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Abstract: We prove new results and complete our recently published theorems on the vector-valued
Markov moment problem, by means of polynomial approximation on unbounded subsets, also
applying an extension of the positive linear operators’ result. The domain is the Banach lattice of
continuous real-valued functions on a compact subset or an L1

ν space, where ν is a positive moment
determinate measure on a closed unbounded set. The existence and uniqueness of the operator
solution are proved. Our solutions satisfy the interpolation moment conditions and are between two
given linear operators on the positive cone of the domain space. The norm controlling of the solution
is emphasized. The most part of the results are stated and proved in terms of quadratic forms. This
type of result represents the first aim of the paper. Secondly, we construct a polynomial solution for a
truncated multidimensional moment problem.

Keywords: polynomial approximation; constrained extension of linear operators; Markov moment
problem; self-adjoint operator; symmetric matrix; compact subset; spectrum; unbounded subset;
basic nonnegative polynomials; truncated moment problem

1. Introduction

The one dimensional classical moment can be formulated as follows: for a given
sequence (yn)n≥0 of real numbers, find a positive measure ν on the given interval I (the
important cases being I = R, I = [0, ∞) or I = [0, 1]), such that the following applies:

∫
I

tndν = yn, n = 0, 1, 2, . . . (1)

where the numbers yn, n = 0, 1, 2, . . . are called the moments of the measure dν (or ν) on
the interval I. In the sequel, the notations are as follows:

N = {0, 1, 2, . . .}, R+ = [0, ∞), prj : Rn → R, prj
(
t1, . . . , tj, . . . , tn

)
= tj, j = 1, . . . , n, n ≥ 2.

If the intervals Ij ⊆ R, and f j : Ij → R , j = 1, . . . , n are given, we denote by the
following:

f1 ⊗ · · · ⊗ fn : I1 × · · · × In → R.

The function is defined as follows: ( f1⊗ · · · ⊗ fn)(t1, . . . , tn) = f1(t1) · · · fn(tn). When
the interval appearing in (1) is I = R, the moment problem is a Hamburger moment
problem. If I = R+, then the corresponding problem is a Stieltjes moment problem,
while in the case I = [0, 1] we have a Hausdorff moment problem. The classical moment
problem makes sense in the multidimensional case, when I appearing in (1) is replaced
by an arbitrary closed subset S of Rn, n ≥ 2, tj = tj1

1 · · · t
jn
n , t = (t1, . . . , tn) ∈ S, j =

(j1, . . . , jn) ∈ Nn. One denotes by C0(S), the space of all continuous real-valued compactly
supported functions defined on S. An important case is when the solution is a positive
linear functional or operator defined on L1

ν(S). In this case, ν is assumed to be a positive
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regular Borel measure on S. A basic particular case is that of a determinate measure ν, with
finite moments of all orders: ∫

S

tjdν ∈ R, j ∈ Nn.

We recall that the measure ν is called a moment determinate (or determinate) if it is
uniquely determined by its moments, or, equivalently, by its values on the subspace P of all
polynomials. By P+ = P+(S), we denote the convex cone of all polynomial functions that
are nonnegative on S. The problem may be called an n–dimensional Hamburger, Stieltjes
or Hausdorff moment problem, depending on the cases S = Rn, S = Rn

+ or S = [0, 1]n.
By its formulation, the moment problem is an inverse problem, since the measure ν is not
known. The words “find a positive measure ν” refer to characterizing the existence of ν
in terms of the given moments yn, n ≥ 0 such that (1) holds, to establish the uniqueness
(or non-uniqueness) of the (or a) solution ν, and, eventually, to its construction. The direct
problem would be as follows: given the measure ν, find its moments defined by (1). This
seems to be a computational problem. Going back to the moment problem, if an upper
bound is imposed on ν, we have a Markov moment problem, which is closely related
to the L–moment problem. In its general formulation, the classical multidimensional
real moment problem is similar to that mentioned above, when the interval I is replaced
by a closed (bounded or unbounded) subset S ⊆ Rn, n ≥ 2. For the classical moment
problem, including modern approaches of it, see the monographs [1–3], and most of the
articles on the moment problem listed in the references. For the background, ordered
topological vector spaces, linear operators, and the recent results in analysis and functional
analysis see [4–9]. Earlier and recent results on the classical moment problem can be found
in [10–18]. The papers [19,20] deal with the basic properties of convex operators in terms
of the associated linear operators. The proofs are partially based on Hahn–Banach type
theorems. The article [21] presents the density theorem and a Bishop type theorem in a
special set of continuous functions, while the references [22–27] concern results on the
classical moment problem and aspects of its connections with other fields of functional
analysis. Finally, articles [28–38] refer to the Markov moment problem and the related
areas of research. In solving Markov moment problems, there are three classes of methods
recalled below, which are combined to reach the existence, uniqueness and construction
of the solutions for the problems under discussion in the present paper. The interested
reader can find additional information by means of the references here and from other
sources. Previous similar main results on the construction of solutions for reduced moment
problems were published in [28,30,31] and in Section 4 of [35]. When the solution is not
a polynomial, finding it leads to a system of nonlinear equations. For example, in [31], a
step-function solution f is under attention. Namely, finding f of [31] leads to a system of
nonliear equations. In turn, such a solution f verifies 0 ≤ f ≤ 1; this is not the case for our
solution h given by (7) and (8). Namely, the evaluations (12) and (13) proved in Section 3.2 of
the present paper ensure neither h ≥ 0 nor h ≤ 1 on S. A quite similar problem is discussed
in [30], where the resolution of the finite Markov moment problem is done through the
theory of Toeplitz matrixes, also using Newton’s relations for polynomials. The references
deal with various aspects of the classical moment problem and its relationships with
other fields (fixed point theorems, operator theory, expressing nonnegative polynomials
on special closed subsets in terms of sums of squares, approximation theory, numerical
analysis, algebra). In all this problems, the moment sequences given by (1) play a central
role. Another formulation of the scalar valued moment problem is as follows: given a
Banach function space X containing all polynomials and compactly supported continuous
functions on a subset S of Rn, n ≥ 2, find a necessary and sufficient condition on the
sequence of moments for the existence of a positive element x? in the dual X? of that
Banach space of functions on a closed subset S, such that x?

