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Abstract: Unidirectional unsteady flows of the incompressible Burgers’ fluids between two infinite
horizontal parallel plates are analytically studied when the magnetic and porous effects are taken
into consideration. The fluid motion is induced by the two plates, which move in their planes with
time-dependent velocities. Exact general expressions are established both for the dimensionless
velocity and shear stress fields as well as the corresponding Darcy’s resistance in the channel using
the Laplace transform. If both plates move with equal velocities in the same direction, the fluid
motion becomes symmetric with respect to the mid-plane between them. Otherwise, its motion
is non-symmetric. To bring to light the behavior of the fluid, the dimensionless velocity profiles
versus the spatial variable as well as its time evolution are presented both for the symmetric and
asymmetric case. Finally, for comparison, similar graphical representations are presented together for
the velocities of the incompressible Oldroyd-B and Burgers’ fluids. For large values of the time t, as
expected, the behavior of the two different fluids is almost identical. The Darcy’s resistance against y
is also graphically represented for the symmetric flow at different values of the time t. The influence
of the magnetic field on the fluid motion is graphically revealed and discussed.

Keywords: Burgers’ fluids; symmetric and non-symmetric flows; parallel plates; porous media

1. Introduction

Earlier, Burgers [1] developed a one-dimensional linear model whose constitutive
equation is given by the relation

σ + λ1
.
σ + λ2

..
σ = η1

.
ε + η2

..
ε, (1)

where σ is the stress, ε is the one-dimensional strain and λ1, λ2, η1 and η2 are the material
constants. This model was used to characterize the behavior of different viscoelastic
materials such as soil, asphalt and food products such as cheese [2,3]. Lee and Markwick [4]
as well as Saal and Labout [5] have shown that the mechanical behavior of asphalt can be
approximated well enough by the Burgers’ model. It has also been used in determining the
transient creep properties of the Earth’s mantle [6,7] and for the study of high-temperature
viscoelasticity of fine-grained polycrystalline olivine [8].

Unfortunately, the constitutive formula in Equation (1) does not satisfy the objectivity
principle. More exactly, neither the linearized strain nor its material time derivative is
frame-indifferent. A nonlinear three-dimensional generalization of Equation (1), namely

T = −pI + S,
(

1 + α1
δ

δt
+ α2

δ2

δt2

)
S = µ

(
1 + α3

δ

δt

)
(L + LT), (2)

which is frame-indifferent, was proposed by Krishan and Rajagopal [9], who used a ther-
modynamic framework developed by Rajagopal and Srinivasa [10] for modeling rate-type
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viscoelastic fluids. In the above relations, T is the Cauchy stress, −pI is the undetermined
spherical stress due to the constraint of incompressibility, S is the constitutively determined
extra stress tensor, L is the gradient of the velocity field v, µ is the fluid viscosity, α1, α2
and α3 are material constants (material moduli) and the upper convected derivative δ/δt is
defined by

δS
δt

=
dS
dt
− LS− SLT with

dS
dt

=
∂S
∂t

+ [gradS]v. (3)

An exact solution for the velocity field corresponding to the steady motion of such
a fluid in an orthogonal rheometer was obtained by Ravindran et al. [11]. Other exact
solutions, albeit for unsteady motions of the incompressible Burgers’ fluids between two
parallel walls perpendicular to a moving plate or over an infinite plate, were established by
Khan et al. [12] and Safia et al. [13], respectively. If α2 = 0, α2 = α3 = 0 or α1 = α2 = α3 = 0
in Equation (2)2, the corresponding constitutive formula in Equation (2) characterizes
the incompressible Oldroyd-B, Maxwell and Newtonian fluids, respectively. In some
particular cases, like the motions to be considered here, the governing equations for the
Burgers’ fluids resemble those of second grade fluids. Consequently, it is expected for the
present solutions to be easily particularized to give similar solutions corresponding to the
above-mentioned fluids.

