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Abstract: This paper introduces a blockchain-based federated learning (FL) framework with incen-
tives for participating nodes to enhance the accuracy of classification problems. Machine learning
technology has been rapidly developed and changed from a global perspective for the past few years.
The FL framework is based on the Ethereum blockchain and creates an autonomous ecosystem,
where nodes compete to improve the accuracy of classification problems. With privacy being one of
the biggest concerns, FL makes use of the blockchain-based approach to ensure privacy and security.
Another important technology that underlies the FL framework is zero-knowledge proofs (ZKPs),
which ensure that data uploaded to the network are accurate and private. Basically, ZKPs allow nodes
to compete fairly by only submitting accurate models to the parameter server and get rewarded for
that. We have conducted an analysis and found that ZKPs can help improve the accuracy of models
submitted to the parameter server and facilitate the honest participation of all nodes in FL.

Keywords: decentralized ledger; federated learning (FL); artificial intelligence (AI); machine learning
(ML); zero-knowledge proofs (ZKPs)

1. Introduction

Different web services are increasingly being used to solve a myriad of problems
in organizations all across the globe. Amidst all the use cases of the Internet, a debate
about the roles of centralized and decentralized Internet architectures have arisen in recent
years. While the centralized Internet serves organizations well, there are concerns about
its future with regard to security and transparency. As a result, decentralized systems are
slowly evolving to usher in a trustless economy with no centralized entities. Currently,
artificial intelligence (AI) has evolved into complex networks combining deep learning
(DL) methods where nodes are trained to handle complex problems that would otherwise
remain unresolved with conventional technologies. DL has been associated with the
successful implementation of systems such as pattern recognition, speech recognition [1],
and protein analysis in cancer studies.

However, most DL models are still created along with the current architecture of
the Internet staying highly centralized. Basically, the federated learning (FL) training
process is based on one centralized server, which controls client management, global model
maintenance, and gradient aggregation. During the training process in each round, the
server transmits the current model to selected participating nodes. After obtaining the
model, the nodes update all the local data and submit new updated gradients to the
server [2]. These days, only a few pre-trained models such as VGG [3], ResNet [4], and
GoogleNet [5] have been made available to the interested parties. The primary reason for
such a few pre-trained DL models is the centralized architecture that these frameworks are
built on. Consequently, this reduces the number of models present and incentives that users
obtain from them. Being a decentralized ledger that provides transparency, immutable
storage of data, and auditability, blockchain not only helps to create accuracies in DL
models, but also ensures that honest nodes are incentivized in the form of tokens. Ideally,
blockchain can enforce auditability, which is lacking in centralized frameworks and create
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a completely trustless system where nodes compete honestly to enhance the precision of
DL models. Kaggle [6] is considered a centralized framework that incentivizes its users to
compete and improves the accuracies of both machine learning (ML) and DL models.

In this framework, a sponsor is required to submit a dataset and the corresponding ML
or DL model to contestants. In turn, contestants compete to train and retrain the model in an
attempt to enhance the accuracy of the model for which they are rewarded. To ensure that
contestants do not overfit their models and cheat the system, Kaggle allows the contestants
to only access test sets without retrieving labels. In this manner, both contestants and
sponsors depend on Kaggle to act. Being centralized, the Kaggle framework is prone
to hacks, and any contestant can attempt to compromise the server and obtain labels in
advance. To eliminate the centralization challenges such as those of Kaggle, distributed
computing has been provided. With distributed computing, the management of labels is
no longer taken care of by a centralized server or node, but by all the nodes participating
in the network. However, it still comes with an underlying problem of privacy. Currently,
Resnet, VGG, RNN, Inception v3, and R-CNN are some promising pre-trained models [7].
FL, which integrates ML models, offers distributed learning. FL methods are used in three
different types of systems, i.e., Horizontal federated learning, vertical federated learning,
and federated transfer learning [8]. The FL architecture is usually based on the assumption
that a node must train an ML model, with this training being partially committed in several
other nodes. The key node, also known as the coordinator, gathers all qualified models
and integrates them into a single model. The remaining nodes train the partial models
on locally available data and send the trained models to the coordinator to be combined
into a single final model [9]. These models are usually subject to continuous training
via different external training sources. Some models such as Deep learning Networks
Horizontal Federated Learning [10] are used, in which the model features are frequently
altered but the model is constantly taught. FL centralizes power near the edge, where the
edge determines whether to share training data with the cloud, updates DL models and
communicates DL tasks across several networks, i.e., the Internet of things [11].