(
ϕj
)
= yj, j ∈ Nn. Here ϕj(t)tj,

j ∈ Nn, t ∈ S. In case of a Markov moment problem, we additionally require that x?

is dominated by a given continuous linear functional on the positive cone X+ of X, or
x? is dominated by a continuous convex functional on the whole space X. Adding new
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results and improving earlier information on this subject is the first aim of the present
work. Here, the moments yj, j ∈ Nn are real numbers, while in the general case (see the
next sections, except Section 3.2) the moments yj may be vectors, functions, symmetric
matrices, or self-adjoint operators. In this case, the solution is a positive linear operator T. A
polynomial solution for the truncated moment problem, accompanied by a simple method
of evaluating the norm of the vector defined by the coefficients, is also under attention.
The rest of the paper is organized as follows: Section 2 summarizes theoretical more or
less known methods applied in order to achieve the aims of the paper. In Section 3, we
tried to achieve the goals claimed above, giving also the proofs where necessary. Section 4
discusses a part of the results, as well as possible future work on these subjects. Section 5
concludes the paper.

2. Methods
2.1. Constrained Extension Results for Linear Operators

There are two Hahn–Banach extension type theorems stated below. The first one
ensures only the existence of a positive extension, while the second one additionally
involves a dominating condition. In particular, this second requirement allows evaluating
the norm of the solution. Such an evaluation can be achieved also by using the first
extension type result (Theorem 1 stated below), then passing to the limit. Here are the main
two extension results that will be applied in the sequel. Let X1 be an ordered vector space
for which the positive cone X1,+ is generating (X1 = X1,+ − X1,+). Recall that in such an
ordered vector space X1, a vector subspace S is called a majorizing subspace if for any
x ∈ X1, there exists s ∈ S , such that x ≤ s. The following theorem holds true.

Theorem 1 ([19] Theorem 1.2.1). Let X1 be an ordered vector space whose positive cone is
generating, S ⊂ X1 a majorizing vector subspace, Y an order complete vector space, T0 : S → Y a
positive linear operator. Then T0 admits a positive linear extension T : X1 → Y .

The next result was published in the following version in [34] Theorem 4. It can be
regarded as a generalization of a result of M.G. Krein [2] to an arbitrary infinite set of
moments and to vector-valued operators.

Theorem 2 ([34] Theorem 4). Let X be an ordered vector space, Y an order complete vector
lattice, J an arbitrary set,

{
xj
}

j∈J ⊂ X,
{

yj
}

j∈J ⊂ Y given families, T1, T2 ∈ L(X, Y) two linear
operators. The following statements are equivalent:

(a) There exists a linear operator T ∈ L(X, Y) such that the following applies:

T1(x) ≤ T(x) ≤ T2(x), x ∈ X+, T
(

xj
)
= yj, j ∈ J;

(b) For any finite subset J0 ⊂ J and any
{

λj
}

j∈J0
⊂ R, the following implication holds true:(

∑j∈J0
λjxj = ψ2 − ψ1, ψ1, ψ2 ∈ X+

)
=⇒∑j∈J0

λjyj ≤ T2(ψ2)− T1(ψ1);

If X is a vector lattice, then assertions (a) and (b) are equivalent to (c), where the following
applies:

(c) T1(w) ≤ T2(w) for all w ∈ X+ and for any finite subset J0 ⊂ J and ∀
{

λj; j ∈ J0
}
⊂ R, we

have the following:

∑j∈J0
λjyj ≤ T2

((
∑j∈J0

λjxj

)+)
− T1

((
∑j∈J0

λjxj

)−)
.