Magnetohydrodynamic (MHD) flows between parallel plates have been considerably
investigated due to their extensive applications in science and engineering. Exact solutions
for such motions of the incompressible Newtonian fluids can be found, for instance, in the
book of Schlichting [14] and the review works of Wang [15,16]. The unsteady generalized
Couette flow of the same fluids was studied by Erdogan [17]. The first exact solutions for
the velocity field corresponding to the motions of non-Newtonian fluids (more exactly,
second grade fluids) seem to be those of Rajagopal [18] and Siddiqui et al. [19]. An
interesting mixed initial boundary value problem for Kelvin–Voigt fluids was studied by
Baranovskii [20]. Recently, Fetecau et al. [21,22] determined exact solutions for the velocity
and non-trivial shear stress fields, corresponding to the motions of the incompressible
Maxwell fluids between infinite horizontal parallel plates embedded in a porous medium.
To the best of our knowledge, such solutions for motions of Burgers’ fluids are lacking in
the existing literature.

The purpose of this work is to provide exact solutions for some unsteady MHD flows
of incompressible Burgers’ fluids through a porous medium between infinite horizontal
parallel plates. The fluid motion is generated by plates which move in their planes with
arbitrary time-dependent velocities. Analytical expressions are determined for the dimen-
sionless velocity and shear stress fields as well as the corresponding Darcy’s resistance by
means of Laplace transforms. They satisfy all imposed initial and boundary conditions
and can be easily reduced to the similar solutions corresponding to Oldroyd-B and second
grade fluids. Finally, the velocity profiles versus the spatial variable and its time variation
are graphically depicted and discussed. A comparison with Oldroyd-B fluids, as well as
the variation of the Darcy’s resistance in the channel, is also included.

2. Statement of the Problem and Governing Equations

Let us consider an incompressible electrically conducting Burgers’ fluid at rest in a
porous medium between two infinite horizontal parallel plates at the distance d apart. A
magnetic field of the uniform strength B0 acts perpendicular to the plates. The induced
magnetic field can be neglected if the magnetic Reynolds number is considered to be small
enough. At the moment t = 0+, both plates begin to move in their planes in the same
direction with the time-dependent velocities U f1(t) and U f2(t), where U is a constant
velocity, the functions f1(·) and f2(·) are two derivable times and the following is true:

f1(0) =
.
f 1(0) = 0, f2(0) =

.
f 2(0) = 0. (4)
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The motion of incompressible Newtonian fluids between two infinite horizontal
parallel plates, which at the moment t = 0+ began to move in their planes with the same
constant velocity U, was studied by Erdogan [17]. Owing to the shear, the fluid begins
to move and, since the plates are boundless, all physical entities characterizing the fluid
motion are functions of y and t only in a suitable Cartesian x, y and z coordinate system
whose y axis is perpendicular to the plates.

Following Khan et al. [23], we are looking for a velocity field of the following form:

v = v(y, t) = u(y, t)i, (5)

where i is the unit vector along the x direction of the coordinate system. If the fluid and the
whole system are at rest at the moment t = 0, we assume that

v(y, 0) =
∂v(y, t)

∂t

∣∣∣∣
t=0

=
∂2v(y, t)

∂t2

∣∣∣∣
t=0

= 0, S(y, 0) =
∂S(y, t)

∂t

∣∣∣∣
t=0

= 0, for 0 ≤ y ≤ d. (6)

By introducing the velocity field v(y, t) from Equation (5) into Equation (2)2 and
keeping in mind the initial conditions from Equation (6), it is not difficult to prove that
the components Sxz, Syy, Syz and Szz of the extra stress tensor S are zero (see for instance
Fetecau et al. [24]), while the non-trivial shear stress τ(y, t) = Sxy(y, t) has to satisfy the
following differential equation:(

1 + α1
∂

∂t
+ α2

∂2

∂t2

)
τ(y, t) = µ

(
1 + α3

∂

∂t

)
∂u(y, t)

∂y
. (7)

The continuity equation is clearly satisfied, while the balance of the linear momentum,
in the absence of a pressure gradient in the flow direction, reduces to the following partial
differential equation [23]:

ρ
∂u(y, t)

∂t
=

∂τ(y, t)
∂y

− σ0B2
0u(y, t) + R(y, t), (8)

where ρ is the constant density of the fluid, σ0 is its electrical conductivity and the Darcy’s
resistance R(y, t) has to satisfy the next differential equation [23, Equation (8)]:(

1 + α1
∂

∂t
+ α2

∂2

∂t2

)
R(y, t) = −µφ

k

(
1 + α3

∂

∂t

)
u(y, t), (9)

where the constants k and φ represent the porous medium permeability and its porosity,
respectively.