The FL framework was proposed by Google in 2016 [12]. For the first time, it in-
troduces a comprehensive secure blockchain-based FL framework, and ML transforms
areas as computer vision and speech recognition. It depends on the collection of data in
privacy-invasive ways. FL comes as new sub-field of ML, which allows training models
not to save and exchange data. It works as a training model for users to exchange weight
updates to the server. In the nutshell, the algorithm sections, which are trained by users
according to specific needs, are transferred to the users’ computers. Instead of exchanging
data, users send mostly specific designed compute model improvement to the server. This
technique is known as more user-friendly, privacy-enabled and flexible. Mobile phone
applications are one of the common examples where FL algorithms and training models
works [13]. A huge amount of data are generated during the use of devices. This type of
data is usually more privacy-protected, as all details are not exchangeable with the server.
FL also allows for the training of a common model with all of the data, without losing
computational resources or missing out on smart algorithms. Since more data are available,
FL methods may also result in better models than traditional techniques. This study dwells
on DL and blockchain technologies.

1.1. Distributed DL

For a DL algorithm to be considered accurate and reliable, vast amounts of training
data are involved. Because of this problem, overly high computational power and resources
are required [14]. However, many organizations are continuously retraining most of these
complex DL models requiring large datasets to accomplish the same goals, which often
waste computing power and resources. Unlike traditional centralized DL systems where
datasets are submitted to a single server, FL distributes the computation process to the
group of actors. An important aspect of DL is the activation that generates the results
of a specific neuron. Activation is required to deduct important information regarding
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non-linear features of the training data. In DL, the back-propagation process uses a concept
known as stochastic gradient descent (SGD) to progressively compute the accuracy of the
model while minimizing the overall model error at each subsequent training. Assuming
that Etotal is the model’s overall error rate, Vout is the DL model output while Vtarget is the
target value, then Etotal can be calculated as follows:

Etotal = ∑n
i=1(Vtarget(i) −Vout(i))2. (1)

When Etotal is calculated, individual weights wj, i can now be updated as follows:

wj, i = wj, i− ϑ ∗ ∂(Etotal)/d(wj, i), (2)

where ϑ is the learning rate, Etotal is regarded as the comprehensive total with respect
to weights which are denoted as i and j, respectively. In a typical DL model, training is
repeated several times, until the goal is reached. In this method of learning, the training
data are partitioned and stored in the distributed system in each of the nodes. The node
trains the model on a local node and uploads the output to the server, which is then
modified and redistributed to individual nodes. The model is retrained multiple times,
until the number of errors gets smaller. The idea behind the system for distributed DL is
outlined in Figure 1.
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Figure 1. A distributed deep learning (DL) framework.

Our method relies on the parallelism technique, where multiple nodes contribute,
through the SGD approach [15], to improving the accuracy of the model. The node stores
its training model version while preserving the input of the model which forms a subset of
all the datasets. As such, the nodes participating in the DL share similar model parameters
by uploading and downloading parameters to and from the centralized server. The nodes
are then needed to upload and update their training gradients via SGD. After upgrading
a particular model, nodes will download the parameters from the server and repeat the
training process, until the final trained model is obtained as shown in Figure 2.
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Figure 2. A blockchain-based federated learning (FL).

1.2. Evaluation in Blockchain

As a P2P [16] system, blockchain represents a trustless ecosystem that does not need
trustworthy intermediaries. Within cryptocurrencies which in fact are one of the primary
applications of blockchain, this technology has eliminated the need for centralized au-
thorities, such as governments and banks, helping parties to interact seamlessly. Rather
than relying on traditional accounting systems that are heavily centralized, blockchain
has replaced intermediaries with consensus algorithms that ensure that transactions are
recorded on a public ledger. Whenever parties interact, transactions are appended on a
block by miners who compute consensus algorithms to verify that the transaction is valid.
Every newly created block is added to all the blocks that are created before making up a
chain that starts from the genesis block to the current block. Once a transaction is confirmed
by the network, the information becomes available for all interested parties. Thus, on the
website blockchain.com, the amount of bitcoins sent and received, addresses of both the
receiver and the sender, the size of the fee paid to the network, the exact date and time
when the transaction takes place, and much more details are contained. The key problem
with this framework is scalability, as it can only process 19 transactions per second at the
maximum. When more people try to send funds over the network in a given moment,
transaction fees grow and so does the time need for transactions to get verified. Since
then, many new frameworks trying to solve this problem have emerged. Among them are
TRON [17], EOS [18], Zilliqa [19], Tezos [20], and Cosmos [21].