For more general extension types and controlled regularity of linear operators see [20,34]
and the references given there.
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2.2. Polynomial Approximation on Unbounded Subsets

Our first polynomial approximation result on an unbounded interval was published
in [33] Lemma 1.4. The motivation was solving Markov moment problems on [0, ∞). We
now complete the proof of this result presented as Lemma 1 below, since the original
proof from [33] was incomplete. A second main polynomial approximation result is a very
general one (see [36] Lemma 7 and [37] Lemma 3). Polynomial approximation and the
expressions of nonnegative polynomials on unbounded intervals lead to characterization
of the existence of the unique solutions for some multidimensional Markov moment
problems in terms of quadratic forms with scalar or vector coefficients. The method works
for Cartesian products of closed unbounded intervals, in particular for Markov moment
problems on Rn, Rn

+, n ∈ {2, 3, . . .}.

2.3. Elements of Self-Adjoint Operator Theory and Symmetric Matrices

As it is well known, the real vector space A of all self-adjoint operators acting on
an arbitrary complex or real Hilbert space H is an ordered Banach space that is not a
lattice. However, for any A ∈ A, the subspace Y(A) defined below by (3) is an order
complete Banach lattice (and a commutative algebra) (see [4]). In particular, Theorem 3
and Corollary 1 hold Y = Y(A) as a codomain space of the operator solution. On the other
hand, symmetric matrices and some of their basic properties appear naturally in Theorem
5 of the present paper, where a polynomial solution for the truncated multidimensional
moment problem is proposed. Evaluating the Euclidean norm of the vector formed by the
coefficients of the solution is emphasized (without computing the involved its coefficients).
Here, basic results on the spectrum of a positive definite symmetric matrix are applied.

3. Results
3.1. Polynomial Approximation and Markov Moment Problem

We start with polynomial approximation on R+, completing the proof of a result
published in [33].

Lemma 1. Let ψ : R+ = [0, ∞)→ R+ be a continuous function, such that lim
t→∞

ψ(t) exists in

R+. Then there is a decreasing sequence (hl)l in Span{ek; k ∈ N}, where the following applies:

ek(t) = exp(−kt), k ∈ N, t ∈ [0, ∞),

such that hl(t) ≥ ψ(t), t ≥ 0, l ∈ N = {0, 1, 2, . . .}, limhl = ψuniformly on [0, ∞). There exists
a sequence of polynomial functions ( p̃l)l∈N, p̃l ≥ hl ≥ ψ, lim p̃l = ψ, uniformly on compact
subsets of [0, ∞). In particular, such polynomial approximation holds for nonnegative continuous
functions ψ : R+ → R+ , having compact support.

Proof. The idea is to consider the sub-algebra Ŝ = Span{êk; k ≥ 0} of C([0, ∞]), where
[0, ∞] is the Alexandroff extension of [0, ∞), and êk is the continuous extension of ek to
[0, ∞], êk(∞) = 0, k ≥ 1, ê0(∞) = 1. This sub-algebra clearly separates the points of [0, ∞]
and contains the constant functions. According to Stone–Weierstrass theorem, Ŝ is dense
in C([0, ∞]). It results that any continuous function ψ : R+ → R+, with the property that
the limit lim

t→∞
ψ(t) exists in R+, can be uniformly approximated on R+ by elements from

Span{ek; k ≥ 0}. As is well known, when the convergence is uniform, the approximating
sequence (hl)l for ψ can be chosen such that hl(t) ≥ ψ(t) ≥ 0 for all t ∈ [0, ∞). Assume
the following:

hl =
ml

∑
k=0

αl,kek, αl,k ∈ R, l = 0, 1, 2, . . .

If αl,k ≥ 0, we obtain αl,kek ≤ αl,k pl,k, where pl,k is a majorizing partial sum of the
power series of ek, ek = lim

l→∞
pl,k, the convergence being uniform on any compact subset

of R+. If αl,k < 0, we deduce αl,kek < αl,kql,k, where ql,k is a minorizing partial sum of
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the power series of ek = lim
l→∞

pl,k, and the convergence is uniform on compact subsets

of the nonnegative semi-axes. Summing as k = 0, 1, . . . , ml , one obtains a polynomial
p̃l ≥ hl ≥ ψ ≥ 0 on R+. Since the sum defining p̃l has a finite number of terms of such
partial sums, we conclude p̃l → ψ uniformly on compact subsets of R+, as l → ∞. This
ends the proof. �

In applications, the preceding lemma could be useful in order to prove a similar type
result for continuous functions defined only on a compact subset K ⊂ R+, taking values in
R+. For such a function ϕ : K → R+, one denotes by ϕ0 : R+ → R+ the extension of ϕ,
which satisfies ϕ0(t) = 0 for all t ∈ R+\K. With these notation, from Lemma 1 we infer the
next result:

Lemma 2. Let K ⊂ R+ be a compact subset and ϕ : K → R+ a continuous function. Then there
exists a sequence ( p̃l)l∈N of polynomial functions, such that p̃l ≥ ϕ0 on R+, p̃l |K → ϕ, l → ∞ ,
uniformly on K.