By eliminating τ(y, t) between Equations (7) and (8), and bearing in mind Equation (9)
for R(y, t), the following partial differential equation for the dimensional velocity field
u(y, t) is obtained:(

1 + α1
∂
∂t + α2

∂2

∂t2

)
∂u(y,t)

∂t = ν
(

1 + α3
∂
∂t

)
∂2u(y,t)

∂y2

− σ0B2
0

ρ

(
1 + α1

∂
∂t + α2

∂2

∂t2

)
u(y, t)− νφ

k

(
1 + α3

∂
∂t

)
u(y, t); 0 < y < d, t > 0.

(10)

In the above relation, ν = µ/ρ is the kinematic viscosity of the fluid. The correspond-
ing initial and boundary conditions are (see also Equation (6) for the velocity field)

u(y, 0) =
∂u(y, t)

∂t

∣∣∣∣
t=0

=
∂2u(y, t)

∂t2

∣∣∣∣
t=0

= 0; 0 ≤ y ≤ d, (11)

u(0, t) = U f1(t), u(d, t) = U f2(t); t > 0. (12)
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By using the next non-dimensional variables and functions

y∗ = y
d , t∗ = ν

d2 t , u∗ = u
U , τ∗ = τ

ρU2 , R∗ = k
µφU R,

f ∗1 (t
∗) = f1

(
d2t∗

ν

)
, f ∗2 (t

∗) = f2

(
d2t∗

ν

)
,

(13)

in the governing expression in Equation (10) and dropping the star notation, the following
initial and boundary value problem results in the non-dimensional velocity field u(y, t):(

1 + α ∂
∂t + β ∂2

∂t2

)
∂u(y,t)

∂t =
(

1 + γ ∂
∂t

)
∂2u(y,t)

∂y2

−M
(

1 + α ∂
∂t + β ∂2

∂t2

)
u(y, t)− K

(
1 + γ ∂

∂t

)
u(y, t); 0 < y < 1, t > 0,

(14)

u(y, 0) =
∂u(y, t)

∂t

∣∣∣∣
t=0

=
∂2u(y, t)

∂t2

∣∣∣∣
t=0

= 0; 0 ≤ y ≤ 1, (15)

u(0, t) = f1(t), u(1, t) = f2(t); t > 0. (16)

In order to determine the dimensionless frictional force per unit area exerted by the
fluid on the stationary plate, the non-trivial shear stress τ(y, t), for instance, has to be
determined. To do that, the following differential equation with the initial conditions(

1 + α
∂

∂t
+ β

∂2

∂t2

)
τ(y, t) =

1
Re

(
1 + γ

∂

∂t

)
∂u(y, t)

∂y
; 0 < y < 1, t > 0, (17)

τ(y, 0) =
∂τ(y, t)

∂t

∣∣∣∣
t=0

= 0; 0 ≤ y ≤ 1, (18)

has to be solved. In the above relation, Re = Ud/ν is the Reynolds number, and the
dimensionless constants α, β, γ, M and K are defined by the following equalities:

α =
να1

d2 , β =
ν2α2

d4 , γ =
να3

d2 , M =
σ0B2

0
µ

d2, K =
φ

k
d2. (19)

The non-dimensional form of Equation (9) is given by the following equality function:(
1 + α

∂

∂t
+ β

∂2

∂t2

)
R(y, t) = −

(
1 + γ

∂

∂t

)
u(y, t); 0 < y < 1, t > 0. (20)

In addition, the appropriate initial conditions for the dimensionless Darcy’s resistance
R(y, t) are

R(y, 0) =
∂R(y, t)

∂t

∣∣∣∣
t=0

= 0; 0 ≤ y ≤ 1. (21)

3. Solution of the Problem

In the following, we shall solve the initial and boundary value problems from Equa-
tions (14–16) and the ordinary differential Equations (17) and (20) with the corresponding
initial conditions by using the Laplace transform technique.