Blockchain can give incentives that permit community participation in FL. Besides
incentives, blockchain supports traceability, transparency, and associated digital trust in FL
models. This paper introduces a blockchain-based FL framework with incentives for nodes
participation to enhance the accuracy of classification problems. The framework is based
on Ethereum and creates an autonomous ecosystem where nodes compete to improve the
accuracy of classification problems and are rewarded. Most blockchain implementations
for FL have an underlying problem: privacy. Our framework uses ZKPs to make sure that
data uploaded to the parameter server are accurate and private. The introduced framework
allows nodes to compete fairly by only submitting accurate models to the parameter server
for which they are rewarded.

Our contributions are shown as following:

blockchain.com
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• Introducing ZKPs as a means of creating a completely trustless FL environment where
users’ data are protected in a transparent algorithm.

• Creating a prototype of blockchain-based FL to assess the efficiency of a ZKP-based
blockchain in terms of training accuracy, throughput, and time.

The rest of the paper is organized as follows. First, ZKPs and how they can ensure
privacy in an FL environment are introduced. Later, we discuss the FL model and present
our initial findings regarding training accuracy, throughput, and time.

2. Methodology
Zero-Knowledge Proofs

DL models are inefficient because of the scarcity of the training data. Blockchain offers
an alternative solution to this problem, as it can create incentives within an FL framework
for users to act truthfully. This solution has the potential to motivate many users to
participate in the training and re-training of DL models. Besides incentives, blockchain
supports the transparency, traceability, and auditability of transactions. This can create
the necessary digital trust that is currently lacking in traditional DL systems. However,
the blockchain solution is likely to create privacy challenges, since the ledger is public and
data can be accessed by any interested party. If blockchain is incorporated in FL, then all
the nodes in the blockchain will be in a position to access labels from test datasets since
such datasets are posted on the public ledger.

Extensive research on ascertaining the realization of FL is underway by most analysts
specialized in exploiting decentralized technologies. However, two issues have received
attention in the majority of the researches, i.e., privacy challenges arising from a malicious
parameter server and handling of personal information. In a typical distributed computing
system, nodes upload their DL models to a centralized parameter server that later acts
as a central link for all other modes. A malicious parameter server can act dishonestly
and affect the accuracy of DL models that are submitted by peers within the network. For
instance, a malicious server can deliberately drop gradients from some parties or incorrectly
update the model’s labels [22]. Therefore, a blockchain-based FL system should guarantee
that gradients stay confidential while ensuring certainty with regard to the auditability
of the model correctness. The second challenge refers to ensuring that users’ data remain
private. If parties attempt to collaborate, there is an underlying threat that some malicious
users can obtain personal data from the parameter server. In some applications such as
healthcare systems, privacy rules have made users reluctant to share their information due
to malicious activities including inference attacks against HCUPnet.

Our model leverages ZKPs as the solution to the underlying problem of privacy in
the use of public blockchains. A ZKP is a cryptographic system involving a prover (any
participant in a cryptographic protocol) to authenticate and confirm with another entity
called a verifier that it knows the validity of a given problem without revealing any data
about the identity itself. Apart from ascertaining the validity of such a problem [23], ZKP
must come with the following characteristics:

• Complete: If a given assertion is correct, then a verifier should be persuaded in it.
• Sound: If a given assertion is not correct, then no prover (whether malicious or not)

should be proven.
• Zero-knowledge: If a given assertion is correct, then no verifier should infer any other

new knowledge.

