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Abstract: In this article, we report phenomenological studies about the impact of O(α) corrections
to diphoton production at hadron colliders. We explore the application of the Abelianized version
of the qT-subtraction method to efficiently compute NLO QED contributions, taking advantage of
the symmetries relating QCD and QED corrections. We analyze the experimental consequences due to
the selection criteria and we find percent-level deviations for Mγγ > 1 TeV. An accurate description
of the tail of the invariant mass distribution is very important for new physics searches which have
the diphoton process as one of their main backgrounds. Moreover, we emphasize the importance of
properly dealing with the observable photons by reproducing the experimental conditions applied to
the event reconstruction.

Keywords: diphoton production; QCD corrections; NLO calculations; QED effects

1. Introduction

Direct photon production in hadronic collisions provides an excellent opportunity
to test Standard Model (SM) predictions and explore potential new physics effects, due
to its very clean experimental signature. Photons are also very relevant to study the in-
ternal structure of colliding particles [1,2] because they can shed light on the parton level
kinematics, leading to new interesting paths to unveil the hidden symmetries of nature.

In this phenomenological context, one process of special relevance is the production of
a pair of prompt photons (i.e., diphoton production), which was one of the key channels for
the discovery of a new particle compatible with the SM-Higgs boson [3,4]. This indicates
that direct photon production might also play an important role in the precision physics
program for future colliders [5–13].

Due to its relevance, the direct diphoton production has been extensively studied
and its perturbative corrections were computed in several models. At the lowest order
(LO), only the qq̄ partonic channel is available. The first quantitative correction appears at
the next-to-leading order (NLO) in the strong coupling constant αS [14–17], which includes
the qg channel and provides a noticeable enhancement due to the gluonic luminosity
in the low-x region. At the next-to-next-to-leading order (NNLO) in αS (i.e., O(α2

S)), the gg
channel becomes available. Its contribution is comparable to the Born cross-section, but
the total NNLO correction is still dominated by the qg channel. The NNLO QCD corrections
were first calculated in Ref. [18] and later in Ref. [19]. The QCD resummed corrections
have been recently obtained up to NNLL accuracy [20], thus improving the phenomeno-
logical description by including the effects due to low-energy gluon radiation. Recently,
articles on diphoton production at NNLO were published, studying in detail the isolation
criteria [21–28], the weight of the fragmentation component [21,22,24,26], the reliability
of the prediction under symmetric cuts on single final photons [21], the scale sensitivity
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of the process and the hybrid isolation criteria [29,30], among other features of this im-
portant process. In addition, the diphoton background could be potentially interesting as
an indirect measurement of the top-quark mass [31,32].

Besides the direct photon production from the hard subprocess, photons can be gener-
ated through the fragmentation mechanism, which involves non-perturbative transitions
from QCD partons. The complete NLO single- and double-fragmentation contributions are
implemented in DIPHOX [14]. The measured photon cross-sections use isolation prescrip-
tions in order to reduce the large reducible background (associated to photons that are faked
by jets or produced by hadron decays). Two of these prescriptions are the standard cone
isolation and the smooth cone isolation [33] prescriptions. While measured cross-sections
rely on the standard cone criterion, theoretical calculations can be greatly simplified with
the smooth cone prescription. It is worth noticing that both algorithms produce similar
results [22,34] for those isolation parameters implemented by the experiment.

Other important effect to be considered in the context of photon production is the pres-
ence of electroweak (EW) corrections. Leaving aside the large gluon luminosity at the LHC,
a simple power counting shows that the NLO QED corrections could compete with
the NNLO QCD contributions because α2

S ≈ α. For this reason, the higher-order QED
and EW effects deserve a serious treatment. Several studies about the EW corrections to
gauge boson production [35–40] and diphoton production [41–44] showed small but still
non-negligible contributions, which might play a crucial role in the context of the preci-
sion physics program. Moreover, we have explored the impact of pure QED and mixed
QCD-QED corrections in the DGLAP equations [45–47] and we found that they could
provide non-negligible effects to the PDF evolution. In particular, the NLO QED correc-
tions to the diphoton production process are sensitive to the photon PDF through the qγ
channel, which might propagate the information related to this distribution to the final
cross-section result.

From the point of view of new physics searches, the high-energy region of the diphoton
spectrum could be used to impose constraints on many models. Since no new particles
are predicted by the SM beyond the TeV scale, the inclusion of higher-order EW and
QCD effects could only lead to an enhancement/decrease of the distributions without
introducing any peak. Thus, a proper understanding of all the SM effects for this region
might allow to impose tighter constraints to BSM models involving a continuum spectrum
at high-energies (for instance, large extra-dimensions or Randall–Sundrum with composite
fermions [48]).

