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Abstract: This paper introduces a new family of distributions for modelling censored multimodal
data. The model extends the widely known tobit model by introducing two parameters that control
the shape and the asymmetry of the distribution. Basic properties of this new family of distributions
are studied in detail and a model for censored positive data is also studied. The problem of estimating
parameters is addressed by considering the maximum likelihood method. The score functions and
the elements of the observed information matrix are given. Finally, three applications to real data sets
are reported to illustrate the developed methodology.

Keywords: censored beta-skew alpha-power distribution; multimodal data; asymmetry; maximum
likelihood estimation; information matrix

1. Introduction

In many areas of knowledge, it is common to find that the variable under study is
censored or limited. To give an idea, in clinical trials, for example, measurements obtained
from antibody concentration values during the early stages of new vaccine development
are often left censored. According to Moulton and Halsey [1], some of the factors that can
lead to the results of clinical trials being considered as left-censored are: Lack of sensitivity
when concentrations are close to zero; the non-specificity of an assay, which is a very
common problem with enzyme-linked immunosorbent assay (ELISA) and fluorescence
assays; and the use of a cut-off point that is considered to be correlated with protection
against disease. In all of the above situations, one can generally consider the existence of a
known value, say c, called the lower detection limit (LDL), below which it is not possible
to report an exact measurement of the results of clinical trials.

In the above situations, many authors have proposed statistical models to fit the data.
The authors of Moulton and Halsey [1] proposed a unimodal log-normal model to analyze
antibody data from a measles vaccine study and compared their results with the censored
normal model, widely known in the statistical literature as the tobit model by Tobin [2]. As
an alternative to the Moulton and Halsey [1] model, Martínez-Flórez et al. [3] introduced an
asymmetric model based on the mixture between the log-power-normal and the Bernoulli
distributions. The incorporation of an asymmetry parameter in the model provided by
Martínez-Flórez et al. [3] allows a better fit of data with a degree of asymmetry greater
than that which can be fitted with the log-normal model. Other works were proposed by
Arellano-Vallez et al. [4], Martínez-Flórez et al. [5] and Chen et al. [6].

In some practical situations, the previous models are not suitable for the analysis
of censored data, due to the nature of the observed data, either because they present
a greater or lower degree of asymmetry and/or kurtosis than can be captured by the
model; or because the data present multimodality. For example, Li et al. [7] investigated
the distribution of RNA in HIV patients undergoing highly active antiretroviral therapy
(HAART) and authors detected bimodality in the response variable (in log10 scale measure),
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that is, if the levels of HIV-RNA are compounds of a mixture of two subpopulations that
reflect different responses to HAART. For these cases, extensions of the previous unimodal
models have been proposed by several authors. Li et al. [7] proposed a mixture of normal
distributions to solve the problem of bimodality with the presence of censoring in the data,
however, the estimation in mixtures of normals present certain convergence problems and
serious non-identifiability problems in the estimation of its parameters, see Marin et al. [8].
On the other hand, Gómez et al. [9] considered the bimodal extension of the skew-normal
distribution through the inclusion of an additional parameter that leads to unimodal
and bimodal distributions. Bolfarine et al. [10] introduce the family of censored bimodal
power-normal distributions which is capable of fitting bimodal data with a high degree
of skewness while Martínez-Flórez et al. [11] introduce two new families of appropriate
distributions to fit symmetric and asymmetric bimodal data by extending the skew-normal
model by Azzalini [12]. In this article, we propose a new distribution called the censored
beta-skew alpha-power, which is very useful for modelling censored data together with
distributions of up to three modes and high (or low) levels of skewness and kurtosis
compared to the usual of the normal distribution. This distribution of trimodal type leads
to having a response to three different types of behaviour in the response variable, leading
to an optimal response, a sub-optimal response and a third sub-sub-optimal response.

The rest of this paper is organized as follows: The Section 2 describes the alpha-power
family of distributions and some distribution to fit multimodal data. In Section 3, the
censored beta-skew alpha-power model for censored and asymmetric data is introduced
and its main properties are discussed. Moreover, a model for positive data is introduced.
For considered models, the location-scale family and the inference process is carried out by
using maximum likelihood method. Finally, in Section 4, three real data applications are
reported and compared it with several rival models.

2. Asymmetric Distributions and Distributions for Multimodal Data

This section describes the family of alpha-power distributions and presents some of
the most recent distributions for multimodal data introduced in the statistical literature.

2.1. The Alpha-Power Family of Distributions

Lehmann [13] proposes the family of distributions with cumulative distribution func-
tion (cdf) given by

FAP(z; α) = {F (z)}α, z ∈ R (1)

where F (·) is a cdf and α is an integer or rational number. Pewsey et al. [14] refer to F as
the generating distribution function, and it can be noted that, if α is an integer, the function
in (1) can be considered as the distribution function of the maximum in a sample of size α.
In the literature, distribution function (1) is known as the Lehmann alternatives model.

The model of Lehmann [13] was extended by Durrans [15] by allowing α ∈ R+,
referring to this result as the fractional order statistics distribution, which is better known
in the literature as alpha-power distribution, and whose probability density function (pdf)
is given by

fAP(z; α) = α f (z){F (z)}α−1, z ∈ R and α ∈ R+ (2)

where F (·) is an absolutely continuous cdf, with pdf f = dF. This model is denoted by
Z ∼ AP(α). The case in which f (·) = φ(·) was considered by Durrans [15] and by Gupta
and Gupta [16] in detail. The resulting model is called the power-normal and its pdf is
given by

fPN(z; α) = αφ(z){Φ(z)}α−1, z ∈ R and α ∈ R+ (3)

where Φ(z) denotes the cdf of the standard normal distribution. The model in (3) is
denoted by Z ∼ PN(α). The PN model is extended to the location-scale case by using
the transformation X = µ + σZ, where Z ∼ PN(α), µ ∈ R is a location parameter, and
σ ∈ R+ is a scale parameter. The respective extension is denoted by X ∼ PN(µ, σ, α). The
main feature of the PN model is that, it constitutes an alternative to the skew-normal (SN)



Symmetry 2021, 13, 1114 3 of 21

model of Azzalini [12] for fitting data with high (or low) degree of asymmetry and/or
kurtosis, however, we must take into account that, both, Durrans and Azzalini models only
fit unimodal data.