Consider a Turing machine. Let A, B, and C be some abstract Turing machines. A
zero-knowledge proof with (A,B) for language L is regarded zero-knowledge, if for any
time (T) with verifier (ŭ) there exists a simulator and P(x) represents a prover transaction,
and can be written as:

∀x ∈ L, z ∈ {0, 1}x, View[P(x)↔ u(x, z)]S(x, z), (3)
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where the record of all the transactions (interactions) between ŭ (x, z) and P(x) shows the
interaction of variables with transaction; the prover (P) can be created as an unlimited
Turing machine, and S(x, z) stands as an interaction value. This equation means that
the whole interaction between the prover and the verifier is completely random and
undistinguishable. Ethereum blockchain can be modeled as a prover, since it is a Turing-like
computing framework. In the model, Z (a secondary string) provides a-priori information.
Regarding privacy, P must return a decision on whether the DL model is correct or not
without disclosing any data.

In a blockchain-based FL environment, zero-knowledge proofs allow provers to
confirm that gradients obtained so far from their DL models are indeed accurate without
conveying any other data about their identities. In other words, this data are concealed from
the rest of the nodes. This solution provided by ZKPs can help address privacy challenges
that usually arise with public blockchains in FL environments. A number of ZKPs have
been suggested in other frameworks such as zk-SNARKs, zk-Starks [24], ZeroCash, and
Bulletproof [25]. Our model adopts the zk-SNARKs that was first implemented by another
privacy-oriented blockchain project ZCash. zk-SNARKs can be implemented in Ethereum
smart contracts as a key component of enforcing privacy. As generic protocols, zk-SNARKs
can verify any DL model within Ethereum smart contracts and generate Turing-complete
Ethereum virtual machines (EVMs) that allow provers and verifiers to create any logic
relevant to DL algorithms [26]. To make our model implemented in Ethereum, we create
three smart contracts G, P, and V to incorporate zk-SNARKs and design them as follows:

• G (the key generator) accepts the hidden parameters m as well as DL model (DLmodel).
G produces two keys with two arguments (a prover key provkey and a verification key
verifkey). These keys are public entities that are created only once for each DLmodel.

• P (a prover): As inputs, it accepts a provkey, a public input m, and a private witness
(w). In turn, it computes a mathematical proof in the form: proofzkp = P (provkey, m,
w), for which the prover knows a source which can testify the DL model’s correctness.

• V (verifier) computes V (verifkey, m, and proofzkp), which returns true if proofzkp is
valid and inaccurate if it is not. V only returns true, if the proofzkp is aware of the
existence of a specific witness w that satisfies the DL model (x, w).

Algorithm 1 was used to analyze the zk-SNARKs in the Ethereum blockchain and is
specified below.

Algorithm 1 zk-SNARKs in Ethereum.

1. G← G (m, DLmodel)
2. provkey← G (m, DLmodel)
3. verifkey← (m, DLmodel)
4. Prover← (provkey, m, w)
5. Proofzkp = P(provkey, m, w)
6. Verifier← (verifkey, m, proofzkp)
7. If w correct then
8. verifier (verifkey, m, proofzkp) = True
9. else
10. verifier (verifkey, m, proofzkp) = False
11. end if

3. System Architecture

In this section, we introduce the unique model underlying our system. In short,
our framework implies that an FL framework uses incentive mechanisms provided by
different blockchains to reward model provers and model verifiers in a transparent, secure,
and auditable manner. FL ensures that data privacy and auditability are achieved using
zero-knowledge proofs.
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3.1. Overview of the System

In this system, each classification problem is managed by a separate blockchain with its
own associated token. An add-only ledger is created to store all logs and records emanating
from a specific DL model for a particular classification problem. For any problem, all the
inputs and outputs that the DL model requires to solve are provided. For instance, a
fashion-MNIST problem has its input inMNIST defined as a one-channel (1 × 28 × 28)
pixels with values ranging from 0 to 1, while its output outMNIST is a 10-class label of
which the values range from 1 to 10:{

inMNIST ∈ R 1∗28∗28
∣∣∣0 < inMNIST < 1

}
, (4)

{outMNIST ∈ Z|0 < 1 < outMNIST < 10}. (5)

In this system, each problem is regarded as a set of test dataset tuples where each
tuple {P; NZKP; Yn} has P = ∑m

i=1 Input, NZKP is the non-zero knowledge proof function,
while Yn is the output defined by Yn = f (xn) on the true test label for a vector xn. Each
party in the blockchain-based FL is associated with a public key (pubkey) and a private key
(privkey). Each actor has a role to play in the FL ecosystem as these roles include:

• DL model formulators: they define test datasets in the blockchain-based FL. These
nodes are responsible for formulating problems to be solved.