The purpose of this article is to describe interesting phenomenological features of
the NLO QED corrections to diphoton production, which might be useful for deeper studies
of this process including higher-order mixed QCD-EW corrections. We start in Section 2
describing the theoretical framework used to perform the computation, centering the dis-
cussion in the different partonic channels contributing to the process. Special emphasis
is put on the treatment of the electromagnetic coupling, because it leads to noticeable
corrections to the theoretical predictions. Then, in Section 2.1, we explain the experimental
cuts applied, focusing on the photon isolation and reconstruction algorithms. In Section 3,
we present our predictions for LHC, highlighting the effects due to the ordering algo-
rithms used to deal with the radiated photons. Besides that, we briefly comment about
the implementation of a clustering (i.e., merging) algorithm for reconstructing the photons
and the dependence of the results on the use of different PDF sets, and the photon PDF
in particular. Finally, in Section 4 we present our conclusions and a brief discussion about
the importance of higher-order QED corrections in future experiments.
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2. Computational Details

In our calculations we focus on the differential cross-section for the production of
a prompt-diphoton system in hadron-hadron collisions. By virtue of the factorization
theorem, the differential NLO QED cross-section for the process pp→ γγ + X is given by

σγγ = ∑
a,b

∫
dx1dx2 dPS2→2 S2 fa/h(x1, µ2

F) fb/h(x2, µ2
F)
(

dσ
(0,0)
ab→γγ + dσ̂

(0,1)
ab→γγ

)
+ ∑

a,b,c

∫
dx1dx2 dPS2→3 S3 fa/h(x1, µ2

F) fb/h(x2, µ2
F) dσ̂

(0,0)
ab→γγ+c +O(α2) , (1)

where fa/h(xi, µ2
F) denotes the PDF for partons of flavor a = {q, g, γ} to be found inside

the hadron h, xi are the longitudinal momentum fractions and µF is the factorization scale.
Additionally, we introduced the supraindices (i, j) to denote the perturbative expansion
in QCD-QED; explicitly, (i, j) corresponds to the O(αi

S αj) correction to the Born process.

dσ
(0,0)
ab→γγ is the Born cross-section, dσ

(0,1)
ab→γγ contains the QED one-loop finite correction to

the LO and dσ̂
(0,0)
ab→γγ+c are the real corrections to the Born subprocess due to QED extra-

radiation, where the symbol dσ̂ denotes the regularized partonic cross-section, i.e., without
the infrared (IR) and ultraviolet (UV) singularities. In Equation (1), Si is the measurement
function that defines the IR-safe observable at parton level for the Born (i = 2) and real-
radiation (i = 3) kinematics. At Born-level, the only available subprocess is qq̄ → γγ,
whilst the real-radiation contributions at NLO are associated to the subprocesses

qq̄→ γγγ , qγ→ γγq , (2)

therefore the sum performed over the c parameter in Equation (1) refers to the precedent
two channels. Notice that, atO(α3), the qγ channel starts to contribute and the cross-section
becomes sensitive to the photon PDF.

In order to explicitly implement this computation numerically, we must properly
define the regularized cross-sections, which implies canceling the UV divergences through
renormalization and the IR singularities with a proper real-virtual combination. To tackle
the IR regularization, we will rely on the qT-subtraction formalism [49,50], accordingly
modified to deal with QED corrections in a fully consistent way. Within this formalism,
the cross-section associated to the production of any neutral final state F with transverse
momentum qT is separated into a regular and a singular contribution in the limit qT → 0.
Whilst the regular part is finite and process-dependent, the singular contribution possesses
a universal structure, given by [50]

dσ
(sing.)
F

d2qT
= ∑

c= f , f̄ ,γ,g
[dσcc̄→F]

∫ d2b
(2π)2 eıb·qT Sc(b)

× ∑
a1,a2

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
[HF C1 C2]cc̄;a1a2

fa1/h(x1/z1, b2
0/b2) fa2/h(x2/z2, b2

0/b2) , (3)

where Sc is the Sudakov form factor, [HF C1C2]cc̄,a1a2 is the hard-collinear factor and
[dσcc̄→F] is related to the Born level cross-section. The Sudakov factor embodies all the in-
formation related with the emission of low-energy photons from the parton c entering
in the hard-process cc̄ → F. It is obtained from the exponentiation of photon emissions,
and is given by

Sc(Q, b) = exp

{
−
∫ Q2

b2
0/b2

dq2

q2

[
Ac(α(q2)) log

(
Q2

q2

)
+ Bc(α(q2))

]}
, (4)

which depends on the flavor of the parent parton c and the resummation coefficients
Ac(α) and Bc(α). In Equation (4), Q2 is evaluated at scales typically present in the hard
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process, b is the impact parameter and b0 = 2eγE (where γE = 0.5772 . . . is the Euler–
Mascheroni constant). The resummation coefficients Ac(α) and Bc(α) can be computed
in perturbation theory,

Ac(α) =
∞

∑
n=1

( α

π

)n
A(0,n)

c , Bc(α) =
∞

∑
n=1

( α

π

)n
B(0,n)

c . (5)

It is worth noticing that these ideas can be applied for dealing with a mixed QCD-QED
expansion, which justifies the inclusion of a double-superscript to keep track of the pertur-
bative order in each theory [40]. In the case c = q, the first terms of the expansions are

A(0,1)
q = e2

q , B(0,1)
q = −3

2
e2

q , (6)

with eq the electromagnetic (EM) charge of the quark q; A(0,1)
c = B(0,1)

c = 0 for c = {g, γ}.
For the purpose of computing NLO QED corrections, we only need A(0,1)

q : the remaining
higher-order coefficients are available in Refs. [40,51].