2.2. Distributions for Multimodal Data

Distributions for the bimodal data have been studied between other authors by Elal-
Olivero [17], who defines the bimodal normal (BN) model with pdf given by

fBN(x) = x2φ(x), x ∈ R. (4)

The same Elal-Olivero [17] introduces an asymmetric bimodal version of the model in (4),
which is called the alpha-skew-normal (ASN) distribution, and whose pdf is given by

fASN(x; α) =
(1− αx)2 + 1

2 + α2 φ(x), x ∈ R (5)

where α ∈ R. Note that, for α = 0 in Equation (5), it follows the normal distribution.
Properties of this model were studied by Elal-Olivero [17], among which stand out that,
its information matrix is singular for α = 0, presenting serious consequences in the in-
ference processes around α = 0. This model is joined to the bimodal models studied
by Kim [18], Arnold et al. [19], Gómez et al. [9], and Bolfarine et al. [10], among oth-
ers. Other proposals involve models of multimodal type, among these, the flexible class
of skew-symmetric distributions by Ma and Genton [20], the alpha-beta-skew-normal
(ABSN) model by Shafiei et al. [21] and, the asymmetric beta-skew alpha-power model
by Martínez-Flórez et al. [22]. In particular, the ABSN model by Shafiei et al. [21] has pdf
given by

fABSN(x; β) =
(1− αx− βx3)2 + 1
α2 + 15β2 + 6αβ + 2

φ(x), x ∈ R (6)

where α, β ∈ R. Note that, the ASN model of Elal-Olivero [17] is a special case of the ABSN
model and it is obtained when β = 0. The ABSN model of Shafiei et al. [21] is capable of
fitting data with up to three modes, however, for α = β = 0, it has a singular information
matrix, which to make difficult the inferential process of its parameters.

Another special case of the model in (6) is obtained when α = 0, which, we refer to as
the beta-skew-normal (BSN) model, and its pdf is given by

fBSN(x; β) =

(
1− βx3)2

+ 1
2 + 15β2 φ(x), x ∈ R (7)

The model in (7) is denoted by BSN(β). One can prove that, the BSN model has
non-singular information matrix.

The following properties of the BSN model can be obtained directly from the results
of Shafiei et al. [21].

Properties of the BSN Model

i. If Z ∼ BSN(β), then its cdf is given by

FBSN(z; β) = Φ(z) +
4β− 15β2z + 2βz2 − 5β2z3 − β2z5

2 + 15β2 φ(z) (8)

therefore, the survival function, for t > 0 is given by

SBSN(t) = SN(t)−
4β− 15β2t + 2βt2 − 5β2t3 − β2t5

2 + 15β2 φ(t), (9)
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where SN(·) is the survival function of the standard normal distribution. Likewise, the
Hazard function is determined by

hBSN(t) =
fBSN(t)
SBSN(t)

=

(
(1− βt3)2 + 1

)
hN(t)

(2 + 15β2)− β(4− 15βt + 2t2 − 5βt3 − βt5)hN(t)
.

where h(·) the Hazard function of the standard normal distribution.

ii. If Z ∼ BSN(β), then the pdf can have up to three modes, that is, this distribution is
trimodal. In addition, if β→ ±∞, then the distribution is bimodal.

iii. From Proposition 2 of Shafiei et al. [21] one can see that, If Z ∼ BSN(β), the odd and
even order moments of Z, are given by

E[Z2k] =
2 + β2(2k + 1)(2k + 3)(2k + 5)

2 + 15β2

k

∏
j=1

(2j− 1), for k = 1, 2, 3, . . . (10)

E[Z2k−1] =
−2β(2k + 1)

2 + 15β2

k

∏
j=1

(2j− 1), for k = 1, 2, 3, . . . (11)

respectively.

iv. Consider Z ∼ BSN(β) and denote by γ1 and γ2 the coefficients of the asymmetry and
kurtosis of Z, respectively; then, using (10) and (11) and following Shafiei et al. [21],
one can prove that

(a) E[Z] = −6β

2 + 15β2

(b) Var[Z] =
1575β4 + 204β2 + 4

(2 + 15β2)
2

(c) γ1 =
21600β5 + 2088β3 − 48β

(1575β4 + 204β2 + 4)3/2

(d) γ2 =
3189375β8 + 1474200β6 + 182952β4 + 6624β2 + 48

(4 + 204β2 + 1575β4)
2 .

The location-scale extension of the BSN model follows by applying the transformation
X = µ + σZ, where Z ∼ BSN(β), where µ the location parameter and σ > 0 the scale
parameter. This will be denoted by Y ∼ BSN(µ, σ, β). The pdf and cdf of the BSN(µ, σ, β)
are given by

fBSN(x; µ, σ, β) =

[
1− β

(
x− µ

σ

)3
]2

+ 1

2 + 15β2 φ

(
x− µ

σ

)
, x ∈ R (12)

and

FBSN(x; µ, σ, β) = Φ(z) +
4β− 15β2z + 2βz2 − 5β2z3 − β2z5

2 + 15β2 φ(z) (13)

where z = x−µ
σ .

2.3. The Beta-Skew-Alpha-Power Model

Based on the alpha-power family of distribution and the BSN model, Martínez-Flórez
et al. [22] introduced a new asymmetric distribution useful for fitting a multimodal data set
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with high/low asymmetry. The new model, which is named as the beta-skew alpha-power
(BSAP) distribution has non-singular information matrix and pdf given by

fBSAP(z; β, α) = α

(
1− βz3)2

+ 1
2 + 15β2 φ(z)

×
{

Φ(z) +
4β− 15β2z + 2βz2 − 5β2z3 − β2z5

2 + 15β2 φ(z)
}α−1

(14)

where z ∈ R, α ∈ R+ and β ∈ R. This model is denoted by Z ∼ BSAP(β, α). The BSAP
model is a special case of the alpha-power family of distributions, given in (2), where the
base function f (z), is the pdf of the BSN model.

2.4. Censored Beta-Skew-Normal Model

In this section the beta-skew-normal model for censored data is introduced. Ex-
pressions for the r-th moment, the expected value and the variance are presented. The
estimation of the parameters is studied and the Fisher information matrices are found.
Suppose that random variable X follows a BSN(µ, σ, β) distribution, and let X1, X2, . . . , Xn
a random sample of size n of X, where only those values of Xi greater than constant c are
recorded; and for values xi ≤ c only the value c is registered. The observed values, which
we denote by Yi can be written as

Yi =

{
c, if Xi ≤ c,
Xi, if Xi > c.