• Model solvers: they compete to enhance/improve the accuracy of an FL model based
on blockchain.

• Model validators: they use ZKPs to prove that a given model submitted by a model
solver is accurate.

3.2. Building Blocks of the System

Our framework has two main parts: the underlying blockchain and the FL.

3.2.1. Enhancement of Blockchain Using ZKPs and Ethereum

Each blockchain consists of two parts:

• Problem blocks;
• Validation blocks.

Each problem block contains data about the block number, problem definition, test
datasets, and a hash of the parent block. Each validator block contains the block number,
parent block’s hash, ZKP hash, and the block’s hash. The blockchain starts with a problem
block specifying how the model is improved, followed by a validator block which verifies
the accuracy of the model. When a given problem is submitted to the FL environment, it is
broadcasted to the entire set of nodes in a particular cooperating group within a given time
threshold. During this period, any node within the cooperating group can add test datasets
to the problem. When the time threshold is exceeded, the problem block is committed
to the blockchain together with the block number, problem specification, test datasets,
and hash of the parent block. All the data are contained in the new block. This triggers
competition time where model provers compete to submit their enhancements/accuracies
to the blockchain via ZKPs. Each user who is designated as a validator confirms the DL
model and submits a proof as a vote to the system. For each ZKP, an associated unique
verification hash is computed and tracked in the blockchain. At the end of the competition
time, validator blocks are committed to the blockchain which at this time contains the
highest number of unique ZKPs. This triggers the next competition cycle, as shown in
Figure 3.
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Once a validator block gets committed, a reward is calculated in the form of tokens. An
incentive mechanism is vital in FL for two key reasons. First, it motivates actors (problem
formulators) who want to use an FL model but do not have sufficient training data to
obtain optimal results on their own. Second, it ensures that actors behave honestly while
improving FL models. In the essence of the framework, there exists an EVM which allows
running numerous smart contracts with different types of business logic and confirming
each contract on the blockchain [27]. In our system, each transaction is considered as a
single hashed instruction created by an actor, so long as that actor has access to it and
can contribute to the ledger. This system is implemented with two main smart contracts
as following:

(1) Trading contract;
(2) Processing contract.

The trading contract allows nodes to repetitively trade their stochastic gradients on
the blockchain. Once exchanged, the stochastic gradients are hashed with the right ZKPs
by each node and added to the contract. This ensures both privacy and traceability. The
trading contract is shown in Algorithm 2 as bellows.
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Algorithm 2 Trading Contract.

1. receiveProblem ( );
2. CheckTimeOutput (t1);
3. UpdateTime ( );
4. verifyProblem ( );
5. CheckTimeOutput (t2);
6. UpdateTime ( );
7. commitProblem (t3);
8. UpdateTime ( );
9. commitProblem ( );
10. CheckTimeOutput (t3);
11. UpdateTime ( );
12. downloadCommitProblem ( );
13. CheckTimeOutput (t4);
14. UpdateTime ( );
15. trainModel ( );
16. CheckTimeOutput (t5);
17. UpdateTime ( );
18. Return ( );
19. CheckTimeOutput (t6);
20. Update time ( );

Algorithm 2 shows that the trading contract is created using six features (receiveProb-
lem ( ), verifyProblem ( ), commitProblem ( ), downloadCommitProblem ( ), trainModel ( ),
and Return ( )). In each of the functions, the script undertakes a time checkout process
which determines the period of time. Each operation should take a certain amount of
time. When a problem is received on the ledger, for example, the time checkout process
ensures that actors in a cooperating unit can add their test datasets. When the time lapses,
the problem is verified. Besides the trading contract, a processing contract is required to
undertake the processes of parameter updating. During processing, designated nodes add
up stochastic gradients and send the outputs that are confirmed via ZKPs. Once the ZKPs
are calculated, the parameter server gets updated. The processing contract is created using
three functions as shown in Algorithm 3.

Algorithm 3 Processing Contract.