On the other hand, the symbolic factor
[
HF C1C2

]
in Equation (3) for the qq̄ annihila-

tion channel is given by[
HF C1C2

]
qq̄;a1a2

= HF
q (x1 p1, x2 p2; α(Q2)) Cq a1(z1; α(b2

0/b2)) Cq̄ a2(z2; α(b2
0/b2)) , (7)

where the functions Cq a are universal and the renormalised hard function HF
q contains

process-dependent contributions related to the virtual amplitudes. In both cases, they can
be expanded in perturbative series, i.e.,

HF
q (x1 p1, x2 p2; α) = 1 +

∞

∑
n=1

( α

π

)n
H(0,n)

F,q (x1 p1, x2 p2) , (8)

Cq a(z; α) = δq a δ(1− z) +
∞

∑
n=1

( α

π

)n
C(0,n)

q a (z) , (9)

where we are using the double-superscript notation mentioned before. The only non-
vanishing C(0,1) coefficients are

C(0,1)
qq (z) =

e2
q

2
(1− z) , C(0,1)

γq (z) =
e2

q

2
z , C(0,1)

qγ (z) = NC e2
q z(1− z) , (10)

with NC = 3 the number of colors. It is worth emphasizing that the structure of Equation (7)
is different when dealing with vector particles (i.e., c = g or c = γ) due to the presence of
spin correlations. More details about the mixed QCD-QED qT-subtraction/resummation
formalism can be found in Refs. [40,51].

For the particular case of the diphoton production, we can show that the differential
cross-section can be written as

dσ
(0,1)
γγ = H(0,1)

γγ ⊗ dσ
(0,0)
γγ +

[
dσ

(0,0)
γγ+X − dσ

(0,1)
CT

]
, (11)

where the finite process-dependent pieces coming from the virtual amplitudes (and
the Born cross-section) are contained in the hard coefficient functionH(0,1)

γγ . In this equation,
the symbol ⊗ is understood as a convolution of momentum fractions and sum over flavour
indices of the partons [49–51]. dσ

(0,0)
γγ+X includes the QED real-radiation contributions and

dσ
(0,1)
CT denotes the subtraction counter-terms, which are obtained through a perturbative

expansion of Equation (3) and collecting the corresponding O(α) terms.
While in the QCD formalism the undetected final state X can contain any number

of QCD partons (i.e., quarks and/or gluons), in the QED case X contains any number of
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photons. The two terms in the r.h.s. of Equation (11) are finite, which implies that they can
be numerically computed. However, both dσ

(0,0)
γγ+X and dσ

(0,1)
CT diverge in the limit where

the transverse-momentum of the system γγ vanishes (i.e., pγγ
T → 0). The hard coefficient

H(0,1)
γγ is extracted in a process-independent way from the O(α) process-dependent correc-

tions to the scattering amplitudes. In this case, the only contribution to this hard coefficient
comes from the qq̄ channel. Thus, the regularized hard coefficient is given by

H(0,1)
γγ,q(v) =

e2
q

2

{
(π2 − 7) +

1
(1− v)2 + v2

[(
(1− v)2 + 1

)
log2(1− v)

+vs.(v + 2) log(1− v) +
(

v2 + 1
)

log2(v) + (1− v)(3− v) log(v)
]}

, (12)

with v = −û/ŝ the ratio of the partonic Mandelstam variables. This expression is obtained
from the hard factor provided in Ref. [50] after applying the Abelianization algorithm
described in Refs. [45,46].

Finally, it is important to mention that we are using nF = 5 massless quarks as active
flavors and we include all the SM charged-fermions inside any closed fermionic loops. To
be more precise, the QED beta function reads

d log(α(q2))

d log(q2)
= −βQED

0 α(q2) +O(α2(q2)) , (13)

βQED
0 = −

N(2)
f

3π
, N(2)

f = NC ∑
q

e2
q + ∑

l
e2

l , (14)

where q (l) denotes all the possible flavors of quarks (leptons) in the SM with their corre-
sponding EM charges, eq (el).

2.1. Event Selection, Isolation Prescription and Setup of the Calculation

The present NLO QED computation is implemented by modifying the numerical
program 2γNNLO [18], which originally includes up to NNLO QCD corrections to prompt-
diphoton production. At this perturbative order in QED, the Born + virtual component
only contains two photons, whilst the real-emission part introduces contributions with
up to three observable photons in the final state (i.e., through the subprocess qq̄→ γγγ).
Since we are interested in computing pp→ γγ + X, we order the transverse-momenta of
the triphoton system, thus reproducing the selection criteria applied by the experiment
in direct diphoton measurements. It is interesting to emphasize that the momentum
ordering of the photons introduces a dynamical cut in the available real-emission phase
space, as we will explain in Section 3.