Proof. The idea is to reduce the proof to that of the preceding Lemma 1. Namely, we
easily construct a continuous extension ψ : R+ → R+ of ϕ, having compact support
supp(ψ), ψ ≥ ϕ0. Assuming this is done, if ( p̃l)l∈N are as in Lemma 1, since p̃l → ψ
uniformly on the compact K and ψ(t) = ϕ(t) for all t in K, it results in the following:

sup
t∈K
| p̃l(t)− ϕ(t)| = sup

t∈K
| p̃l(t)− ψ(t)| → 0, l → ∞.

Moreover, according to Lemma 1, we have p̃l ≥ ψ ≥ ϕ0 ≥ 0 on R+. This will end
the proof. To construct ψ, let a = in f K, b = supK, 0 ≤ a ≤ b < ∞. It is clear that ϕ0
might have discontinuities at the ends of the intervals representing connected components
of [0, ∞)\K. If ϕ(b) = 0, then ϕ0 is continuous at b and on the entire interval [b, ∞). If
ϕ(b) > 0, for an arbitrary ε > 0, define ψ on the interval [b, b + ε] as the affine function
whose graph is the line segment joining the points (b, ϕ(b)) and (b + ε, 0), ψ(t) = 0
for all t > b + ε, ψ(t) = ϕ(t) for all t in K. It remains to define ψ on each bounded
connected component of [0, ∞)\K. Let (t1, t2) be such an interval, t1, t2 ∈ K, t1 < t2 and
0 < ε < (t2 − t1)/2. On the interval [t2 − ε, t2], we define ψ as the affine function whose
graph is the line segment of ends (t2 − ε, 0), (t2, ϕ(t2)). Similarly, on the interval [t1, t1 + ε],
we consider the line segment joining the points (t1, ϕ(t1)), (t1 + ε, 0). The definition at
points t1, t2 is in accordance with the previous condition and ψ(t) = ϕ(t) for all t ∈ K. On
the interval (t1 + ε, t2 − ε), ψ ≡ 0. Finally, if a > 0 and ϕ(a) > 0, taking 0 < ε < a, we
define ψ on the interval [a− ε, a] as being the function whose graph is the line segment
joining the points (a− ε, 0), (a, ϕ(a)), ψ ≡ 0 on [0, a− ε]. If a = 0, we have ψ(a) = ϕ(a),
since a ∈ K and the interval (0, a) is empty. If a > 0 and ϕ(a) = 0, we define ψ ≡ 0 on [0, a].
Thus ψ is defined, non-negative, continuous on [0, ∞), ψ|K ≡ ϕ, and supp(ψ) is compact,
contained in [0, b + ε]. The proof is complete. �

In the sequel, we prove our first new theorem, motivated by its corollary (see Corollary 1
below). Let K ⊂ R+ be an arbitrary compact subset. We denote, by X = C(K), the Banach
lattice of all real-valued continuous functions on K, and let Y be an arbitrary order complete
Banach lattice. One denotes the following:

ϕj(t) = tj, t ∈ R+, j ∈ N.

Theorem 3. Let T1, T2 be two linear operators from X to Y, such that0 ≤ T1 ≤ T2 on the positive
cone of X, and(yn)n≥0 a given sequence of elements in Y. The following statements are equivalent:

(a) There exists a unique (bounded) linear operator T : X → Y, such that T
(

ϕj
)
= yj, j ∈

N, T1 ≤ T ≤ T2 on the positive cone of X, ‖ T1 ‖≤‖ T ‖≤‖ T2 ‖;
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(b) For any polynomial ∑m
j=0 αj ϕj ≥ 0 on K, we have ∑m

j=0 αjT1
(

ϕj
)
≤ ∑m

j=0 αjyj ; if J0 ⊂ N is
a finite subset and

{
λj; j ∈ J0

}
⊂ R, then the following applies:

∑
i,j∈J0

λiλjyi+j+l ≤ ∑
i,j∈J0

λiλjT2

(
ϕi+j+l

)
, l ∈ {0, 1};

(c) T1 ≤ T2 onX+ and for any polynomial ∑j∈J0
λj ϕj, the following inequality holds:

∑
j∈J0

λjyj ≤ T2

(∑
j∈J0

λj ϕj

)+
− T1

(∑
j∈J0

λj ϕj

)−
Proof. According to the notations and assertions of (a), the implication of (a) =⇒ (b) is
obvious. To prove the converse implication, we observe that first assertion of (b) says that
defining the following:

T0

(
∑m

j=0 αj ϕj

)
= ∑m

j=0 αjyj, m ∈ N, αj ∈ R,

we obtain a linear operator defined on the subspace of polynomial functions, which verifies
the moment conditions.