1. UpdateTransaction ( );
2. CheckTimeOutput (t7);
3. UpdateTime ( );
4. verifyTransaction ( );
5. CheckTimeOutput (t8);
6. UpdateTime ( );
7. appendTransaction ( );
8. CheckTimeOutput (t9);
9. UpdateTime ( )

Algorithm 3 shows the process of processing contract. If after the ith iteration of FL
training local stochastic gradients are uploaded to the network, nodes compete via ZKPs
to run the update process, verification, and appending of transactions to the Ethereum
blockchain as specified by Update Transaction ( ), Verify Transaction ( ), and Append
Transaction ( ).

3.2.2. Implementation Details

The implementation of our system is done on the base of the following three key
components:

(1) Ethereum blockchain;
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(2) FL training algorithm;
(3) Incentive mechanism.

We implemented an Ethereum-based blockchain where users interact with the system
via ERC-20 tokens. Next, we developed an FL environment using R (version 3.6.1) and the
following libraries:

• ggplot2: an R package for visualizations;
• Keras: an R package for DL [28];
• TensorFlow: a free R library for dataflow and differentiable programming across many

DL tasks [29];
• tidyr: an R package for data preprocessing.

Our framework uses the MNIST dataset [30]. We extracted 70,000 samples in 10 cat-
egories for our DL model and split them into training data (28,000 samples) and test
data (14,000 samples). After that, we split both training and test data into five samples
(5600 units for training data and 2800 for test data). The resolutions of images in the MNIST
dataset were low (28 × 28 pixels in grayscale), which is important for proper segmentation.
Next, we conducted multiple pieces of training on the training data while calculating the
accuracy levels and uploading them to the parameter server. Our objective is to train a DL
model that classifies different images of clothing in the fashion MNIST dataset. Once a
validator block gets committed, a reward is computed in the form of ERC20 tokens. The
identity of each node participating on the Ethereum blockchain is represented by its wallet
address, which is created and managed by MetaMask, a plugin for accessing Ethereum
blockchain on browsers such as Mozilla and Google Chrome. The position of the model
validators is recorded and confirmed on the blockchain. Whenever a DL model verifier
submits a vote, a position is automatically recorded on the ledger and used to calculate
ERC20 tokens which are sent as a reward.

4. Findings

We discussed the DL model, the system’s performance and capability to address
privacy concerns in a distributed environment, and the viability of blockchain in FL.

4.1. DL Model

First, we built a DL model (neural network) using the fashion MNIST dataset in R.
Since most DL learning models have chains of multiple layers, our DL model includes
three layers that come with parameters to be learned during the training process. The first
layer converts image format conversion from a two-dimensional array (28 × 28 pixels) to a
one-dimensional array (28 × 28 pixels). The second layer has 128 neutrons or nodes, while
the third layer is a 10-neutron layer which returns an array of 10 probability scores, with all
summing up to 1. Each neutron in the DL network has a score that indicates whether the
probability of the current image belongs to one of the 10 classification cases. We compiled
the model using the following indicators:

• Loss function: the loss function measures the DL model’s accuracy during training as
a percentage.

• Optimizer: it provides insights on how DL is updated with regard to training data
and the loss function.

• Metrics: metrics are used to check the training and testing stages.

The model is then trained and tested on the test data set. Its accuracy is then updated
on the parameter server. Epoch levels adjustments are made with further tuning and
enhancements to the DL model to generate more accurate results for the subsequent
datasets. As the DL model progresses the training process, both accuracy and loss metrics
are displayed. This illustrates the validation accuracy curve for our DL model. The accuracy
improves with the number of epochs. Figure 4 illustrates the accuracy loss curve of the
proposed DL model.
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As shown in Figure 4, our DL model’s accuracy levels oscillate from 0.80 (80%) to
approximately 0.88 (88%). Each node participating in the training process is identified by
two keys: public key and associated private key. When the training process is concluded, a
node that has just trained the DL model encrypts its computation results, which include
the accuracy of the DL model by using the parameter server’s public. When the parameter
server obtains the information, it uses its private key to retrieve the contents of the data
from the node. To verify that a particular node enhances the DL model’s accuracy, the
parameter server uses a federated averaging algorithm [31]. Under this framework, local
nodes are allowed to conduct more than one batch of updates on their training data instead
of the gradients. The idea behind the federated averaging algorithm is to ensure that
weights emanating from the same node do not alter the model’s accuracy. Algorithm
4 specifies the federated averaging algorithm concept.

