are systems in the statement of Theorem 4 that do not have limit cycles.

The paper is organized in such a way that in Section 2, before the proof of the main
theorems, we provide a normal form for an arbitrary differential system with linear Hamil-
tonian saddles.

Figure 1. The limit cycle of the discontinuous piecewise differential system formed by the three linear
Hamiltonian saddles (19), (20) and (21). This limit cycle has travelled in a counterclockwise sense.

2. Preliminaries
2.1. Piecewise Differential Systems

A piecewise differential system on R2 is a pair of Cr (with r ≥ 1) differential systems
in R2 separated by a smooth codimension one manifold Σ. The line of separation Σ of
the piecewise differential system is defined by Σ = h−1(0), where h : R2 −→ R is a
differentiable function with 0 as a regular value. Note that Σ is the separating boundary
of the regions Σ+ = {(x, y) ∈ R2 | h(x, y) > 0} and Σ− = {(x, y) ∈ R2 | h(x, y) < 0}.
So the piecewise Cr vector field associated to a piecewise differential system with line of
discontinuity Σ is

Z(x, y) =

{
X(x, y), if h(x, y) ≥ 0,

Y(x, y), if h(x, y) ≤ 0.
(1)

As usual, system (1) is denoted by Z = (X, Y, Σ) or simply by Z = (X, Y) when the
separation line Σ is well understood.

When the piecewise differential system, with the vector field Z = (X, Y) given in
(1) satisfies X(x, y) = Y(x, y) at all the points (x, y) such that h(x, y) = 0, we say that
we have a continuous piecewise differential system. Otherwise, we say that we have a
discontinuous piecewise differential system.

In order to establish a definition for the trajectories of a discontinuous piecewise
differential system Z and investigate its behavior, we need a criterion for the transition
of the orbits between Σ+ and Σ− across Σ. The contact between the vector field X (or Y)
and the line of discontinuity Σ is characterized by the derivative of h in the direction of the
vector field X, i.e.,

Xh(p) = 〈∇h(p), X(p)〉,
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where 〈., .〉 is the usual inner product in R2. The basic results of the discontinuous piecewise
differential systems in this context were stated by Filippov [28]. We can divide the line of
discontinuity Σ in the following sets:

(a) Crossing set: Σc : {p ∈ Σ : Xh(x) ·Yh(x) > 0}.
(b) Escaping set: Σe : {p ∈ Σ : Xh(x) > 0 and Yh(x) < 0}.
(c) Sliding set: Σs : {p ∈ Σ : Xh(x) < 0 and Yh(x) > 0}.

The escaping Σe or sliding Σs regions are, respectively, defined on points of Σ where
both vector fields X and Y simultaneously point outwards or inwards from Σ while
the interior of its complement in Σ defines the crossing region Σc (see Figure 2). The
complementary of the union of these regions is the set formed by the tangency points
between X or Y with Σ.

Σ

Figure 2. Crossing, sliding and escaping regions, respectively.

2.2. Linear Hamiltonian Saddles

A linear differential system which is Hamiltonian and has a saddle will be called
simply a linear Hamiltonian saddle.

The following lemma provides a normal form for an arbitrary differential system with
linear Hamiltonian saddles.

Proposition 1. Differential systems with a linear Hamiltonian saddle can be written as

ẋ = −bx− δy + d, ẏ = αx + by + c, (2)

with α ∈ {0, 1}, b, δ, d, c ∈ R. Moreover, if α = 0 then c = 0, and if α = 1 then δ = b2 − ω2

with ω 6= 0.

Proof. A general linear differential system in R2 can be written as

ẋ = a0x + b0y + c0, ẏ = a1x + b1y + c1.

Consider that it has a Hamiltonian saddle. The eigenvalues of this system are

a1 + b0 ±
√

4a0b1 + (a1 − b0)2

2
.