T0
(

ϕj
)
= yj, j ∈ N,

T0 ≥ T1 is on the convex cone P+ of all polynomial functions, which are nonnegative
on K. On the other hand, any element from X = C(K) is dominated by a constant function,
so that the subspace P of polynomial functions defined on R+ verifies the hypothesis
of Theorem 1, where X1 stands for X, and S stands for P . According to Theorem 1, the
linear operator T0 − T1 : P → Y, which is positive on P+ = P ∩ X+, admits a positive
linear extension U : X → Y. We define T = T1 + U ≥ T1 on X+. In addition T ∈ L+(X, Y)
verifies the following:

T
(

ϕj
)
= T1

(
ϕj
)
+ U

(
ϕj
)
= T1

(
ϕj
)
+ T0

(
ϕj
)
− T1

(
ϕj
)
= T0

(
ϕj
)
= yj, j ∈ N.

In other words, T : X → Y is a linear extension of T0 : P → Y , which dominates T1
on X+. Next, we prove that T ≤ T2 on X+. To this end, observe that according to the second
assertion of (b), we already know that T ≤ T2 on special polynomial functions, which are
nonnegative on the entire semi axes R+. Indeed, any nonnegative polynomial p = p(t) on
R+ has the explicit form p(t) = q2(t) + tr2(t) for some On the other hand, since

T ≥ T1 ≥ 0,

the linear operator T is positive and hence is also continuous; T2 is continuous as well,
thanks to its positivity. We now apply Lemma 2 for an arbitrary ϕ ∈ X+. Using the
notations of Lemma 2 and the above discussed assertions we infer the following:

0 ≤ T1(ϕ) ≤ T(ϕ) = lim
l→∞

T( p̃l) ≤ lim
l→∞

T2( p̃l) = T2(ϕ), ϕ ∈ X+. (2)

It remains to prove the last relation of (a). If ψ is an arbitrary function in X, then (2)
leads to the following:

T(ψ) ≤ T(|ψ|) ≤ T2(|ψ|)

and similarly −T(ψ) = T(−ψ) ≤ T2(|ψ|). These inequalities yield |T(ψ)| ≤ T2(|ψ|) and,
since Y is a Banach lattice, the conclusion is ‖ T(ψ) ‖≤‖ T2(|ψ|) ‖≤‖ T2 ‖‖ |ψ| ‖=‖ T2 ‖‖
ψ ‖, ψ in X. Thus, ‖ T ‖≤‖ T2 ‖ . Similarly, ‖ T1 ‖≤‖ T ‖ . The equivalence (a)⇔ (c)
follows directly from Theorem 2. This completes the proof. �
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Next, we recall a well-known important example of an order complete Banach lattice
Y of self-adjoint operators acting on a complex or real Hilbert space H. Let A = A(H) be
the ordered vector space of all of the self-adjoint operators acting on H, and let A ∈ A. The
natural order relation on A is A ≤ B if and only if 〈Ah, h〉 ≤ 〈Bh, h〉 for all h in H.

One can prove that A with this ordering is not a lattice. Therefore, it is interesting to
fix A ∈ A and define the following:

Y1(A) = {V ∈ A; AV = VA}, Y(A) = {V ∈ Y1(A); WV = VW, ∀W ∈ Y1(A)}. (3)

Then, Y(A) is an order complete Banach lattice (and a commutative real algebra), as
discussed in [4]. If V ∈ A, we denote by σ(V) the spectrum of V and by dEV the spectral
measure attached to V.

Corollary 1. With the above notations, assume that A is a positive self-adjoint operator acting on
H, Y(A) is the space defined by (3), and

(
Bj
)

j∈Nis a sequence of operators in Y(A).The following
statements are equivalent:

(a) There exists a unique positive linear operator T : C(σ(A))→ Y, such that

T
(

ϕj
)
= Bj, j ∈ N, T(ϕ) ≤

∫
σ(A)

ϕ(t)dEA, ϕ ∈ (C(σ(A)))+, ‖ T ‖≤ 1;

(b) For any polynomial ∑m
j=0 αj ϕj ≥ 0 on σ(A), it results ∑m

j=0 αjBj ≥ 0; if J0 ⊂ N is a finite
subset and

{
λj; j ∈ J0

}
⊂ R, then the following applies:

∑
i,j∈J0

λiλjBi+j+l ≤ ∑
i,j∈J0

λiλj Ai+j+l , l ∈ {0, 1}.

Proof. Since A is self-adjoint and positive, its spectrum σ(A) is a compact contained in
[0, ∞). One applies Theorem 3 for K = σ(A), T2 : C(σ(A))→ Y, T2(ϕ) =

∫
σ(A) ϕ(t)dEA =

ϕ(A), T1 = 0. �

Remark 1. It would be useful to know whether a similar result to that of Lemma 1 holds when we
replace R+ with R. In this case, the dominating polynomials p̃l should be nonnegative on the entire
real axes, and hence would be the sums of squares. If ψ : R→ R+ would be continuous, compactly
supported and even function, then the problem is reduced to that solved by Lemma 1; ψ can be
approximated by dominating even polynomials, the convergence holding uniformly on compact
subsets of R. If ψ is not even, while the other assumptions on it are maintained, the polynomial
approximation is not obvious.