(15)

for i = 1, 2, . . . , n. The resulting sample is said to be a left censored beta-skew-normal
(CBSN) distribution. It follows from Equations (13) and (15) that

P(Yi = c) = P(Xi ≤ c) = FBSN(c; µ, σ, β)

= Φ(zc) +
4β− 15β2zc + 2βz2

c − 5β2z3
c − β2z5

c
2 + 15β2 φ(zc).

where zc = (c− µ)/σ.
The pdf of the random variable Yi is a mixture between a continuous and a discrete

distribution. The discrete part is given by the probability P(Yi = c) and represents the
contribution of the unobserved values Xi ≤ c to the pdf of the Y. For values Y > c, the pdf
is the same as the random variable X, that is, Yi ∼ BSN(µ, σ, β). Therefore, the pdf or Y
can be written as

fCBSN(y; µ, σ, β) =

{
FBSN(c; µ, σ, β), if y ≤ c,
fBSN(y; µ, σ, β), if y > c,

(16)

where fBSN(·) iand FBSN(·) are the pdf and the cdf of the random variable BSN and c is
a constant. The model in (16) will be denoted as Y ∼ CBSN(µ, σ, β). The Appendix A
presents a brief justification of Equation (16).

If Y ∼ CBSN(β), one can prove that the pdf (16) is a censored trimodal distribution,
whereas, for β → ±∞, a censored bimodal distribution follows. For β → 0, a censored
unimodal distribution is obtained. The Figure 1 shows some forms of the pdf of Y ∼
CBSN(0, 1, β) with censorship point c = −2.7 and two values of β.



Symmetry 2021, 13, 1114 6 of 21

y

 

0.05

0.10

0.15

0.20

0.25

−6 −4 c −2 0 2 4 6

(a)

y

 

0.05

0.10

0.15

0.20

0.25

−6 −4 c −2 0 2 4 6

(b)

Figure 1. Probability density function of CBSN(0, 1, β) distribution with censorship point c = −2.7
(hatched area) for (a) β = 0.5 and (b) β = 9.

2.5. Moments of the CBSN Model

If Y ∼ CBSN(µ, σ, β), the r-th moment of Y is given by

E[Yr] = crFBSN(zc) +
1

2 + 15β2

r

∑
k=0

[(
r
k

)
µr−kσk Mk

]
(17)

where Mk = 2µk(zc)− 2βµk+3(zc) + β2µk+6(zc), µq(zc) =
∫ ∞

zc
zqφ(z)dz and zc =

c− µ

σ
.

From (17), it follows that

i. E[Y] = cFBSN(zc) +
µM0 + σM1

2 + 15β2 ,

ii. E[Y2] = c2FBSN(zc) +
µ2M0 + 2µσM1 + σ2M2

2 + 15β2 ,

iii.

V[Y] =
(

1−FBSN(zc)
)(

cFBSN(zc)
(
c− 2E[Y | y > 0]

)
+E[Y2 | y > 0]

−
(
1−FBSN(zc)

)
E2[Y | y > 0]

)
.

where

E[Yr | y > c] =
1

(2 + 15β2)
(
1−FBSN(zc)

) r

∑
k=0

[(
r
k

)
µr−kσk Mk

]
,

Estimation of the parameters and the Fisher information matrix of the CBSN, are
special cases of the extended censored alpha-power BSN model, which is introduced in
Section 3.

3. Censored Beta-Skew Alpha-Power Model

If the random variable Y has pdf given by

f (y; µ, σ, β, α) =



{
FBSN

(
c− µ

σ
; β

)}α

, if y ≤ c,

1
σ

fBSAP

(
y− µ

σ
; β, α

)
, if y > c,

(18)
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where fBSAP(·) is a pdf of the random variable following a BSAP distribution given in (14),
with location parameter µ, scale parameter σ and censorship constant c. The model in (18)
will be denoted by Y ∼ CBSAP(θ), where θ = (µ, σ, β, α)>. It follows from (18) that, if
α = 1, the CBSN model is obtained, while, for β = 0, the censored alpha-power model (or
alpha-power tobit model) by Martínez-Flórez et al. [5] is followed. When α = 1 and β = 0,
the usual tobit or censored normal model is obtained.

It can also see that, for β→ ±∞, it follows an asymmetric bimodal alpha-power model
similar to CBSN model. Then, the CBSAP model can fit trimodal, bimodal or unimodal
data set. The Figure 2 shows the graphs of the pdf of Y ∼ CBSAP(θ) with censorship point
c = −0.5, and for some values of the parameter β.
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Figure 2. Probability density function of CBSAP(0, 1, β, 3) model with censorship point c = −0.5
(hatched area) for (a) β = 5 and (b) β = 0.75.

If Y ∼ CBSAP(θ), where θ = (µ, σ, β, α)>, r-th moment of Y is given by

E[Yr] = cr{FBSN(zc)
}α

+
α

2 + 15β2

r

∑
k=0

[(
r
k

)
µr−kσk M′k

]
(19)

where M′k = 2µ′k(zc)− 2βµ′k+3(zc) + β2µ′k+6(zc) and

µ′q(zc) =
∫ +∞

zc
zqφ(z)

{
FBSN(z)

}α−1dz.

It follows that the expected value and the variance are given by

i. E[Y] =
{
FBSN(zc)

}α
+ α

µM′0 + σM′1
2 + 15β2

ii.

V[Y] =
(

1− {FBSN(zc)}α
)(

c{FBSN(zc)}α(c− 2E[Y | y > 0]
)
+E[Y2 | y > 0]

)
−
(
1− {FBSN(zc)}α)E2[Y | y > 0]

))
where

E[Yr | y > 0] =
α(

1− {FBSN(zc)}α)(2 + 15β2)

r

∑
k=0

[(
r
k

)
µr−kσk M′k

]
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3.1. Inference for the CBSAP Model

This section discusses the parameters estimation of the vector θ = (µ, σ, β, α)> of the
CBSAP distribution. In addition, the elements of the observed and expected information
matrices are determined. Let Y = (Y1, Y2, . . . , Yn), a random sample of size n from Yi ∼
CBSAP(θ) with θ = (µ, σ, β, α)>, in which, there is n0 censored observations, and n1
uncensored observations. The likelihood function for θ = (µ, σ, β, α)>is given by

L(θ; Y) = ∏
yi≤c
FBSAP(zc) ∏

yi>c
fBSAP(zi). (20)

with zi =
yi − µ

σ
and zc =

c− µ

σ
. The log-likelihood function obtained from (20) is given by

`CBSAP = ln
(
L(θ; Y)

)
= n0α ln

[
Φ(zc) +

4β− 15β2zc + 2βz2
c − 5β2z3

c − β2z5
c

2 + 15β2 φ(zc)

]
+ (α− 1) ∑

zi>zc

ln

[
Φ(zi) +

4β− 15β2zi + 2βz2
i − 5β2z3

i − β2z5
i

2 + 15β2 φ(zi)

]