As it was stated in the Introduction, we apply the smooth cone isolation prescription [33].
This criterion differs from the one applied by the experiment (standard cone) but, for
commonly used isolation parameters by the LHC, both criteria lead to similar results [22,34].
Explicitly, given a final state photon, we build a cone around it, whose radius in the (η− φ)
plane is

r =
√
(∆η)2 + (∆φ)2 , (15)

where we are using the well-known notation η and φ for the pseudo-rapidity and azimuthal
angle, respectively (see Ref. [21] for more details). Then, we require that the partonic energy
deposited inside the cone fulfils [33]

ET(r) ≤ ET,max

(
1− cos(r)

1− cos(∆R)

)n
, (16)
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with ∆R ≥ r the radius of the fixed outer cone used to initialize the isolation algorithm,
ET,max the maximum allowed deposited transverse energy and n an arbitrary isolation
parameter. In this work, we choose n = 1.

We show results for two different center-of-mass energies using the guidelines applied
by the ATLAS and CMS experiments. Explicitly, for

√
s = 7 TeV, we choose those events

where pharder
T ≥ pH = 25 GeV and psofter

T ≥ pS = 22 GeV, restricting both photon rapidities
to satisfy |yγ| ≤ 1.37 and 1.52 ≤ |yγ| ≤ 2.37 [52]. The isolation parameter was fixed to
ET,max = 4 GeV. On the other hand, for

√
s ≥ 13 TeV we required pharder

T ≥ pH = 40 GeV
and psofter

T ≥ pS = 30 GeV whilst the rapidity range was slightly modified to |yγ| ≤ 1.37
and 1.56 ≤ |yγ| ≤ 2.37, and we imposed ET,max = 11 GeV in the isolation criterion [53].
For all these setups, the separation between the hardest photons in the (η− φ), ∆Rγγ plane
must to be greater than ∆R = 0.4.

In order to reproduce the experimental measurement procedure, we consider the im-
plementation of a photon-clustering algorithm. From the experimental point of view, it is not
possible to distinguish events with quasi-collinear photons due to the finite granularity of
the detectors. Thus, if they are produced within a cone of radius r < ∆Rmin

γγ , they are identi-
fied as an unique particle. For instance, for the ATLAS detector [54], this value ranges from
0.05 to 0.075, although a conservative estimate of the minimal detectable separation could
be set to ∆Rmin

γγ = 0.1. From the theoretical side, it is possible to implement such a proce-
dure by working with the parton-level kinematics. In particular, notice that this algorithm
will be activated only for the qq̄→ γγγ channel, and that only one pair of quasi-collinear
photons is allowed due to the other kinematical cuts (i.e., angular separation between
resolved particles). Schematically, we consider two variants of the clustering/merging
procedure, which are defined in the following way:

1. Compute the distance rγiγj among the final-state photons, where i, j = 1, 2, 3 at NLO.
2. If min rγiγj ≥ ∆Rmin

γγ for all {i, j} pairs, all the photons can be resolved and the process
is described with a full 2→ 3 kinematics as normal.

3. If the photon k is isolated but rγiγj ≤ ∆Rmin
γγ , then the photons i and j are detected

inside the same bin. Hence, we define the merged momenta as

pµ

ĩ j
=

(
Ei + Ej,

Ei + Ej

|~pi + ~pj|
(~pi + ~pj)

)
E0-scheme, (17)

pµ

ĩ j
=

(
Ei + Ej,~pi + ~pj

)
≡ pµ

i + pµ
j E-scheme, (18)

which corresponds to applying the E0 and E-schemes for QCD jets, respectively, [55,56].
In both cases, the definition of the original algorithm was slightly modified to deal
with photons instead of jets.

4. Order the final state particles according to their new transverse momentum, and
impose the corresponding cuts to select the events.

Since the matrix element is finite when two photons become collinear, there is some
freedom in the implementation of the algorithm. In the E0-scheme, we have p2

ĩ j = 0 and
the energy measured in the detector agrees with the total sum of the diphoton system.
Moreover, the direction of motion of the merged particle corresponds to the sum of mo-
menta, with a proper re-scaling. In this way, the reconstructed photon is identified as
an on-shell particle with a well defined three-momentum. However, this approach does
neither fulfill momentum conservation nor Lorentz invariance. On the other hand, the E-
scheme is compatible with the last two properties, but the merged momenta is not massless
(i.e., the on-shell condition is not fulfilled).

Finally, we comment on the treatment of the electromagnetic coupling α and its
running. In the first place, it is a well-known fact that the running effects arise from
the renormalization of the interaction vertex. If the Born contribution only contains on-shell
final-state photons, when collecting all the possible unrenormalized one-loop contributions
we realize that there is a partial cancellation of UV singularities between self-energies and
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vertex corrections. This cancellation avoids the presence of UV-logarithmic terms within
the renormalized one-loop amplitudes; including a running coupling would add O(α2)
corrections proportional to log(µR) (with µR the renormalization scale) that might alter
the high-energy behavior of the physical predictions.