Remark 2. In Theorem 3, the main implication is (b) =⇒ (a), since the conditions of (b) are
checkable in terms of the moments yj and the given operators T1, T2.

Remark 3. It would be interesting to prove results such as Lemmas 1 and 2 in several variables.
Namely, being given a nonnegative continuous compactly supported real function f defined on
Rn
+, n ≥ 2, and denoting by K its support, we could approximate f on K ⊆ K1 × · · · × Kn , where

Kj = prj(K), j = 1, . . . , n, by the sums of products f1 ⊗ · · · ⊗ fn, f j : Kj → R+ is continuous
for allj = 1, . . . , n, via the Stone–Weierstrass theorem or Bernstein polynomials of n variables.
Then, we could apply to each f j Lemma 2, and finally obtain the approximation of f by finite sums of
products of polynomials p1 ⊗ · · · ⊗ pn , where pj : R+ → R+, pj ≥ f j onKj, j = 1, . . . , n, and
the approximation holds uniformly on compact subsets of Rn

+. The motivation for such consideration
is that being given a system of commuting positive self-adjoint operators A1, . . . An acting on a
Hilbert space, we could try to prove a result similar to Corollary 1, by means of considering
polynomial uniform approximation on K = σ(A1)× · · · × σ(A1), where σ

(
Aj
)

is the spectrum
of Aj, j = 1, . . . n.
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If S ⊆ Rn is an arbitrary closed unbounded subset, then we denote by P+ the convex
cone of all polynomial functions (with real coefficients), taking nonnegative values at
any point of S. Also, P++ will be a sub-cone of P+ generated by special nonnegative
polynomials expressible in terms of the sums of squares. One denotes by C0(S) the vector
space of real-valued continuous and compactly supported functions defined on S.

Theorem 4. Let S ⊆ Rn be a closed unbounded subset, ν a positive Borel moment determinate
measure on S, having finite moments of all orders, X = L1

ν (S), ϕj(t) = tj, t ∈ S, j ∈ Nn. Let Y
be an order complete Banach lattice,

(
yj
)

j∈Nn a given sequence of elements in Y, T1, and T2 two
bounded linear operators from X to Y. Assume that there exists a sub-cone P++ ⊆ P+, such that
each f ∈ (C0(S))+ can be approximated in X by a sequence (pl)l , pl ∈ P++, pl ≥ f for all l .
The following statements are equivalent:

(a) There exists a unique (bounded) linear operator T : X → Y, T
(

ϕj
)
= yj, j ∈ Nn, 0 ≤ T1 ≤

T ≤ T2 on X+,
‖ T1 ‖≤‖ T ‖≤‖ T2 ‖;

(b) For any finite subset J0 ⊂ Nn and any
{

λj; j ∈ J0
}
⊂ R, the following implications hold true:

∑
j∈J0

λj ϕj ∈ P+ =⇒ ∑
j∈J0

λjT1
(

ϕj
)
≤ ∑

j∈J0

λjyj , (4)

∑
j∈J0

λj ϕj ∈ P++ =⇒ ∑
j∈J0

λjT1
(

ϕj
)
≥ 0, ∑

j∈J0

λjyj ≤ ∑
j∈J0

λjT2
(

ϕj
)
. (5)

Proof. We start by observing that the first condition (5) implies the positivity of the bounded
linear operator T1 via its continuity. Indeed, if f ∈ (C0(S))+ , pl ∈ P++, pl ≥ f for all
l, pl → f in L1

ν (S), then, according to the first condition (5), T1( pl) ≥ 0 for all l ∈ N and
the continuity of T1 yields the following:

T1( f ) = lim
l

T1(pl) ≥ 0.

Since (C0(S))+ is dense in X+ via measure theory reasons, the continuity of T1
implies T1 ≥ 0 on X+. Thus, T1 is a positive linear operator. Next, we define T0 : P → Y,
T0

(
∑j∈J0

λj ϕj

)
= ∑j∈J0

λjyj, where the sums are finite and the coefficients λj are arbitrary
real numbers. Condition (4) says that T0 − T1 ≥ 0 on P+. If we consider the vector
subspace X1 of X formed by all functions ψ ∈ X having the modulus |ψ| dominated by a
polynomial p ∈ P+ on the entire set S, then P is a majorizing subspace of X1 and T0 − T1
is a positive linear operator on P . The application of Theorem 1 leads to the existence of
a positive linear extension U : X1 → Y, of T0 − T1. Obviously, X1 contains C0(S) + P :(

p ∈ P =⇒ |p| =
√

1·p2 ≤
(
1 + p2)/2 0 the f as the preceding one ∈ P

)
. Indeed, since

ϕ ∈ C0(S) =⇒
∣∣ϕ∣∣∈ (C0(S))+ =⇒

∣∣ϕ∣∣≤ b1 ∈ P (according to Weierstrass’ Theorem), we
infer that ϕ ∈ X1; here, b < ∞ is a real number. Hence, C0(S) ⊂ X1. Now let p ∈ P , we
observe the following:

1 + p2 − 2|p| = (1− |p|)2 ≥ 0,

which can be written as follows:

|p| ≤ 1 + p2

2
∈ P .