+ ∑
zi>zc

ln
[(

1− βz3
i

)2
+ 1
]

− 1
2 ∑

zi>zc

z2
i − n1

[
ln(σ) + ln(2 + 15β2) + ln

(√
2π
)
− ln(α)

]
Thus, by differentiating the log-likelihood function with respect to each of the param-

eters, the following score functions are obtained

U(µ) = −n0α

σ

fBSN(zc)

FBSN(zc)
− (α− 1)

σ ∑
zi>zc

fBSN(zi)

FBSN(zi)

+
1
σ ∑

zi>zc

[
6β(1− βz3

i )z
2
i(

1− βz3
i
)2

+ 1
+ zi

]
, (21)

U(σ) = −n0α

σ

zc fBSN(zc)

FBSN(zc)
− (α− 1)

σ ∑
zi>zc

zi fBSN(zi)

FBSN(zi)

+
1
σ ∑

zi>zc

[
6β(1− βz3

i )z
3
i(

1− βz3
i
)2

+ 1
− 1 + z2

i

]
, (22)

U(β) = n0αφ(zc)
8− 60β2 − 60βzc + 4z2

c − 30β2z2
c − 20βz3

c − 4βz5
c

(2 + 15β2)2FBSN(zc)

+ (α− 1) ∑
zi>zc

Wi fBSN(zi)

FBSN(zi)
− 2 ∑

zi>zc

[
z3

i (1− βz3
i )(

1− βz3
i
)2

+ 1
+

15β

2 + 15β2

]
, (23)

U(α) = n0 ln
[

Φ(zc) +
4β− 15β2zc + 2βz2

c − 5β2z3
c − β2z5

c
2 + 15β2 φ(zc)

]
+ ∑

zi>zc

ln
(
FBSN(zi)

)
+

n1

α
. (24)

By equating to zero the score functions (21)–(24) and solving the resulting system
of equations, we obtain the maximum likelihood estimators (MLEs) of µ, σ, α and β,
which can be obtained by numerical method such as the Newton–Raphson type procedure.
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Details about the theory of iterative methods to obtain the optimal solution to the system
of equations can be found in Jäntschi et al. [23].

The elements of the observed information matrix can be obtained by taking the second
partial derivatives of the log-likelihood function and multiplying by −1, that is,

jθpθq = −
∂2`CBSAP

∂θp∂θq
, p, q = 1, 2, 3, 4. (25)

with θ1 = µ, θ2 = σ, θ3 = β and θ4 = α, and will be denoted by jµµ, jµσ, . . . , jαα. This
elements are given in the Appendix B.

Under certain regularity conditions, the elements of the Fisher information matrix can
be calculated as

iθpθq =
1
n
E
[
−∂2`CBSAP

∂θp∂θq

]
, p, q = 1, 2, 3, 4. (26)

with θ1 = µ, θ2 = σ, θ3 = β and θ4 = α, and it will be denoted as iµµ, iµσ, . . . , iαα. The
Cramér-Rao bound states that the inverse of the Fisher information is a lower bound on the
variance of any unbiased estimator. Thus, we can find a lower bound for the standard errors
(SE) of the MLEs as the root of the diagonal elements of the observed Fisher information
matrix. The elements of the expected and observed Fisher information are given in the
Appendix B. For β = 0 y α = 1 the CBSAP model is reduced to the tobit model. In this case,
following Martínez-Flórez et al. [22] it can be seen that expected information matrix of the
CBSAP model, say ICP(θ) is non-singular.

3.2. Model for Positive Data

Distributions with location and scale parameters for modeling positive data are not
common in practice, among these, we find the log-normal model, log-skew-normal model
by Azzalini et al. [24] and log-power-normal model by Martínez-Flórez et al. [25]. All these
distributions, despite being very good tools to model this type of data, it can only be used in
cases where the data distribution is unimodal, that is, they can not always be implemented
in fields such as economics, health, engineering and many others, where the data present
bimodality or multimodality. An initial proposal to model multimodal data is the mixture
of unimodal distributions, for example, mixture of normals. However, many authors have
developed new proposals that allow taking into account the asymmetry present in the
data as well as their multimodality, see, for example, Elal-Olivero [17], Bolfarine et al. [10],
Gómez et al. [9], Shafiei et al. [21].

We now present an extension of the beta-skew alpha-power model for modeling
positive data, which is called the log-beta-skew alpha-power distribution and is denoted
by LBSAP. This extension is introduced in the usual form of the location-scale models such
as log-normal, log-skew-normal or log-power normal, that is, a random variable X follows
the LBSAP distribution if its logarithm follows the BSAP. Let Y ∼ LBSAP(µ, σ, β, α), where
µ ∈ R and σ > 0 are location and scale parameters, respectively, the pdf of Y is given by

fLBSAP(y; µ, σ, β, α) =
α

y

[
(1− βz3)2 + 1

]
σ(2 + 15β2)

φ(z)

×
[

Φ(z) +
4β− 15β2z + 2βz2 − 5β2z3 − β2z5

2 + 15β2 φ(z)
]α−1

(27)

where z = (ln(y)− µ)/σ, with y, α ∈ R+ and β ∈ R. It follows that, the cdf for the location
and scale version of LBSAP(µ, σ, β, α) is given by the same expression of the cdf for the
BSAP model with z = (ln(y)− µ)/σ. Occurs the same for the survival function, while, for
the Hazard function, additionally it must be divided by t, that is, hL(t) = h(t)/t where
h(t) is the Hazard function of the BSAP(µ, σ, β, α) model with z = (ln(t)− µ)/σ.

It follows that, if α = 1, the log-beta-skew-normal (LBSN) model is obtained, whereas,
if α = 1 and β = 0, then, it follows the log-normal model. From the properties that the
BSAP model, it follows that the extension for positive data, that is, the LBSAP model
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can also fit data sets of up to three modes, even being bimodal or unimodal (case of the
log-normal model). The moments of this distribution do not have a closed form and they
are obtained directly from the definition by using numerical methods. The estimation of its
parameters can be approached through the maximum likelihood method.

Let Y = (Y1, Y2, . . . , Yn) a random sample of size n, with Yi ∼ LBSAP(θ) and θ =
(µ, σ, β, α)>. Letting zi = (ln(yi)− µ)/σ for i = 1, 2, . . . , n, the log-likelihood function can
be expressed as

`LBSAP = ln
(
L(θ; Y)

)
= (α− 1)

n

∑
i=1

ln
(
FBSN(zi)

)
+

n

∑
i=1

ln
[(

1− βz3
i
)2

+ 1
]

− 1
2

n

∑
i=1

z2
i −

n

∑
i=1

ln(yi)− n
(

ln(σ) + ln(2 + 15β2) + ln(
√

2π)− n ln(α)
)

.