3.1. Closed Form Expression for the Velocity Field u(y, t)

By applying the Laplace transform to the equality in Equation (14) and bearing in
mind the initial and boundary conditions in Equations (15) and (16), one obtains for the
Laplace transform u(y, s) of u(y, t) the following boundary value problem:

∂2u(y, s)
∂y2 − ψ(s)u(y, s) = 0; u(0, s) = f 1(s), u(1, s) = f 2(s). (22)
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In the above equation, the function ψ(s) is defined by the following relation:

ψ(s) = a1s2 + a2s + a3 + a4/(s + a0). (23)

In addition, the constants a0, a1, a2, a3 and a4 are given by the following equalities:

a0 = 1
γ , a1 = β

γ , a2 = (α+βM)γ−β

γ2 , a3 = Kγ3+(1+αM)γ2−(α+βM)γ+β

γ3 ,

a4 = Mγ3−(1+αM)γ2+(α+βM)γ−β

γ4 .
(24)

The solution of the boundary value problem in Equation (22) is given by the relation

u(y, s) =
sin h[(1− y)

√
ψ(s)]

sin h(
√

ψ(s))
f 1(s) +

sin h[y
√

ψ(s)]

sin h(
√

ψ(s))
f 2(s). (25)

In order to determine the inverse Laplace transform of the right member of Equation (25),
we rewrite u(y, s) in the following equivalent but suitable form:

u(y, s) = F1(s)A(y, s) + F2(s)B(y, s), (26)

where F1(s) = f 1(s)ψ(s), F2(s) = f 2(s)ψ(s) and

A(y, s) =
sin h[(1− y)

√
ψ(s)]

ψ(s)sin h(
√

ψ(s))
, B(y, s) =

sin h[y
√

ψ(s)]

ψ(s)sin h(
√

ψ(s))
. (27)

As the functions f1(·) and f2(·) satisfy the conditions of Equation (4), the result is that
the inverse Laplace transforms F1(t) and F2(t) of F1(s) and F2(s), respectively, are given
by the following relations:

F1(t) = a1
..
f 1(t) + a2

.
f 1(t) + a3 f1(t) + a4 f1(t) ∗ e−a0t, (28)

F2(t) = a1
..
f 2(t) + a2

.
f 2(t) + a3 f2(t) + a4 f2(t) ∗ e−a0t, (29)

where the star notation “∗” means the convolution product of the two functions.
To determine the inverse Laplace transforms A(y, t) and B(y, t) of A(y, s) and B(y, s),

respectively, let us introduce the following auxiliary function:

F(s, a) = sin h(a
√

s)
s sin h(

√
s) =

e(a−1)
√

s−e−(a+1)
√

s

s[1−exp(−2
√

s)] = e(a−1)
√

s−e−(a+1)
√

s

s

∞
∑

k=0
e−2k

√
s

=
∞
∑

k=0

e−(2k+1−a)
√

s−e−(2k+1+a)
√

s

s ,
(30)

whose inverse Laplace transform F(t, a) (see Equation (A1) from Appendix A) is as follows:

F(t, a) = L−1{F(s, a)
}
=

∞

∑
k=0

[
erfc

(
2k + 1− a

2
√

t

)
− erfc

(
2k + 1 + a

2
√

t

)]
. (31)

Since A(y, s) = F
(
ψ(s), 1− y

)
and B(y, s) = F

(
ψ(s), y

)
, the result is that [25]

A(y, t) =
∞∫

0

F(z, 1− y)h(z, t)dz, B(y, t) =
∞∫

0

F(z, y)h(z, t)dz, (32)
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where the function h(z, t) (see Equations (A2) and (A3) from Appendix A) is given by the
following expression:

h(z, t) = (1 + a0t− a0a2z)e−a3z ∗ J0(2
√

a4tz) e−a0t ∗Φ(t,−a1z). (33)