According to the definition of X1, it results in P ⊂ X1. Consequently, C0(S) +P ⊂ X1.
Going back to the positive linear extension U : X1 → Y, of T0 − T1, we conclude that
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T̂0 = U + T1 : X1 → Y is an extension of T0, T̂0 ≥ T1 on (X1)+, and T̂0(p) = T0(p) ≤ T2(p)
for all p ∈ P++, according to the last requirement (5). A first conclusion is as follows:

T1(p) ≤ T̂0(p) ≤ T2(p) for all p ∈ P++, T̂0(ψ) ≥ T1(ψ) ≥ 0, ψ ∈ (X1)+. (6)

Our next goal is to prove the continuity of T̂0 on C0(S). Let ( fl)l≥0 be a sequence
of nonnegative continuous compactly supported functions, such that fl → 0 in X1, and
take a sequence of polynomials pl ≥ fl ≥ 0, pl ∈ P++ for all l, such that the following
convergence result holds: ‖ pl − fl ‖ 1 → 0, l → ∞ . Then apply the following:

‖ pl ‖ 1 ≤‖ pl − fl ‖ 1+ ‖ fl ‖ 1 → 0, l → ∞.

Now (6) and the continuity of T1, T2, yield the following:

0← T1(pl) ≤ T̂0(pl) ≤ T2(pl)→ 0,

hence T̂0(pl)→ 0 . It results in the following:

0 ≤ T1( fl) ≤ T̂0( fl) ≤ T̂0(pl)→ 0.

Hence, T̂0( fl)→ 0 . If (gn)n≥0 is an arbitrary sequence of compactly supported and
continuous functions, such as that of gn → 0 in X1, then g+n → 0, g−n → 0 . According to
what we already have proved, we can write T̂0(g+n )→ 0 and T̂0(g−n )→ 0, which further
yield T̂0(gn)→ 0 . This proves the continuity of T̂0 on C0(S), and the subspace C0(S) is
dense in X. Hence, there exists a unique continuous linear extension T ∈ B(X, Y) of T̂0. It
results in 0 ≤ T1 ≤ T ≤ T2 on X+, ‖ T1 ‖≤‖ T ‖≤‖ T2 ‖, T

(
ϕj
)
= T0

(
ϕj
)
= yj, j ∈ Nn.

Indeed, T1, T, T2 are linear and continuous, and P++ is dense in (C0(S))+, hence it is
dense in X+ as well. For an arbitrary ϕ ∈ X, the following inequalities hold true, via the
preceding remarks:

±T(ϕ) = T(±ϕ) ≤ T(|ϕ|) ≤ T2(|ϕ|) =⇒

|T(ϕ)| ≤ T2(|ϕ|) =⇒‖ T(ϕ) ‖≤‖ T2(|ϕ|) ‖≤‖ T2 ‖‖ ϕ ‖ .

It follows that ‖ T ‖≤‖ T2 ‖, and similarly, ‖ T1 ‖≤‖ T ‖ . The uniqueness of the
solution T follows from the density of the polynomials in X, via the continuity of the linear
operator T. This ends the proof. �

Our next goal is to give a result for the Markov moment problem in the space L1
ν(R),

where ν is a moment determinate measure on R, with finite moments
∫
R tkdν ∈ R of all

orders k ∈ N.

Corollary 2. Let X = L1
ν(R), whereν is a moment determinate positive Borel measure on R, with

finite moments of all orders. Assume that Y is an arbitrary order complete Banach lattice, and
(yn)n≥0 is a given sequence having its terms in Y. Let T1, T2 be two linear operators from X to Y,
such that 0 ≤ T1 ≤ T2 on X+. The following statements are equivalent:

(a) There exists a unique bounded linear operator T from X to Y, T1 ≤ T ≤ T2 on X+,
‖ T1 ‖≤‖ T ‖≤‖ T2 ‖, such that T(ϕn) = yn for all n ∈ N;

(b) If J0 ⊂ N is a finite subset and
{

λj; j ∈ J0
}
⊂ R, then the following applies:

∑i,j∈J0
λiλjT1

(
ϕi+j

)
≤∑i,j∈J0

λiλjyi+j ≤∑i,j∈J0
λiλjT2

(
ϕi+j

)
.

In the case of Corollary 2, we have P++ = P+. Going further to the multidimensional
case, for examples of such sub-cones P++ of P+ and their applications on the Markov
moment problem, see [37] Theorems 5 and 6. Namely, these theorems emphasize the
importance of using quadratic forms in the multidimensional case, when nonnegative
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polynomials are not usually expressible as sums of squares. In both of these examples, the
inclusion P++ ⊂ P+ is strict. In the case of S = Rn

+ (respectively, S = Rn), n ≥ 2, the cone
P++ consists in all polynomials that are sums of products of the form.

p1
⊗
· · ·

⊗
pn,

where each pj, j = 1, . . . , n, is a nonnegative polynomial on R+ (respectively, on R), hence
is expressible by means of sums of squares of polynomials of one variable. Proceeding
this way, the conditions of (5) can be written in terms of quadratic forms (see Corollary 3
stated below).