Deriving the log-likelihood function with respect to each parameter and letting Wi =
(8− 60β2 − 60βzi + 4z2

i − 30β2z2
i − 20βz3

i − 4βz5
i )/(2 + 15β2)2, the following elements of

the score function are obtained

U(µ) =− (α− 1)
σ

n

∑
i=1

fBSN(zi)

FBSN(zi)
+

1
σ

n

∑
i=1

[
6β(1− βz3

i )z
2
i

(1− βz3
i )

2 + 1
+ zi

]
, (28)

U(σ) =− (α− 1)
σ

n

∑
i=1

zi fBSN(zi)

FBSN(zi)
+

1
σ

n

∑
i=1

[
6β(1− βz3

i )z
3
i

(1− βz3
i )

2 + 1
− 1 + z2

i

]
, (29)

U(β) =(α− 1)
n

∑
i=1

Wiφ(zi)

FBSN(zi)
− 2

n

∑
i=1

[
z3

i (1− βz3
i )

(1− βz3
i )

2 + 1
+

15β

2 + 15β2

]
, (30)

U(α) =
n

∑
i=1

ln
(
FBSN(zi)

)
+

n
α

. (31)

The system of non-linear equations resulting from equating the first order derivatives
to zero (score equations) does not have a closed solution, so it must be solved by using
numerical methods. Thus, the maximum likelihood estimator for θ can be obtained
numerically via iterative algorithms such as, the Newton–Raphson or quasi-Newton. The
elements of the observed and expected Fisher information matrix are obtained directly
from the respective elements of the BSAP model, see Martínez-Flórez et al. [22], by using
zi = (ln(yi)− µ)/σ instead of zi = (yi − µ)/σ, hence, the matrix Il(θ) of the LBSAP(θ)
is non-singular. Thus, the covariances matrix of the estimators vector of the LBSAP
distribution is given by V(θ̂) = I−1

l (θ). Then, by the asymptotic convergence property of
the maximum likelihood estimators, it follows

θ̂
d−→ N4

(
θ, I−1

l (θ)
)
.

where θ = (µ, σ, β, α)>.
The study of the distribution for censored data is followed naturally from the results

for the BSAP model. Suppose that Y∗ has a LBSAP distribution and we have a random
sample (Y∗1 , Y∗2 , · · · , Y∗n ), where only the values greater than the constant c are registered.
Moreover, for values Y∗ ≤ c, only the value of c is recorded. Therefore, for i = 1, 2, · · · , n,
the observed values are written as

Yi =

{
c, if Y∗i ≤ c,
Y∗i , if Y∗i > c.
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then, the result is a left-censored random sample LBSAP. The random variable Y has pdf
given by

f (y; µ, σ, β, α) =


{
FLBSN

(
ln(c)− µ

σ
; β

)}α

if y ≤ c,

fLBSAP(y; µ, σ, β, α) if y > c,

(32)

where fLBSAP(·) is the pdf of a random variable with LBSAP distribution in the standard
version, and FLBSN(·) is the cdf of the Log BSN model . The model in (32) is denoted by
Y ∼ CLBSAP(θ), with θ = (µ, σ, β, α)>. Estimation for the parameters vector is carried out
in a similar way as for the censored BSAP(θ) model by Martínez-Flórez et al. [22], where
the score functions and the information matrices have the same structure and it is only
necessary to change zi = (ln(yi)− µ)/σ instead of zi = (yi − µ)/σ and zc = (ln(c)− µ)/σ
instead of zc = (c− µ)/σ.

4. Illustrations

To illustrate the usefulness of the proposed models for censored and positive data, in
this section we present some applications with real data sets. To compare the considered
models, we use criteria widely known in the statistical literature and used by other authors
such as Martínez-Flórez et al. [22] and Tovar-Falón et al. [26], so, the AIC by Akaike [27]
and the BIC of Schwarz [28] criteria were considered, and they are given as

AIC = −2`(θ̂) + 2p, and BIC = −2`(θ̂) + p log(n),

where `(·) is the log-likelihood function evaluated at the vector θ̂, and p is the number of
parameters in the considered model. The best model is the one with the smallest AIC or
BIC. A much more general procedures to evaluate the quality of the model was proposed
by Jäntschi [29,30]. This method is useful to detect outliers through the construction of the
confidence interval for the extreme value in the sample, with a certain risk (preselected)
of being in error, and depending on the size of the sample. All calculations and estimates
were obtained by using optim function of R Development Core Team [31].

4.1. Illustration 1: The RNA-HIV Data

In the first illustration, we consider a data set which was previously analyzed by
Martínez-Flórez et al. [11]. The data refer to HIV patients who underwent treatment
with HAART therapy for a period of time less than one year in a Hospital in Santander,
Colombia. To detect HIV infection in a patient, a combination of two antibody tests was
used. If the ELISA method detects antibodies in a patient, then a second test is carried out
using the Western blot procedure. This study was carried out in a sample of 369 patients,
who 263 were male patients and 106 were female patients. The variables recorded were:
The date of admission to the program, the patient’s viral load and age of the patient. The
HIV-1-RNA measurements in the patients were obtained from three different laboratories,
each with a lower detection limit (LDL) of 50 copies per ml.

For the group of men, 60% of the measurements registered values above the lower
detection limit (uncensored observations) and a statistical summary of these observations
is presented in Table 1. According to the descriptive measures, the data (measured on the
log10 scale) present a high degree of positive asymmetry (

√
b1) and a lower kurtosis (b2)

compared to the normal model, which is an indication that the censored normal model
(tobit model) might not be a good choice to fit this data set.

Table 1. Statistical summary for the uncensored HIV-1 RNA data (men).

y s2
y

√
b1 b2

1.6488 1.7328 0.5213 2.1315
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Summary statistics indicate that the data set has high positive skewness and low
kurtosis compared to the normal model, which warns that the normal model with censored
data may not be the best option for modeling the data set. In addition, Figure 3a shows
strong evidence that the behavior of the variable HIV-1-RNA is bimodal.

To implement a complete study, we considered to fit the following models: Censored
mixture of normals (CMN), censored flexible normal (CFN), censored bimodal asymmetric
normal (CETN), censored beta-skew normal model (CBSN) and the asymmetric censored
beta-skew alpha-power model (CBSAP). The Figure 3b,c, present the cdf and the QQ-
plot for the estimated CBSAP model, where an excellent fit is observed for most of the
observations and Figure 4a–c, present the QQ-plot for the estimated models.