On the other hand, when the LO process involves initial-state photons, the NLO
QED corrections should include the one-loop running for α evaluated at the factorization
scale µF [57]. Otherwise, some terms proportional to log(µF) would remain un-canceled
and enhance artificially the scale-dependence of the hadronic cross-section. As pointed
out in Ref. [57], this behaviour is due the presence of the photon PDF, which introduces
a dependence on µF, even if photons entering the partonic processes are kinematically
on-shell. This dependence is controlled by the splitting kernel Pγγ, that at the lowest order
is given by [46]

Pγγ(z) = −
2
3

N(2)
f δ(1− z) ≡ 2πδ(1− z) βQED

0 . (19)

Notice that this expression involves the QED beta function at one-loop, since this
splitting function is directly extracted from the one-loop photon self-energy. In consequence,
there is an interplay between the renormalization and factorization corrections that require
the proper inclusion of the running effects to achieve a consistent result.

As a consequence of the precedent observations applied to the particular case of dipho-
ton production, we claim that we should fix α = 1/137 in order to provide a conservative
estimate of the NLO QED corrections. However, it is worth emphasizing that we can
introduce a partial running for α to estimate effects due to missing higher-order terms.
Explicitly, since the LO is O(α2), we propose to modify the NLO behavior of the coupling
according to

α3 → α2 × α(µ) , (20)

thus including the running effects without overestimating the correction by introducing
additional logarithms. So, we consider the frozen coupling scenario as the default one,
and we also take into account the full hadronic evolution given by Refs. [58–60] with
the purpose of studying the propagation of uncertainties due to the choice of α.

3. Results and Discussion

In this section, we present the numerical results for diphoton production comparing
the strength of the NLO QED corrections with the well-known NLO QCD ones. In the
following, we denote diphoton system as the system composed of the two hardest photons.
We show results for the LHC at two different energies,

√
s = 7 TeV and

√
s = 13 TeV,

making use of two different sets of cuts for the transverse momentum of the diphoton
pair. For

√
s = 7 TeV we use nearly symmetrical cuts, whilst for

√
s = 13 TeV we apply

asymmetrical ones as detailed in the previous section.
Concerning the PDF sets, we perform the QED computations with LUXqed [61,62]

unless otherwise specified. Since LUXqed uses PDF4LHC [63] to describe the QCD parton
distributions, we consistently use it when computing the pure QCD contributions. Another
set containing the photon PDF is NNPDF3.0QED [64,65]. We provide also results computed
with the later set in order to compare the effects of different implementation of photon PDFs.

The default renormalization (µR) and factorization (µF) scales are set to the value of
the transverse invariant mass of the diphoton system, i.e.,

µR = µF = MT =
√

M2
γγ + (pγγ

T )2 . (21)

As explained in Section 2, the default value for the QED coupling is fixed to α = 1/137
and we consider a partial running to estimate the effects due to missing O(α4) corrections.
On the other hand, we also study the uncertainties originated by missing QCD-QED higher-
order contributions. Starting from the formal additive result for the NLO QED corrections,

dσQED
NLO = dσLO (1 + δQED

NLO) ,
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dσQCD
NLO = dσLO (1 + δQCD

NLO ) ,

dσQCD+QED
NLO = dσLO (1 + δQCD

NLO + δ QED
NLO ) , (22)

we define an estimate of the mixed QCD-QED corrections with the multiplicative ap-
proach, i.e.,

dσQCD×QED
NLO = dσLO(1 + δQCD

NLO + δQED
NLO + δQCD

NLO × δQED
NLO) . (23)

The multiplicative ansatz is described in Reference [66] and is motivated by the fact
that the IR-divergent structure of the mixed QCD-QED terms factorizes as in Equation (23).
However, this approach fails to describe the finite pieces of the total contribution because it
does not take into account non-factorizable QCD-QED terms present in the full computation.

After describing the details of the implementation, we start the analysis of the results.
In first place, we consider the invariant mass distribution of the two hardest photons for√

s = 7 TeV and
√

s = 13 TeV in Figures 1 and 2, respectively. We compare the impact of
the NLO QED corrections (δσ QED

NLO = dσLOδ QED
NLO ) with the NLO QCD (δσ QCD

NLO = dσLOδ QCD
NLO )

and the corresponding Born-level contribution.
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Figure 1. Invariant mass distribution of the two hardest photons. We present results for
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s = 7 TeV.
The QCD corrections are computed using PDF4LHC, whilst the QED contributions were obtained
with LUXqed. �
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Figure 2. Invariant mass distribution of the two hardest photons. We present results for
√

s = 13 TeV.
The QCD corrections are computed using PDF4LHC, whilst the QED contributions were obtained
with LUXqed.
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The two different channels that are part of the total NLO QED correction, i.e., qq̄ and
qγ, are separately shown in the plots. The NLO QED corrections are moderate to tiny
in the whole invariant-mass range. To quantitatively describe them, we define the ratio

KQED =
δ QED

NLO

δ QCD
NLO

, (24)

that reaches up to 4 % for Mγγ & 2 TeV. σQED
NLO is dominated by the qq̄ channel in almost

the entire Mγγ range. The only exception is the low-mass region, which is forbidden at
the LO due to kinematical constraints. The kinematics of the LO subprocess is determined
by the two final-state photons. Since the only kinematical configuration allowed by the Born
contribution is such that the two photons are back-to-back, pγγ

T = 0 (i.e., pharder
T = psofter

T )
and therefore, only the value of pharder

T is effective as cut at LO,

Mγγ ≥ 2pharder
T . (25)

Specifically, Mγγ ≥ 50 GeV for photon-pair production at
√

s = 7 TeV (and its associ-
ated LHC cuts) and Mγγ ≥ 80 GeV for diphoton production at

√
s = 13 TeV. Perturbative

calculations in regions around unphysical fixed-order thresholds are known [67] to be
generally affected by perturbative instabilities at higher orders. The invariant mass distri-
bution is very steep in the kinematical region around the LO threshold and even the effect
of little instabilities is amplified by the large slope of dσ/dMγγ. Therefore, in order to
obtain reliable predictions around the LO threshold in dσ/dMγγ it is enough to consider
a bin size of roughly 2 GeV since we are dealing with integrable singularities [21,67].