This system has a Hamiltonian saddle a1 + b0 = 0 and 4a0b1 + (a1 − b0)
2 = ω2 for some

ω 6= 0. Hence, a1 = −b0 and 4a0b1 + 4b2
0 = ω2 for some ω 6= 0. So if a0 6= 0 we have

b1 = −(4b2
0 −ω2)/(4a0) and if a0 = 0, then b0 6= 0. Therefore any linear differential system

with a Hamiltonian saddle can be written as

ẋ = −bx− δy + d, ẏ = ax + by + c, (3)

where δ ∈ R if a = 0, and if a 6= 0 then δ = (4b2 −ω2)/(4a) with ω 6= 0. It is possible to
do a rescaling of the independent variable because it does not change the orbits, and so it
does not change the number of crossing limit cycles. After a rescaling of the independent
variable of the form τ = at if a 6= 0, we can assume that Equation (3) can be written as
in (2) where δ ∈ R and α = 0 if a = 0, and if a 6= 0, then δ = b2 −ω2 for some ω 6= 0 and
α = 1. So α ∈ {0, 1} and if α = 0, then b 6= 0 and setting Y = y− c/b we get

ẋ = −bx− δY + d2, Ẏ = bY, (4)



Symmetry 2021, 13, 1128 5 of 10

with d2 = d + δc/b. This completes the proof of the proposition.

A first integral of system (2) is

H(x, y) = −α

2
x2 − bxy− δ

2
y2 − cx + dy. (5)

3. Proof of Theorem 1

Take a continuous piecewise differential system separated by one straight line and
formed by two linear Hamiltonian saddles. Without loss of generality and taking into
account the symmetry of the problem we can assume that the straight line of continuity
is x = 0. It follows from Proposition 1 that we can assume that the systems in x < 0 and
x > 0 are written in the form (2).

We have system

ẋ = −b1x− δ1y + d1, ẏ = α1x + b1y + c1, (6)

in x < 0 with the first integral

H1 = −α1

2
x2 − b1xy− δ1

2
y2 − c1x + d1y, (7)

and system
ẋ = −b2x− δ2y + d2, ẏ = α2x + b2y + c2, (8)

in x > 0 with the first integral

H2 = −α2

2
x2 − b2xy− δ2

2
y2 − c2x + d2y. (9)

Since the piecewise differential system is continuous, both systems must coincide on
x = 0 and so δ1 = δ2, d1 = d2, b1 = b2 and c1 = c2.

Note that if the continuous piecewise differential system has a limit cycle taking into
account that the two differential systems are linear Hamiltonian saddles, this system must
have a periodic orbit intersecting the discontinuity line x = 0 in exactly two points, namely
(0, y1) and (0, y2) with y1 < y2. Since H1 and H2 are two first integrals, we have that

H1(0, y1) = H1(0, y2) and H2(0, y1) = H2(0, y2), (10)

that is
(2d2 − δ2(y1 + y2))(y1 − y2) = 0.

So all periodic orbits of these systems are in a continuum of periodic orbits yielding
the non-existence of limit cycles. This completes the proof of the theorem.

4. Proof of Theorem 2

Assume that we have a continuous piecewise differential system separated by two
parallel straight lines and formed by three linear Hamiltonian saddles. Without loss of
generality and due to the symmetry of the problem we can assume that the straight lines of
discontinuity are x = −1 and x = 1. It follows from Proposition 1 that we can assume that
the systems in x < −1, −1 < x < 1 and x > 1 are written as in (2).

We have system (6) with first integral (7) in x < −1, system (8) with first integral (9)
in −1 < x < 1, and system

ẋ = −b3x− δ3y + d3, ẏ = α3x + b3y + c3, (11)

with first integral

H3 = −α3

2
x2 − b3xy− δ3

2
y2 − c3x + d3y, (12)
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in x > 1.
Since the piecewise differential system is continuous, systems (6) and (8) must coincide

in x = −1, and systems (8) and (11) must coincide in x = 1. Doing so we obtain

b1 = b2 = b3, d1 = d2 = d3, δ1 = δ2 = δ3, c1 = c3 + α1 − 2α2 + α3, c2 = c3 − α2 + α3.