 

log 10 (HIV RNA)

d
e

n
s
it
y

2 3 4 5 6 7

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0
0

.3
5

(a)

2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

log 10 (HIV RNA)

F
n

(l
o

g
 1

0
 (

H
IV

 R
N

A
))

(b)

2.0 2.5 3.0 3.5 4.0 4.5 5.0

2
3

4
5

6

Sample quantiles

T
h

e
o

re
ti
c
a

l 
q

u
a

n
ti
le

s

(c)

Figure 3. (a) Histogram for the log10 of HIV-1-RNA. Models: CBSAP (solid line), CBSN (dashed line),
CETN (dotted line) and CFN (dashed and dotted line), (b) Empiric cdf (solid line) and cdf of the
models: CBSAP (dashed line) CBSN (dotted line), CETN (dashed and dotted line) and (c) QQ-plot
for the CBSAP model.
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Figure 4. QQ-plot for models (a) CBSN, (b) CETN and (c) CFN.

The maximum likelihood estimates (MLE), with theirs respective standard error (in
parenthesis) and the AIC and BIC values for the CMN model

CMN(µ1, σ1, µ2, σ2, p)

are given by

CMN
(
1.5339(0.0839), 0.7130(0.1515), 4.3279(0.2688), 1.0001(0.1690), 0.6798(0.0571)

)
with AIC = 802.084 and BIC = 819.9448.

On the other hand, the Table 2 presents the MLE, with AIC and BIC values for the CFN,
CETN, CBSN and CBSAP models. According to the AIC and BIC values, it is concluded
that the best model is the CBSAP.
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Table 2. Estimated parameters (standard errors) for fitted models.

Estimates CFN CETN CBSN CBSAP

µ̂ 0.322 (0.006) 1.603 (0.120) −0.125 (0.128) −1.201 (0.431)
σ̂ 11.778 (1.060) 2.031 (0.154) 1.297 (0.074) 1.383 (0.119)
β̂ 7.273 (0.005) 2.232 (0.865) −0.205 (0.031) 0.195 (0.033)
α̂ −0.766 (0.146) 5.637(2.192)

AIC 831.87 811.89 812.43 800.23
BIC 842.59 826.18 823.15 814.52

We carried out the hypothesis test

H0 : α = 1 versus H1 : α 6= 1,

which justifies using the CBSAP model instead of the CBSN model. For this test the
likelihood ratio statistic is used

Λ =
LCBSN(µ̂, σ̂, β̂)

LCBSAP(µ̂, σ̂, β̂, α̂)
,

where LF(·) denotes the likelihood function under model F. For the data set is obtained

−2 log(Λ) = 2(403.2215− 396.117) = 14.209 > χ2
1 = 3.84,

that is, p-value = P(χ2
1 > 14.209) < 0.05 which leads to the rejection of the null hypothesis;

therefore, the CBSAP model is more flexible than the CBSN mode to fit data.
The total censored data of the random sample is 40.30%, the area under the CETN

model is 41.2%, with the CBSN model is 40.4%, while with the CBSAP is 40.9%, which is a
good measure of the good fit of the models studied.

4.2. Illustration 2

For the second illustration, we consider the information from HIV infected women
under treatment with HAART therapy of the same data set of the illustration 1. Descriptive
statistics for uncensored observations are presented in Table 3 (65% of the women). The
statistical summary indicates that the data set has a higher degree of skewness and a lower
kurtosis coefficient than the normal model. In addition, the Figure 5a provides strong
evidence that the behavior of the variable HIV-1-RNA is bimodal, so that an alpha-power
model with censored data can be a better option for fitting HIV data set. We fit the censored
flexible normal (CFN) model, the censored bimodal asymmetric normal (CETN) model,
the censored BSAP model and the censored mixture of normal (CMN) model. Figure 5b,c,
present the cdf and the QQ-plot, respectively, for the estimated CBSAP model, where a
very good fit for most observations and Figure 6a–c, present the QQ-plot for the estimated
CMN, CETN and CFN models, respectively.

Table 3. Statistical summary for the uncensored HIV-1 RNA data (women).

y s2
y

√
b1 b2

1.7112 1.4249 0.3549 1.9836
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Figure 6. QQ-plot for models (a) CMN, (b) CETN and (c) CFN.

The total number of censored observations is 34.98 %, under the estimated normal
mixture model, the number of observations is 36.37%, with the CFN model, 28.42%, with
the CETN model, 35.33%, while with the CBSAP model, it is 35.0%, this being a good
measure of the good fit of the model. Table 4 presents the maximum likelihood estimates,
AIC and BIC values for the CFN, CETN and CBSAP models, which is the one corresponding
to the best fit of the model (the smallest AIC or BIC).

Table 4. Estimated parameters (standard errors) for models (women).

Estimates CFN CETN CBSAP

µ̂ 1.006 (0.137) 1.587 (0.160) 0.131 (0.297)
σ̂ 1.079 (0.213) 1.840 (0.213) 0.954 (0.101)
β̂ −0.987 (0.379) 2.261 (1.508) 0.353 (0.060)
α̂ −0.588 (0.199) 2.175 (0.547)

AIC 340.95 338.63 334.61
BIC 348.95 349.29 345.27

Now the previously fitted models are compared with the normals mixture

CMN(µ1, σ1, µ2, σ2, p).

The model with censored data for the mixture of normals (CMN) estimated is given by

CMN
(
1.675(0.140), 0.847(0.210), 4.404(0.210), 0.748(0.147), 0.711(0.065)

)
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with AIC = 337.76 and BIC = 351.08, that is, the CFN, CETN and CBSAP models fit better
than the mixture of normals.

4.3. Illustration 3

In this illustration, we consider a set of 48 observations related to adhesive strength
to adhere bars reinforced with glass fiber reinforcement to concrete. The data set was
previously analyzed by Ehsan et al. [32] and Olmos [33]. Table 5 shows some descriptive
statistics for the data.

Table 5. Summary of descriptive statistics.

n Mean Variance Median

48 8.079 23.702 5.950

For this data set, the log-normal (LN) model, Birnbaum Saunders bimodal (BSB) model
by Olmos [33], and the introduced LBSN and LPBSN models were fitted. the estimated
parameters together with the comparison criteria of the fitted models are presented in
Table 6. According to the AIC and BIC criteria, the best fitted model is the LBSAP, followed
by the BSB model and the LBSN model. The parameter estimates were calculated by
numerically maximizing the log-likelihood function, with the optim function, available in
the statistical software R Development Core Team [31].

Table 6. Maximum likelihood estimates (standard errors) for the fitted models.