The suppression of the qq̄ channel in the low-mass region is an artifact of the ordering
in the transverse momentum of the final state photons. This ordering procedure reproduces
the selection algorithm implemented by the LHC. It is worth noticing that we can describe
quantitatively the interplay among the kinematical cuts, the ordering and the position
of the threshold in the qq̄ channel. Let us consider a system with three massless on-shell
particles in the center-of-mass frame. After ordering, we have

pT,1 ≥ pT,2 ≥ pT,3 ,
3

∑
i=1

~pT,i = 0 , (26)

with ~pi = ~pT,i + ~pL,i and ~pT,i · ~pL,i = 0. In fact, the transverse momentum conservation
implies p2

T,3 = |~pT,1 + ~pT,2|2, and the ordering condition leads to

p2
T,2 ≥ p2

T,3 = p2
T,1 + p2

T,2 + 2pT,1 pT,2 cos θ12 ↔ cos θ12 ≤ −
pT,1

2 pT,2
, (27)

where θ12 is the angular separation in the transverse plane. Since pT,2 ≤ pT,1 by definition,
we conclude that 2π/3 ≤ θ12 ≤ π. So, we explicitly find a constraint in the angular
separation of the transverse momenta of the hardest particles by imposing an ordering
condition. Of course, such a restriction is not present when selecting randomly two
photons and using their momenta to classify the event, as we did for the QCD corrections
to pp→ γγ + X. Moreover, from Equation (27) we can appraise that pT,2 ≤ pT,1 ≤ 2pT,2,
which constitutes another constraint.

On the other hand, it is crucial to notice that imposing both the transverse momenta
ordering and the pT cuts detailed in Section 2, we end up with a cut in Mγγ. To find
the minimum allowed value for Mγγ distributions measured at ATLAS with

√
s = 7 TeV,

we choose pT,1 = 25 GeV and pT,2 = 22 GeV. Then, inserting these values in Equation (27),
we find

θmin
12 ≈ 0.6924 π , (28)
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that increases the minimal angular separation between the transverse momenta of the hard-
est photons. Besides this, the invariant mass of the hardest subsystem is given by

Mγγ =
√

2 p1 · p2 =
√

2 E1 E2(1− cos φ12) , (29)

where φ12 is the angle between ~p1 and ~p2. This angle is measured in the plane containing
both three-vectors, which is not equivalent to the transverse plane to the colliding axis: thus,
in general, φ12 6= θ12. However, we impose φ12 = θ12 in order to find the minimal invariant
mass configuration. This choice is equivalent to settle the production of the triphoton
system in the transverse plane, which leads to E1 = pT,1, E2 = pT,2 and

Mmin
γγ =

√
2 pT,1 pT,2 (1− cos θmin

12 ) ≈ 41.53 GeV . (30)

Below these limit, the qq̄→ γγγ channel is not compatible with the experimental cuts.
Analogously, when dealing with ATLAS measurements at

√
s ≥ 13 TeV, we find

θmin
12 ≈ 0.7323 π , Mmin

γγ ≈ 63.25 GeV . (31)

These results explain the behavior of the distributions shown in Figures 1 and 2,
in particular, the steeply suppression of the cross-section in the region Mγγ ≈ 41 GeV for√

s ≥ 7 TeV and Mγγ ≈ 63 GeV for
√

s ≥ 13 TeV.
In Figure 3, we present the results for the transverse momentum distribution of the two

hardest photons for
√

s = 13 TeV. We compare the NLO QCD and NLO QED corrections,
as well as the individual channels contributing to the last one. Notice that in the whole
pγγ

T range (with the exception of pγγ
T = 0 GeV), these are effective LO contributions. As we

appraised from Figures 1 and 2, the qγ channel for the invariant mass distribution was
sub-dominant (and almost negligible) in all kinematical regions except the low-mass region.
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Figure 3. Transverse momentum distribution of the two hardest photons for
√

s = 13 TeV. We present
results for the NLO QCD prediction (black dots) and the NLO QED distribution (blue dashed
triangles). In the case of the NLO QED prediction, we also present its two different channels: the qq̄
channel (red squared dots) and the qγ channel (green diamonds).