Algorithm 4 Federated Average.
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4.2. Ethereum Blockchain

When a node submits its current weights, the parameter server determines whether
the submitted score is higher than the current one on the ledger. If it is higher, it broadcasts
the information to all validators who in turn use ZKPs to verify that the submitted score is
indeed true. If the validators verify that the weight is correct, a block is committed and
a reward in the form of Ether (ETH) is computed. ETH is the native currency (coin) that
supports various transactions on the Ethereum blockchain. Since the identity of each node
participating on the Ethereum blockchain is known via the wallet address, its position is
recorded and confirmed on the blockchain and rewarded with ETH. Whenever a DL model



Symmetry 2021, 13, 1116 12 of 15

verifier submits a vote (enforced using smart contract), his/her position is automatically
recorded on the blockchain and used to compute the tokens which will be received. We
assessed the feasibility of FL model training in our framework in a distributed environment
based on two metrics: throughput and how it addresses privacy issues. We used a Laptop
PC having Core i7 2.2 GHz with Radeon RX Vega and 4 GB RAM. We based our final
score for each metric after averaging five trails. We evaluated our systems with respect
to throughput and training accuracy. In terms of throughput, we found that cipher size
remains largely constant for multiple federated averages, as shown in Figure 5.
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put progressively decreases, as the number of gradients increases, as shown in Figure 6.

Symmetry 2021, 13, x FOR PEER REVIEW 12 of 15 
 

 

participating on the Ethereum blockchain is known via the wallet address, its position is 
recorded and confirmed on the blockchain and rewarded with ETH. Whenever a DL 
model verifier submits a vote (enforced using smart contract), his/her position is automat-
ically recorded on the blockchain and used to compute the tokens which will be received. 
We assessed the feasibility of FL model training in our framework in a distributed envi-
ronment based on two metrics: throughput and how it addresses privacy issues. We used 
a Laptop PC having Core i7 2.2 GHz with Radeon RX Vega and 4 GB RAM. We based our 
final score for each metric after averaging five trails. We evaluated our systems with re-
spect to throughput and training accuracy. In terms of throughput, we found that cipher 
size remains largely constant for multiple federated averages, as shown in Figure 5. 

 
Figure 5. Size of cipher as the number of gradients increases. 

As evident in Figure 5, cipher size remains largely constant (ranging from 0 to about 
1000 bytes), as the number of gradients increase. On the other hand, the system’s through-
put progressively decreases, as the number of gradients increases, as shown in Figure 6. 

 
Figure 6. System’s throughput versus the number of gradients. 

The decline in the system’s throughput can be attributed to Ethereum’s performance 
challenges, which result from increased applications running on Ethereum blockchain 
[32]. At present, Ethereum can process an average of 7 transactions per second (tps) to 19 
tps, which is quite low in terms of handling the increasing number of applications. If the 
number of users trying to conduct transactions exceeds this number in a given moment, 
those who offer a free higher network have better chances to get their transactions con-
firmed. Thus, transaction fees may get very high, when the network gets congested. This 
scalability problem is acknowledged, and some solutions have already been proposed to 
address it. One of such solutions that Ethereum developers implement is Sharding [33]. 
This technology implies dividing networks into many small pieces or shards. In order for 

Figure 6. System’s throughput versus the number of gradients.

The decline in the system’s throughput can be attributed to Ethereum’s performance
challenges, which result from increased applications running on Ethereum blockchain [32].
At present, Ethereum can process an average of 7 transactions per second (tps) to 19 tps,
which is quite low in terms of handling the increasing number of applications. If the
number of users trying to conduct transactions exceeds this number in a given moment,
those who offer a free higher network have better chances to get their transactions con-
firmed. Thus, transaction fees may get very high, when the network gets congested. This
scalability problem is acknowledged, and some solutions have already been proposed to
address it. One of such solutions that Ethereum developers implement is Sharding [33].
This technology implies dividing networks into many small pieces or shards. In order for a
transaction to be verified, only the confirmation of a few shards, instead of all nodes, will
be required, which would significantly reduce the system’s overload and help Ethereum re-
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solve the problem of scalability. This technology is expected on the 4th stage of Ethereum’s
development, also known as serenity.