Estimates LN BSB LBSN LBSAP

µ̂ 1.940 (0.076) 0.317 (0.050) 2.077 (0.045) 1.103 (0.169)
σ̂ 0.528 (0.053) 7.380 (0.330) 0.252 (0.016) 0.469 (0.056)
β̂ −1.307 (0.372) 0.441 (0.083) 0.216 (0.046)
α̂ 7.893 (3.141)

AIC 265.3 260.0 263.6 258.2
BIC 269.0 265.6 272.2 265.6

Using the results of Table 6, we can perform a hypothesis test of the LBSAP model
against the LBSN model, that is,

H0 : α = 0 versus H1 : α 6= 0

by using the likelihood ratio statistic

Λ =
LLBSN(µ̂, σ̂, β̂)

LLBSAP(µ̂, σ̂, β̂, α̂)
.

where LF(·) denotes the likelihood function under model F. Replacing the values of the
estimates in the above ratio, we obtain −2 ln (Λ) = −2(125.13− 128.83) = 7.4, which is
higher than the 95% percentile value of the chi-square distribution, given by, χ2

1 = 3.84,
leading to the rejection of the null hypothesis, which clearly indicates that the LBSAP(β, α)
model presents a better fit than LBSN(β) model. The Figure 7a, shows that the LBSAP
model presents the best fit compared to the rest of the fitted models while the graph of the
Figure 7b shows the cdf of the LBSN and LBSAP models, note that these present a good fit.
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Figure 7. (a) Histogram for 48 observations under study. The lines represent the fitted distributions
using the maximum likelihood estimates: LN (dashed and dotted line), BSB (dotted line), LBSN
(dashed line) and LBSAP (solid line). (b) Empiric cdf (solid line), LBSN (dotted line) and LBSAP
model (dashed line).

5. Conclusions

In this paper, a new class of unimodal, as well as bimodal and trimodal, skew distri-
bution for censored data was proposed. The main statistical properties of the model and
the problem of the parameters estimation were studied in details by using the maximum
likelihood method. The model extends the usual tobit normal model to a trimodal asym-
metric case and the beta-skew normal model is also a special case. Furthermore, we have
shown that such distribution is more flexible than certain rival models and it fits better to
some real data sets.
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Appendix A

In this section, we present a brief justification of Equations (16) and (18). The function
f : R −→ R defined by
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f (z; β, α) = α

(
1− βz3)2

+ 1
2 + 15β2 φ(z)

×
{

Φ(z) +
4β− 15β2z + 2βz2 − 5β2z3 − β2z5

2 + 15β2 φ(z)
}α−1

where z ∈ R, α ∈ R+ and β ∈ R, is continuous and therefore, by the Radon-Nikodym
theorem, f (z; β, α) is measurable in (R,B) where B is a Borel set.

For some measure of probability P : B −→ R

P(R) =
∫ ∞

−∞
f (z; β, α)dz = 1

then, f (z; β, α) is a Lebesgue -density.
As is known in statistics, a distribution censored in the value c, is a mixture between a

discrete and a continuous distribution, however, discrete measurements, for example, have
no Lebesgue -densities. In this case, the assumption of the existence of densities requires
more specific results, then, for the general case of a µ measure, when the integral∫

f dµ

is calculated, the integrand f can be altered on a non-null set µ, that is, on a set N ∈ B with
µ(N) without any influence on the integral. The resulting function is still a density, but not
a density of a measure.

Appendix B. Information Matrix for the CBSAP Model

In this section, expressions for the elements of the observed and expected information
matrix of the CBSAP model are provided.

Appendix B.1. Observed Information Matrix

jµµ =
n0α

σ

[
6βz2

c
(
1− βz3

c
)

2 + 15β2
φ(zc)

FBSN(zc)
+

zc fBSN(zc)

FBSN(zc)
+

f 2
BSN(zc)

F 2
BSN(zc)

]

+
(α− 1)

σ ∑
zi>zc

[
6βz2

i
(
1− βz3

i
)

2 + 15β2
φ(zi)

FBSN(zi)
+

zi fBSN(zi)

FBSN(zi)
+

f 2
BSN(zi)

F 2
BSN(zi)

]

− 1
σ2 ∑

zi>zc

6βzi
(
5βz3

i − 2
)(

1− βz3
i
)2

+ 1
−

36β2z4
i
(
1− βz3

i
)2[(

1− βz3
i
)2

+ 1
]2 − 1

,

jµσ =
n0α

σ2

[
6βz3

c
(
1− βz3

c
)

2 + 15β2
φ(zc)

FBSN(zc)
+

(
z2

c − 1
)

fBSN(zc)

FBSN(zc)
+

zc f 2
BSN(zc)

F 2
BSN(zc)

]

+
(α− 1)

σ2 ∑
zi>zc

[
6βz3

i
(
1− βz3

i
)

2 + 15β2
φ(zi)

FBSN(zi)
+

(
z2

i − 1
)

fBSN(zi)

FBSN(zi)
+

zi f 2
BSN(zi)

F 2
BSN(zi)

]

− 2
σ2 ∑

zi>zc

9βz2
i
(
2βz3

i − 1
)(

1− βz3
i
)2

+ 1
−

18β2z5
i
(
1− βz3

i
)2[(

1− βz3
i
)2

+ 1
]2 − zi

,
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jµβ = −n0α

σ

[
2z3

c
(
1− βz3

c
)

2 + 15β2
φ(zc)

FBSN(zc)
+

30β

2 + 15β2
fBSN(zc)

FBSN(zc)
+ Wc

φ(zc) fBSN(zc)

F 2
BSN(zc)

]

− (α− 1)
σ ∑

zi>zc

[
2z3

i
(
1− βz3

i
)

2 + 15β2
φ(zi)

FBSN(zi)
+

30β

2 + 15β2
fBSN(zi)

FBSN(zi)
+ Wi

φ(zi) fBSN(zi)

F 2
BSN(zi)

]

− 6
σ ∑

zi>zc

 z2
i
(
1− 2βz3

i
)(

1− βz3
i
)2

+ 1
+

2βz5
i
(
1− βz3

i
)2[(

1− βz3
i
)2

+ 1
]2

,

jµα =
n0

σ

fBSN(zc)

FBSN(zc)
+

1
σ ∑

zi>zc

fBSN(zi)

FBSN(zi)
, jσα =

n0

σ

zc fBSN(zc)

FBSN(zc)
+

1
σ ∑

zi>zc

zi fBSN(zi)

FBSN(zi)
,

jσσ =
n0α

σ2

[
6βz4

c
(
1− βz3

c
)