This can be regarded as a hint of what we are obtaining after the shoulder (pγγ
T >

70 GeV) in the pγγ
T distribution for the QED corrections: qγ dominates the NLO QED

cross section.
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We present also two different ratios between the NLO QCD corrections and possible
estimates of the higher-order QED corrections in Figure 4. Besides KQED/QCD, we define

KQED(µR) =
δ QED

NLO (µR)

δ QCD
NLO

, (32)

where δNLO QED
NLO (µR) denotes the NLO QED correction including running effects (as de-

scribed in Section 2.1). Both KQED(µR) and KQED are similar for 0 ≤ pγγ
T ≤ 1 TeV. It is

a well-known fact that QCD transverse momentum resummation is requested to recover
the reliability of the calculation and improve the description of data in the low pγγ

T re-
gion [20]. The same consideration applies here for the NLO QED corrections and the re-
summation QED program, which will be presented in a forthcoming paper.
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Figure 4. The ratios between the NLO QCD corrections and the different estimates of the QED
corrections, as a function of the diphoton transverse momentum pγγ

T . We consider the default choice
with a frozen EM coupling (red dots) and an alternative one including running effects (green dots).

In order to explore additional measurements that could be more sensitive to QED
corrections, we define a jet-veto algorithm to partially suppress the QCD components.
In the first place, we consider only jets produced by QCD partons since we assume that
photons can be unambiguously identified. Of course, from the experimental point of
view, this is not completely true: highly energetic photons might decay into hadrons and
they could be reconstructed as a jet. However, we claim that these effects are related to
higher-order corrections beyond NLO QED, and that the jet identification is well-defined
within the theoretical computation (at least at this perturbative order). So, after generating
the event, we request the jet to be generated by a quark or gluon (but not by a photon) and
to be observable within the detector. Then, we reject all the events with pjet

T ≥ 50 GeV and
| ηjet |≤ 2.37. It is worth emphasizing that this definition is IR safe at this perturbative order,
since all the IR-singular configurations automatically pass the cuts. (This jet-veto algorithm
properly works for computing NLO corrections, since only one extra-parton is present
in the final state. At NNLO and beyond, some subtleties could arise and the algorithm
should be carefully redefined).

After this discussion, we consider the diphoton production for
√

s = 13 TeV with
an additional jet-veto in Figure 5. In the left panel, we show the effects on the different
contributions of the total cross section. The NLO QCD correction is noticeably reduced
beyond the veto threshold (i.e., pjet

T = pγγ
T = 50 GeV), as well as the qγ channel contribu-

tion to the NLO QED correction. We can appraise a discontinuity in the distribution at
pγγ

T = 50 GeV because of the modification of the event selection criteria imposed by the jet-
veto. Of course, this is something artificial and not related to any underlying physical
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phenomena. Furthermore, as expected, since the O(α) corrections to the qq̄ channel are
associated to the process qq̄→ γγγ, this process is not affected by the jet-veto and is not
suppressed. In order to quantify these effects, we extend the definition of the ratios given
in Equations (24) and (32) introducing

KQED,JV =
δσQED,JV

NLO

δσ QCD,JV
NLO

, (33)

KQED,JV(µR) =
δσ QED,JV

NLO (µR)

δσQCD,JV
NLO

, (34)

KQED×QCD,JV =
δσQCD×QED,JV

NLO

δσQCD,JV
NLO

, (35)

where the additional superscript denotes that we are taking into account the jet-veto.
The results are shown in the right panel of Figure 5. While the low pγγ

T region is similar
to the one without imposing the jet-veto (see Figure 3), at large values of transverse
momentum (in particular for pγγ

T & 600 GeV) the qq̄ channel dominates the total cross
section, and the ratios reach O(10 %).

10^-5

10^-10

10^-15

0.05

0.06

0.04

0.03

0.02

0.01

Figure 5. (Left) Transverse momentum distribution of the two hardest photons for
√

s = 13 TeV with
a jet-veto applied. (Right) The ratios between the different estimates of the higher-order QED and
the NLO QCD corrections, as a function of pγγ

T . It is possible to clearly identify the jet-veto threshold
at pγγ

T = 50 GeV due to the discontinuity in the ratios.

As next, we present the transverse momentum distributions of the hardest (pγ,H
T ) and

second hardest (pγ,S
T ) photons in Figure 6. The pγ,H

T distribution is strongly affected neither
by the NLO QED corrections nor by the estimated mixed QCD-QED contributions. Even
if a jet-veto is applied, the NLO QED corrections for this observable are still negligible,
because the LO and NLO QCD terms are much more relevant.

On the contrary, we notice strong effects due to the jet-veto in the pγ,S
T distribution:

an important suppression of the total NLO QCD corrections and the qγ channel are shown
in Figure 6 (right panel). Since the NLO QED cross section is dominated by the qq̄ channel,
which is not affected by the jet-veto, an enhancement of the QED-to-QCD ratios takes
place. The estimate of the mixed QCD-QED corrections is similar to the one obtained
when considering the running of α. The exception to this behavior is found in the low
transverse momentum region (i.e., pγ,S

T 5 40 GeV), since it is populated with real-radiation
events appearing for the first time in the NLO contributions. It is worth emphasizing
that the higher-order QED terms introduce corrections of O(10 %) of the total NLO QCD
contributions for pγ,S

T v 140 GeV.
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Figure 6. Transverse momentum distribution of the hardest (left) and second hardest (right) photons
at
√

s = 13 TeV. We compare the Born contribution with the NLO QCD correction and the NLO QED
contributions with α = 1/137 and with α(µR).