This is the inverse Laplace transform of exp[− zψ(s)
]
. In the above relation, J0(·)

is the standard Bessel function of the first kind of zero order and the function Φ(t, ·) is
defined in Appendix A. Of course, knowing the functions F1(t), F2(t), A(y, t) and B(y, t),
the result is that the non-dimensional velocity field u(y, t) is given by the following relation
(see the equality in Equation (26)):

u(y, t) = F1(t) ∗ A(y, t) + F2(t) ∗ B(y, t). (34)

3.2. Determination of the Non-Trivial Shear Stress τ(y, t)

Once the velocity field u(y, t) is known, the dimensionless non-null shear stress τ(y, t)
can be determined using the ordinary differential Equation (17) with the initial conditions
from Equation (18). Consequently, by applying the Laplace transform to Equation (17) and
bearing in mind the conditions in Equation (18), the result is that the Laplace transform
τ(y, s) of τ(y, t) is given by the next equality:

τ(y, s) =
1

Re
T(s)

∂u(y, s)
∂y

, (35)

where

T(s) =
γs + 1

βs2 + αs + 1
=

γ

β

{
s + α/(2β)

[s + α/(2β)]2 − b2
+

2β− αγ

2bβγ

b

[s + α/(2β)]2 − b2

}
, (36)

and where b =
√

α2 − 4β/(2β). Based on the equalities in Equation (A4) from Appendix A,
it is not difficult to show that the inverse Laplace transform T(t) of T(s) has the following
simple form:

T(t) =
γ

β

[
cos h(bt) +

2β− αγ

2bβγ
sinh(bt)

]
e−

αt
2β . (37)

From Equation (26), the result is the following:

∂u(y, s)
∂y

= −F1(s)C(y, s) + F2(s)D(y, s), where (38)

C(y, s) =
cos h[(1− y)

√
ψ(s)]√

ψ(s) sin h(
√

ψ(s))
, D(y, s) =

cos h[y
√

ψ(s)]√
ψ(s) sin h(

√
ψ(s))

. (39)

Let us now introduce a new auxiliary function, specifically

G(s, a) = cos h(a
√

s)√
s sin h(

√
s) =

e(a−1)
√

s+e−(a+1)
√

s
√

s[1−exp(−2
√

s)] = e(a−1)
√

s+e−(a+1)
√

s
√

s

∞
∑

k=0
e−2k

√
s

=
∞
∑

k=0

e−(2k+1−a)
√

s+e−(2k+1+a)
√

s
√

s ,
(40)

whose inverse Laplace transform is (see Equation (A1)2)

G(t, a) =
1√
πt

∞

∑
k=0

[
exp

(
− (2k + 1− a)2

4t

)
+ exp

(
− (2k + 1 + a)2

4t

)]
. (41)



Symmetry 2021, 13, 1109 7 of 13

Since C(y, s) = G
(
ψ(s), 1− y

)
and D(y, s) = G

(
ψ(s), y

)
, the result is that the inverse

Laplace transforms C(y, t) and D(y, t) of C(y, s) and D(y, s), respectively, are given by the
following relations (see, for instance, [25]):

C(y, t) =
∞∫

0

G(z, 1− y)h(z, t)dz, D(y, t) =
∞∫

0

G(z, y)h(z, t)dz, (42)

where the function h(z, t) is given by Equation (33). Consequently, the derivative of u(y, t)
with respect to y is given by the following relation:

∂u(y, t)
∂y

= −F1(t) ∗ C(y, t) + F2(t) ∗ D(y, t). (43)

Additionally, the dimensionless shear stress has the following expression (see
Equation (35)):

τ(y, t) =
1

Re
T(t) ∗ [ F2(t) ∗ D(y, t)− F1(t) ∗ C(y, t)] . (44)

3.3. Closed Form Expression for the Dimensionless Darcy’s Resistance R(y, t)

By applying the Laplace transform to Equation (20) and taking into account the initial
conditions of Equation (21), the result is that the inverse Laplace transform R(y, s) of R(y, t)
is given by the following relation:

R(y, s) = − γs + 1
βs2 + αs + 1

u(y, s) = −T(s)u(y, s). (45)

Consequently, the non-dimensional Darcy’s resistance in the channel is given by the
following relation:

R(y, t) = −T(t) ∗ u(y, t). (46)