2 + 15β2
φ(zc)

FBSN(zc)
+

(
z3

c − 2zc
)

fBSN(zc)

FBSN(zc)
+

z2
c f 2

BSN(zc)

F 2
BSN(zc)

]

+
(α− 1)

σ2 ∑
zi>zc

[
6βz4

i
(
1− βz3

i
)

2 + 15β2
φ(zi)
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+

(
z3

i − 2zi
)

fBSN(zi)

FBSN(zi)
+

z2
i f 2

BSN(zi)

F 2
BSN(zi)

]

− 1
σ2 ∑

zi>zc

2βz3
i
(
21βz3
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)(

1− βz3
i
)2

+ 1
−

36β2z6
i
(
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i
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1− βz3
i
)2

+ 1
]2 + 1− 3z2

i

,

jσβ = −n0α

σ

[
2z4

c
(
1− βz3

c
)

2 + 15β2
φ(zc)

FBSN(zc)
+

30βzc

2 + 15β2
fBSN(zc)

FBSN(zc)
+

Wczcφ(zc) fBSN(zc)

F 2
BSN(zc)

]

− (α− 1)
σ ∑

zi>zc

[
2z4

i
(
1− βz3

i
)

2 + 15β2
φ(zi)

FBSN(zi)
+

30βzi
2 + 15β2

fBSN(zi)

FBSN(zi)

+
Wiziφ(zi) fBSN(zi)

F 2
BSN(zi)

]
− 6

σ ∑
zi>zc
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i
(
1− 2βz3

i
)(

1− βz3
i
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+ 1
+
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i
(
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i
)2[(

1− βz3
i
)2

+ 1
]2

,

jββ = −n0αφ(zc)

[
Uc

FBSN(zc)
− W2

c φ(zc)

F 2
BSN(zc)

]
− (α− 1) ∑

zi>zc
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[
Ui

FBSN(zi)
−

W2
i φ(zi)

F 2
BSN(zi)

]

− 2 ∑
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i
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−
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(
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,

jβα = −n0φ(zc)
Wc

FBSN(c)
− ∑
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Wiφ(zi)

FBSN(zi)
, jαα =

n1

α2

where

Ui = −720β + 1800β3 − 120zi + 2700β2zi − 360βz2
i + 900β2z2

i − 40z3
i + 900β2z3

i

− 8z5
i + 180β2z5

i ,
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i − 30β2z2
i − 20βz3

i − 4βz5
i

(2 + 15β2)
2 .
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Appendix B.2. Expected Fisher Information Matrix

Letting

hj = E
[

Zj φ(z)
FBSN(z)

]
, vjk = E

[
Zj
(

fBSN(z)
FBSN(z)

)k
]

,

gjk = E

 Zj[
(1− βz3)

2 + 1
]k

, ujk = E
[

ZjWkφ(z) fBSN(z)
F 2

BSN(z)

]
,

a = E
[

Uφ(z)
FBSN(z)

]
, and bk = E

[
Wkφk(z)
F k

BSN(z)

]

with Z ∼ BSAP(0, 1, β, α), the elements of th expected information matrix are given by

iµµ =
α

σ

[
6βz2

c
(
1− βz3

c
)

2 + 15β2
φ(zc)

FBSN(zc)
+

zc fBSN(zc)

FBSN(zc)
+

f 2
BSN(zc)

F 2
BSN(zc)

]

+
(α− 1)

σ

[
6β

2 + 15β2 (h2 − βh5) + v11 + v02

]
− 1

σ2

[
6β(5βg4,1 − 2g1,1)− 36β2

(
g4,2 − 2βg7,2 + β2g10,2

)
− 1
]
,

iµσ =
α

σ2

[
6βz3

c
(
1− βz3

c
)

2 + 15β2
φ(zc)

FBSN(zc)
+

(
z2

c − 1
)

fBSN(zc)

FBSN(zc)
+

zc f 2
BSN(zc)

F 2
BSN(zc)

]

+
(α− 1)

σ2

[
6β

2 + 15β2 (h3 − βh6) + v21 − v01 + v12

]
− 2

σ2

[
9β(2βg5,1 − g2,1)− 18β2

(
g5,2 − 2βg8,2 + β2g11,2

)
− g1,0

]
,

iµβ = − α

σ

[
2z3

c
(
1− βz3

c
)

2 + 15β2
φ(zc)

FBSN(zc)
+

30β

2 + 15β2
fBSN(zc)

FBSN(zc)
+ Wc

φ(zc) fBSN(zc)

F 2
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]

− (α− 1)
σ

[
2

2 + 15β2 (h2 − βh6) +
30β

2 + 15β2 v01 + u01

]
− 6

σ

[
g2,1 − 2βg3,1 + 2β

(
g5,2 − 2βg8,2 + β2g11,2

)]
,

iµα =
1
σ

fBSN(zc)

FBSN(zc)
+

1
σ

v01, iσα =
1
σ

zc fBSN(zc)

FBSN(zc)
+

1
σ

v11,

iσσ =
α

σ2

[
6βz4

c
(
1− βz3

c
)

2 + 15β2
φ(zc)

FBSN(zc)
+

(
z3

c − 2zc
)

fBSN(zc)

FBSN(zc)
+

z2
c f 2

BSN(zc)

F 2
BSN(zc)

]

+
(α− 1)

σ

[
6β

2 + 15β2 (h4 − βh7) + v31 − 2v11 + v22

]
− 1

σ

[
2β(21βg6,1 − 12g3,1)− 36β2

(
g6,2 − 2βg9,2 + β2g12,2

)
+ 1− 3g1,0

]
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iσβ = − α

σ

[
2z4

c
(
1− βz3

c
)

2 + 15β2
φ(zc)

FBSN(zc)
+

30βzc

2 + 15β2
fBSN(zc)

FBSN(zc)
+

Wczcφ(zc) fBSN(zc)

F 2
BSN(zc)

]

− (α− 1)
σ

[
2

2 + 15β2 (h4 − βh7) +
30β

2 + 15β2 v11 + u11

]
− 6

σ

[
g3,1 − 2βg6,1 + 2β

(
g6,2 − 2βg9,2 + β2g12,2

)]

iββ = −αφ(zc)

[
Uc

FBSN(zc)
− W2

c φ(zc)

F 2
BSN(zc)

]
− (α− 1)(a− b1)

− 2

[
g6,1 − 2

(
g6,2 − 2βg9,2 + β2g12,2

)
−

15
(
2− 15β2)

(2 + 15β2)
2

]
,

iβα = −φ(zc)
Wc

FBSN(zc)
− b1, iαα =

n1

α2 .
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