Note that if the continuous piecewise differential system has a limit cycle taking into account
that the two differential systems are linear Hamiltonian saddles, this system must have a periodic
orbit intersecting each discontinuity line x = ±1 in exactly two points, namely (−1, y1), (−1, y2),
(1, y3) and (1, y4), with y1 > y2 and y3 < y4. Since H1, H2 and H3 are three first integrals, we
have that

H1(−1, y1)− H1(−1, y2) = 0, H2(−1, y2)− H2(1, y3) = 0,

H3(1, y3)− H3(1, y4) = 0, H2(1, y4)− H2(−1, y1) = 0,
(13)

Doing so we get

(2b3 + 2d3 − δ3(y1 + y2))(y1 − y2) = 0,

4c3 − 4α2 + 4α3 + 2(b3 + d3)y2 + 2(b3 − d3)y3 − δ3(y2
2 − y2

3) = 0,

(2b3 − 2d3 + δ3(y3 + y4))(y3 − y4) = 0,

4c3 − 4α2 + 4α3 + 2(b3 + d3)y1 + 2(b3 − d3)y4 − δ3(y2
1 − y2

4) = 0.

The solutions (y1, y2, y3, y4) of these last systems satisfying the necessary condition y1 < y2 and
y3 < y4 are

y2 =
2(b3 + d3)

δ3
− y1, y3 =

d3 − b3
δ3

±
√

∆
δ3

, y4 =
d3 − b3

δ3
∓
√

∆
δ3

,

where ∆ = (b3 − d3)
2 − 4(c3 − α2 + α3)δ3 − 2(b3 + d3)δ3y1 + δ2

3y2
1. Note that we only have two

solutions taking the upper signs of y3, y4 or the lower signs of y3, y4. Hence all periodic orbits of
these systems are in a continuum of periodic orbits yielding the non existence of limit cycles. This
completes the proof of the theorem.

5. Proof of Theorem 3
Assume that we have a discontinuous piecewise differential system separated by one straight

line and formed by two linear Hamiltonian saddles. Without loss of generality and due to the
symmetry of the problem we can assume that the straight line of continuity is x = 0. It follows from
Proposition 1 that we can assume that the systems in x < 0 and x > 0 are written in the form (2).

We have system (6) with first integral (7) in x < 0, and system (8) with first integral (9) in x > 0.
Note that, if the discontinuous piecewise differential system has a limit cycle taking into account

that the two differential systems are linear Hamiltonian saddles, this system must have a periodic
orbit intersecting the discontinuity line x = 0 in exactly two points, namely (0, y1) and (0, y2) with
y1 < y2. Since H1 and H2 are two first integrals we have that (10) must be satisfied, that is

(2d1 − δ1(y1 + y2))(y1 − y2) = 0, (2d2 − δ2(y1 + y2))(y1 − y2) = 0 (14)

The solutions (y1, y2) of (14) satisfying the condition y1 < y2 either do not exist if d1/δ1 6= d2/δ2,
or there is a continuum of solutions. So the periodic orbits of the discontinuous piecewise linear
differential systems are in a continuum of periodic orbits, and consequently this differential system
has no limit cycles. This completes the proof of the theorem.

6. Proof of Theorem 4
Take a discontinuous piecewise differential system separated by two parallel straight lines and

formed by three linear Hamiltonian saddles. Without loss of generality and due to the symmetry
of the problem we can assume without loss of generality that the straight lines of discontinuity are
x = −1 and x = 1. It follows from Proposition 1 that we can assume that the systems in x < −1,
−1 < x < 1 and x > 1 are written as in (2).