4. Some Numerical Results and Discussion

General expressions have been previously determined for the dimensionless velocity,
shear stress and Darcy’s resistance, corresponding to the unsteady MHD flow of the
incompressible Burgers’ fluids between two infinite horizontal parallel plates embedded
in a porous medium. The main purpose of this section is to apply the obtained results
to two specific cases, namely when f1(t) = 3h(t), f2(t) = 2h(t) and f1(t) = f2(t) = h(t)
with h(t) = (1− e−t)(1− e−2t) corresponding to non-symmetric and symmetric flows,
respectively, with regard to the median plane between plates. In order to obtain the
numerical values and the corresponding graphical representations of the non-dimensional
velocity u(y, t) and the Darcy’s resistance R(y, t) given by the equalities in Equations (34)
and (46), respectively, Mathcad 15 software was used to generate Figures 1–9.

In Figure 1, the profiles of the non-symmetric velocity u(y, t) versus y at several
values of the time t are presented. The velocities of the two walls of the channel slightly
increased from zero to constant velocities of three and two at high values of the time t.
Their movement generated the fluid’s motion and the velocity profiles change in space and
time. At small values of time t, the fluid moved slower in the central area of the channel,
but the opposite behavior appeared later. In addition, the curves representing the fluid
velocity were asymmetric with respect to the symmetry plane y = 1/2 of the channel.
Furthermore, the fluid located in the lower semi-channel moved faster than the fluid from
the upper semi-channel. Of course, this behavior was due to the fact that the speed of the
lower plate was higher than the velocity of the upper one.
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The time evolution of the fluid velocity at the middle of the channel (y = 0.5) and in
two symmetric positions with regard to the symmetry plane of the channel, namely where
y = 0.2 and y = 0.8, is depicted in Figure 2. The non-symmetric aspect of the fluid velocity
is clearly seen from the respective diagrams. It can also be observed that for large values of
time t, the fluid velocity tended to be hold at constant asymptotic values because the walls’
velocities approached u(0, ∞) = lim

t→∞
f1(t) = 3 or u(1, ∞) = lim

t→∞
f2(t) = 2.

Figures 3 and 4 were sketched for the flow of the fluid induced by the channel’s walls,
which moved in their planes with equal velocities in the same direction. As expected,
in this case, the velocity profiles were symmetric with respect to the median plane of
the channel. Like in Figure 1, as was to be expected, the fluid velocity increased over
time. The symmetry property of the flow in this case is also highlighted in Figure 4,
which clearly shows that the velocity’s diagrams corresponding to the symmetric positions
are identical. In all these figures, we used the same numerical values for the dimen-
sionless parameters, namely a0 = 0.1, a1 = 2, a2 = −0.7, a3 = 0.2 and a4 = −0.8.
For comparison, the velocities’ profiles corresponding to the Oldroyd-B (α2 = 0) and
Burgers’ fluids against y and their time evolutions at the middle of the channel are pre-
sented together in Figures 5 and 6. The values of the non-dimensional material coeffi-
cients which were used here were a0 = 1, a1 = 0, a2 = 0.05, a3 = 2.192, a4 = −0.143 and
a0 = 1, a1 = 0.3, a2 = 0.005, a3 = 2.237, a4 = −0.188 for the Oldroyd-B and Burgers’
fluids, respectively. At small values of time t, as is apparent from the results from the
graphical representations, the Burgers’ fluid flowed slower than the Oldroyd-B fluid, but
this behavior changed many times later. Figure 6 clearly shows that, as expected, for large
values of time t, the velocities of the two fluids became almost identical.

In Figure 7, the Darcy’s resistance R(y, t) versus y is depicted for the symmetric case
at different values of time t. At the beginning of the motion (up to a critical value of t being
less than one), the Darcy’s resistance was a decreasing function with respect to time t, but
its behavior changed over time. As expected, it was symmetric with respect to the median
plane y = 1/2 and took on the minimum values on the lateral walls. For the parameters
a0, a1, a2, a3 and a4, the same values as for Figures 1–4 were used.