In Figure 7, we present our results for the transverse momentum distribution of
the two hardest photons but using the distributions of the set NNPDF3.0QED. We compare
the NLO QCD cross section with the NLO QED contribution, considering also in particular
its two channels: qγ and qq̄. The main differences with the results using the LUXqed PDFs,
detailed in Figure 3, are due to the qγ channel. Even if there is a disagreement among
them, due to an enhancement of the qγ channel in the middle and high-energy region,
we should consider the predictions obtained with NNPDF3.0QED as a qualitative estimate
in that region.

0.2

0.15

0.1

0.05

  10^-5

10^-10

10^-15

Figure 7. Transverse momentum distribution of the two hardest photons for
√

s = 13 TeV using
NNPDF3.0QED PDFs. In the right panel we show the ratios between the NLO QCD corrections and
the different estimates of the QED corrections, as a function of the diphoton transverse momentum
pγγ

T . We consider the default choice with a frozen EM coupling (black line) and an alternative one
including running effects (red dots). We appraise that the NLO QED cross-sections obtained with
NNPDF3.0QED are much larger than those for LUXqed in the high-energy region due to the qγ channel.

We would like to emphasize here that the purpose of the previous comparison is to
highlight that different methodologies on the extraction of PDFs could have a noticeable
impact of the phenomenological analysis. In particular, a purely data-driven extraction
of PDFs suffers from the lack of good-quality data-points in some regions of the param-
eter space, which directly impact in the error propagation. The methodology applied
for extracting NNPDF3.0QED is more sensible to the lack of experimental points for very
high energies, which leads to huge errors in the x ≈ 1 region. The approach followed
by LUXqed uses all-order theoretical predictions to constrain the photon PDF with data-
points in the low-energy region, thus reducing the fitting errors. It is worth noticing that
the updated versions of NNPDF combine the methodology developed by LUXqed in order to
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improve the predictions for the photon PDF [68–70], leading to an impressive increase on
the precision achieved.

Finally, we comment about two other aspects of this computation. In the first place,
we explore the effects due to the merging algorithm for photons, as described in Section 2.1.
For 0.05 ≤ ∆Rmin

γγ ≤ 0.1, both the E0 and E-schemes present significant deviations nei-
ther between these nor compared with the distributions obtained without any clustering
algorithm. The precedent consideration is valid for the total cross section, as well as for
all the differential distributions presented in this work. Thus, we conclude that the im-
plementation of a clustering algorithms with the current experimental conditions has
a negligible impact in the measurements, which is compatible with the experimental and
theoretical uncertainties.

4. Conclusions

A discussion about the computation of NLO QED corrections to diphoton production
was presented, putting special emphasis in the phenomenological aspects for hadron
colliders. Besides the size of these contributions and the (partial) estimate of the mixed
QCD-QED terms, we emphasize that keeping under control all the possible uncertainties
in this process is crucial since it is the main background for many new physics searches.
Taking under control the QED corrections at the LHC allows to potentially decide about
the origin of future discrepancies between data and theory. Moreover, the importance of
high-precision predictions becomes completely indispensable when considering the next
generation of high-energy and high-luminosity experiments [6–13].

In this article, NLO QED corrections were obtained through the application of the QED
version of the qT-subtraction method, after a proper Abelianization of the NLO QCD
implementation available in the program 2γNNLO. It is important to notice that we carefully
studied the cancellation of IR singularities in the qT → 0 limit, in order to guarantee
the theoretical consistency of the approach.

In general, we found small corrections for the Mγγ distribution, whilst the ratio
KQED reaches O(10 %) for the pγγ

T spectrum. This is because only the real-emission terms
contribute to the cross-section for pγγ

T > 0: a simple power counting shows that the QED-
to-QCD ratio behaves like α/αS ≈ 10 %. Besides that, we studied the effects due to
the treatment of the EM running coupling, which could also introduce percent-level effects
in all the distributions considered.

An interesting observation is that the qγ channel is not always negligible, specially
in some kinematical regions for distributions involving the transverse momentum. For
instance, it dominates the NLO QED corrections to the pγγ

T distribution for moderate values
of transverse momentum, i.e., pγγ

T & 80 GeV, as we showed in Figure 3. From this results,
we conclude that it is always recommended to include the photon-initiated processes when
computing differential distributions.

Besides that, using the approach described in Ref. [66], we provided an estimate of
the mixed QCD-QED corrections. Other interesting effects were found when considering
the dependence on pγγ,S

T (the transverse momentum of the second hardest photon), exhibit-
ingO(10 %) corrections relative to the NLO QCD contributions. These effects are enhanced
when including a jet-veto to suppress the QCD component, although the Mγγ distribution
was slightly modified.

Finally, we would like to highlight that QED corrections cannot be neglected in the con-
text of precision high-energy physics. Moreover, such computations must be done within
a fully consistent framework, which carefully includes all the ingredients without introduc-
ing additional sources of uncertainties.
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