We have system (6) with first integral (7) in x < −1, system (8) with first integral (9) in
−1 < x < 1, and system (11) with Hamiltonian (12) in x > 1. Note that if the discontinuous
piecewise differential system has a limit cycle taking into account that the two differential systems
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are linear Hamiltonian saddles, this system must have a periodic orbit intersecting each discontinuity
line x = ±1 in exactly two points, namely (−1, y1), (−1, y2), (1, y3) and (1, y4), with y1 > y2 and
y3 < y4. Since H1, H2 and H3 are three first integrals, we have that system (13) must be satisfied.
Doing so we get

(2(b1 + d1)− δ1(y1 + y2))(y1 − y2) = 0,

4c2 + 2(b2 + d2)y2 + 2(b2 − d2)y3 − δ2(y2
2 − y2

3) = 0,

(2(b3 − d3) + δ3(y3 + y4))(y3 − y4) = 0,

4c2 + 2(b2 + d2)y1 + 2(b2 − d2)y4 − δ2(y2
1 − y2

4) = 0.

(15)

Assume first that δ1 = δ3 = 0 the solutions of Equation (15) are d1 = c1 − b1, d3 = bc + c3 and
y3 = f1(y2), y4 = f2(y1) being f1, f2 functions in the variables y2 and y1, respectively. In this case all
periodic orbits of the these systems are in a continuum of periodic orbits yielding the non-existence
of limit cycles.

Assume now that δ1 = 0 and δ3 6= 0 the solutions of Equation (15) are d1 = −b1,

y3 =
2(d3 − b3)

δ3
− y4 (16)

and y2 = f1(y4), y1 = f2(y4) being f1, f2 functions in the variable y4, respectively. In this case all
periodic orbits of these systems are in a continuum of periodic orbits yielding the non-existence of
limit cycles.

Assume now that δ1 6= 0 and δ3 = 0, the solutions of Equation (15) are d1 = −b1,

y1 =
2(b1 + d1)

δ1
− y2, (17)

d3 = b3, and y2 = f1(y2), y1 = f2(y2) being f1, f2 functions in the variable y2, respectively. In
this case, all periodic orbits of the these systems are in a continuum of periodic orbits yielding the
non-existence of limit cycles.

Finally, assume that δ1δ3 6= 0. The solution of the first and third equations are (17) and (16).
Introducing these solutions into the second and fourth equations in (15) we get

e1 = 4((b3 − d3)
2δ2 − (b2 − d2)(b3 − d3)δ3 + c2δ2

3) + 2(b2 + d2)δ
2
3y2

+ 2δ3(2(b3 − d3)δ2 − (b2 − d2)δ3)y4 − δ2δ2
3(y

2
2 − y2

4) = 0
(18)

and

e2 = 4(δ1((b1 + d1)(b2 + d2) + c2δ1) + (b1 + d1)
2δ2)− 2δ1((b2 + d2)δ1 − 2(b1 + d1)δ2)y2

+ 2(b2 − d2)δ
2
1y4 − δ2

1δ2(y2
2 − y2

4) = 0.

Taking
e3 = δ2

1e1 − δ2
3e2 = 0

and solving in y4 we get

y4 =
A0
A1

+
A2
A1

y2

where

A0 = (b3 − d3)
2δ2

1δ2 − (b2 − d2)(b3 − d3)δ
2
1δ3 + (b1 + d1)((b1 + d1)δ2 − (b2 + d2)δ1)δ

2
3 ,

A1 = δ2
1δ3((d3 − b3)δ2 + (b2 − d2)δ3),

A2 = δ1((b2 + d2)δ1 − (b1 + d1)δ2)δ
2
3 ,

whenever A1 6= 0. The case with A1 = 0 yields d2 = b2 + (d3− b3)δ2/δ3. Introducing this into e3 = 0
and solving in y2, we obtain y2 = y1 = (b1 − c1 + d1)/δ1, which is not possible. So, we assume that
A1 6= 0. Now introducing y4 into the first equation in (18) and solving in y2 we get

y2 = y2± =
(b1 + d1)