Finally, the profiles of the velocity field u(y, t) versus the spatial variable y and its time
variations at the middle of the channel are presented in Figures 8 and 9, respectively, for
the symmetric flow at several values of the non-dimensional magnetic parameter M. From
these graphical representations, it is clear that the fluid velocity had a decreasing function
with respect to the parameter M. This was possibly due to the application of a transverse
magnetic field inducing a resistive force of a Lorentz type, which tends to reduce the fluid
velocity. From Figure 9, as well as from Figures 2, 4 and 6, it is clearly shown that at large
values of time t, the fluid velocity tended toward constant, asymptotic values. The values
of the parameters a0, a1, a2, a3 and a4 from the equalities of Equation (24) which have been
used here corresponded, respectively, to α = 0.05, β = 0.3, γ = 1 and K = 1.2.

5. Conclusions

In this work, some unsteady flows of the incompressible Burgers’ fluids between
infinite horizontal parallel plates were analytically studied using the Laplace transform
technique. Exact general solutions were established both for the dimensionless velocity and
the shear stress fields as well as the corresponding Darcy’s resistance when the magnetic
and porous effects were taken into consideration. In order to bring to light some physical
insight of the results that were obtained here, a few graphical representations were provided
for the symmetric and asymmetric flows with respect to the median plane of the channel.
In both cases, at small values of the dimensionless time t, the fluid moved slower in the
central area of the channel, but the opposite behavior was observed after a critical value
between 1.2 and 1.4. Moreover, for the values of the dimensionless time t greater than
five, the fluid velocity tended toward constant asymptotic values for each y belonging
to (0,1), and the fluid motion became steady. A comparison between the behavior of the
Oldroyd-B and Burgers’ fluids showed that the diagrams corresponding to their velocities
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were almost identical for when t was greater than 2.7. This is not a surprise because, as
was already known from the existing literature, at large values of time t, the behavior of
the non-Newtonian fluids can be well enough described by that of the Newtonian fluids.
The Darcy’s resistance is a decreasing function with regard to time t up to a critical value
less than one when it begins to increase.

The influence of the magnetic field on the fluid velocity was revealed in the last two
figures for the symmetric flow. It was found that, as expected, an increase of the magnetic
parameter M involved a decrease of the fluid velocity. This behavior was due to a restrictive
force similar to the drag force that tends to reduce the fluid velocity.
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Nomenclature

T Cauchy stress tensor
S Extra stress tensor
L Velocity gradient
I Identity tensor
v Velocity vector
p [kg·m−1·s−2] Pressure
x, y, z [m] Cartesian coordinates
u(y, t) [m·s−1] Fluid velocity
U [m·s−1] Constant velocity
R [kg·m−2·s−2] Darcy’s resistance
k [m2] Medium porosity
Re Reynolds number
M Non-dimensional magnetic parameter
K Non-dimensional porosity parameter
α1, α3 [s] Material constants
α2 [s2] Material constant
σ0 [S·m−1] Electrical conductivity
ν [m2·s−1] Kinematic viscosity
ρ [kg·m−3] Fluid density
µ [Kg·m−1·s−1] Dynamic viscosity
φ Porous medium permeability
τ [Kg·m−1·s−2] Shear stress
α, β, γ Non-dimensional constants

Appendix A

The following are known identities, denoting with L−1
{

f (s)
}

the inverse Laplace

transform of the function f (s):

L−1
{

1
s exp(−a

√
s
)}

= erfc
(

a
2
√

t

)
, L−1

{
1√

s exp(−a
√

s
)}

= 1√
π t

exp
(
− a2

4t

)
, (A1)

L−1
{

1
s

exp
(
− a

s

)}
= J0(2

√
at) , L−1{e−as} = δ(t− a) , (A2)
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L−1
{

s2exp(as2
)}

=
∞

∑
n=0

an

2(n + 1)!(2n + 1)!

∞∫
0

u2(n+1) J0(2
√

tu)du = Φ(t, a) , (A3)

L−1
{

s
s2 − a2

}
= cos h(at) , L−1

{
a

s2 − a2

}
= sin h(at) , (A4)

where δ(·) is the Dirac’s distribution, having been used in the manuscript.
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