With regard to training accuracy, we found that as the number of nodes participating
in the training process increase, the model’s accuracy also increases. We then trained the
model five times by increasing the number of users at each training (i.e., the first training
had one user and used the first test sample, the second training had two users and used the
second test sample, and so on). With the help of different test datasets, ensured randomness
is achieved. By sharing gradients on the Ethereum blockchain, each node is in a position to
obtain updated averages that are contributed by other nodes. Because each node uses the
previous score stored on the ledger as the baseline, which contribute to the overall accuracy
of the model, only federated averages that increase the previous ones are committed and
append to the block.

To train the model on the server, decentralization is the main source used. In this
method, training each client and model every time can cause time delay. FL minimizes
this problem, as each model has its local data to use according to the required degree of
predication. Clients will request to retrain the model using local data which are available
on the server with new weights. Then, the server will collect the new model, which is
given by the clients and aggregate them into one model. This process is more adaptive
and precise in terms of the privacy and security of the client’s data as compared to the
model proposed by Eugene et al. [34]. The CIFAR-10 dataset is used to check the security
of the proposed system, which consists of 60,000 32 × 32 color images in 10 classes, with
6000 images per class. There are 50,000 training images and 10,000 test images in this
dataset, which is further divided into five training batches and one test batch, with each
having 10,000 images. The test batch contains exactly 1000 randomly selected images from
each class. The remaining images will be trained later in random order. The batches contain
the remaining images in random order, which may contain more images from one class
than another. The model is trained using the client-side data on the server, and then, it
sends the output to the server with new weights and gradients.

By enhancing our framework with Ethereum, we inherit not only all the decentral-
ization and security features, but also limitations of the network. Since Ethereum is a
public blockchain, privacy challenges are likely to arise. To address this challenge, we used
zero-knowledge proofs. With ZKPs, any data including weighted averages and training
datasets can be uploaded to the parameter server and shared privately. At the same time,
validators can verify that a certain DL model is accurate without revealing the private
details of the prover. With ZKPs, our framework allows peers to submit their models
without using true test labels. Consider a sybil attack on the blockchain where a malicious
node can create multiple wallet addresses (accounts) and create multiple proofs to fool the
network into believing that the transaction is valid. It can be conducted on a PoW-based
system, if an attacker owns various identities with sufficient computational power to have
substantial influence in the system. For an attack to be effective, the amount of computing
power owned should be significant, but it would still cost the same if it is centralized in one
entity or split among several ones. Similarly, in PoS schemes, the attacker can have access
to the same voting power, if one identity owns all the attacker’s stake or if it is divided into
several identities [35]. ZKPs have been proven to be a good solution to this problem, since
the verifier must compute a verification hash which can only return true if the proof is
correct. If the proof is incorrect, the verification hash will be false, which in this case means
that one node uses multiple accounts. This is enforced in a processing contract already
mentioned. Again, the cost of gas (fee charged on Ethereum users to validate transactions)
is too high, which prohibits such behaviors on the network.

5. Conclusions

In recent times, attempts have been made to introduce blockchain in AI, in particular in
DL. Our solution has several advantages compared to the state-of-the-art FL models. In this
paper, we have introduced an FL framework that uses Ethereum blockchain. We have also
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introduced ZKPs, particularly the zk-SNARKs, and demonstrated that they can be used to
achieve the required privacy that is currently lacking in public blockchains. Figure 5 shows
an evaluation of the system’s throughput, which reveals improved accuracies for the DL
models despite the Ethereum’s scaling challenges. Our model provides a practical chance
for further research on the role of blockchain in AI and ML with the following advantages:

• The integration of the blockchain ensures the transparency and integrity of the com-
putation: once data is logged, no one can modify them due to the PoW mechanism
and the consensus protocol.

• ZKPs keep sensitive data from being disclosed to non-authorized parties.
• ZKPs integration with trading contract ensures both privacy and traceability.

Further research is required to establish which blockchain framework (NEM, Hyper-
ledger Fabric, or Corda) is best suited for DL applications.
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