δ1
±
√

∆
A4
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where

A4 = δ2
1δ2δ2

3(b3δ1δ2 − d3δ1δ2 + 2d2δ1δ3 − b1δ2δ3 − d1δ2δ3)(b3δ1δ2 − d3δ1δ2

− 2b2δ1δ3 + b1δ2δ3 + d1δ2δ3)),

∆ = 4δ4
1δ2δ2

3((b3 − d3)δ2 + (−b2 + d2)δ3)
2((b3 − d3)δ1δ2 + 2d2δ1δ3

− (b1 + d1)δ2δ3)((b3 − d3)δ1δ2 − 2b2δ1δ3 + (b1 + d1)δ2δ3)((b3 − d3)
2δ2

1δ2

− 2(b2 − d2)(b3 − d3)δ
2
1δ3 + (2δ1((b1 + d1)(b2 + d2) + 2c2δ1)− (b1 + d1)

2δ2)δ
2
3),

whenever A4 6= 0 and if A4 = 0 then there is at most one solution y2.
When A4 6= 0, since

y1 = y1± =
2(d1 + b1)

δ1
− y2± =

d1 + b1
δ1

∓
√

∆
A4

= y2∓,

there is at most one solution with y1 > y2 and y3 < y4. In summary, an upper bound for the number
of limit cycles is one.

To complete the proof of Theorem 4 we provide an example of a system in this class with one
limit cycle. This will complete the proof of Theorem 4.

The Hamiltonians of the three linear Hamiltonian systems with a saddle are

H1(x, y) = 16x + 2y + x2 − 309−
√

157881
48

xy +
65
(√

157881− 405
)

1536
y2,

H2(x, y) = x− y + x2 − y2,

H3(x, y) = 8x− x2 + y2,

where the Hamiltonian system in the half-plane x < −1 is

ẋ = 2− 1
48

(309−
√

157881)x− 65
768

(405−
√

157881)y,

ẏ = −16− 2x +
1
48

(309−
√

157881)y;
(19)

the Hamiltonian system in the strip −1 < x < 1 is

ẋ = −1− 2y, ẏ = −1− 2x; (20)

and the Hamiltonian system in the half-plane x > 1 is

ẋ = 2y, ẏ = −8 + 2x. (21)

These three linear differential systems are saddles because the determinants of their linear part
are −8569/48 + 7

√
157881/16 < 0, −4 and −4, respectively.

The discontinuous piecewise differential system formed by the three linear differential systems
(19)–(21) in order to have one limit cycle intersecting the two discontinuous straight lines x = ±1 at
the points; these points must satisfy system (13), and this system has a unique solution satisfying
that y1 > y2 and y3 < y4, namely

(y1, y2, y3, y4) =

(
16
65

+

√
4873

36
√

2
,

16
65
−
√

4873
36
√

2
,−97

√
4873

2340
√

2
,

97
√

4873
2340
√

2

)
.

Drawing the corresponding limit cycle associated to this solution we obtain the limit cycle of
Figure 1.

7. Discussion
As far as we know this is the first paper which studies the piecewise differential systems formed

by only linear Hamiltonian saddles.

8. Conclusions
We have studied continuous and discontinuous planar piecewise differential systems formed

only by linear Hamiltonian saddles separated either by one or two parallel straight lines.



Symmetry 2021, 13, 1128 9 of 10

When these systems are continuous and are separated by either one or two parallel straight
lines, we prove that they have no limit cycles. However, when the piecewise differential systems are
discontinuous separated two parallel straight lines, we show that they can have at most one limit
cycle, and that there exist systems with either zero or one limit cycle. In the case in which these
systems are discontinuous and are separated only by one straight line, they cannot have limit cycles.
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