Corollary 3. Let ν = ν1 × · · · × νn, n ≥ 2, νj be an M−determinate (moment determinate)
positive regular Borel measure on R, j = 1, . . . , n, X = L1

ν (Rn), ϕj(t) = tj, t ∈ Rn, j ∈ Nn.
Additionally, assume that νj has finite moments of all orders, j = 1, . . . , n. Let Y be an order
complete Banach lattice,

(
yj
)

j∈Nn a given sequence of elements in Y, T1, and T2 two bounded linear
operators from X to Y. The following statements are equivalent:

(a) There exists a unique (bounded) linear operator T : X → Y, T
(

ϕj
)
= yj, j ∈ Nn, 0 ≤ T1 ≤

T ≤ T2 on X+,
‖ T1 ‖≤‖ T ‖≤‖ T2 ‖;

(b) For any finite subset J0 ⊂ Nn and any
{

λj; j ∈ J0
}
⊂ R, the following implication holds true:

∑j∈J0
λj ϕj ∈ P+ =⇒∑j∈J0

λjT1
(

ϕj
)
≤∑j∈J0

λjyj;

for any finite subsets Jk ⊂ N, k = 1, . . . , n, and any
{

λjk
}

jk∈Jk
⊂ R, the following inequali-

ties hold:

0 ≤ ∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T1
(

ϕi1+j1,..,,in+jn
))
· · ·
)

;

∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn yi1+j1,..,,in+jn

)
· · ·
)

≤ ∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T2
(

ϕi1+j1,..,,in+jn
))
· · ·
)

.

3.2. On a Polynomial Solution for Truncated Multidimensional Moment Problem

In the end of this subsection, we propose a polynomial solution for the truncated
multidimensional scalar-valued moment problem, completing a result of [38]. The related
evaluation for the norm of the vector formed with the coefficients of the polynomial
solution is outlined. The general idea is to replace the space P of all of the polynomial
functions on a closed subset S ⊆ Rn, n ∈ {2, 3, . . .} having nonempty interior, with the
subspace generated by the following monomials:

ϕj(t) = tj = tj1
1 · · · t

jn
n , t = (t1, . . . , tn) ∈ S, j = (j1, . . . , jn), jk ∈ {0, 1, . . . , d},

where k = 1, . . . , n, where d ≥ 1 is a fixed integer. Let w be a continuous positive real
valued function on S, such that all the absolute moments,∫

S

|t|jw(t)dt, j = (j1, . . . , jk, . . . , jn) ∈ Nn, 0 ≤ jk ≤ d, k = 1, . . . , n,
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are finite (here |t|j = |t1|j1 · · · |tn|jn , dt = dt1 · · · dtn). Being given a finite set of numbers{
yj; j ∈ Nn, jk ≤ d, k = 1, . . . , n

}
, we are looking for a solution h of the moment interpola-

tion problem, as follows:

∫
S

tjh(t)w(t)dt = yj, 0 ≤ jk ≤ d, k = 1, . . . , n. (7)

The simplest function h satisfying equalities (7) is the following polynomial:

h(t) = ∑
0≤lk≤d,
k=1,...,n

λltl , t ∈ S, (8)

where l = (l1, . . . , lk, . . . , ln) ∈ Nn. The number of terms of the sum in (8) is at most
N = (d + 1)n, and N is the dimension of the subspace of polynomials involved in this
problem. We have to determine the unknown coefficients λl , 0 ≤ lk ≤ d, k = 1, . . . , n,
such that h be a solution of (7). The corresponding result gives the explicit form of the
solution and related evaluations of its norm. These inequalities do not involve computing
the inverse of the matrix A (see the proof of the next theorem). Theorem 5 is formulated
as follows:

Theorem 5. The vector λ =
(
λj
)

0≤jk≤d,
1≤k≤n

of the unknowns λl , 0 ≤ lk ≤ d, k = 1, . . . , n is defined

by (7) and (8) and is given by (11), where the matrix A is defined by (10). This matrix is positive
definite and evaluations (12) and (13) hold.

Proof. Inserting h(t), defined by (8) in (7), it is easy to see that the necessary and sufficient
conditions required on λl , lk ≤ d, k = 1, . . . , n are as follows:

∑
0≤lk≤d,
k=1,...,n

λl

∫
S

tj+lw(t)dt = yj, jk ≤ d, k = 1, . . . , n. (9)

This is a linear system with the unknowns λl , 0 ≤ lk ≤ d, k = 1, . . . , n, l = (l1, . . . , ln),
which consisted of equations with N unknowns.

N = (d + 1)n

The matrix of the system is the N × N symmetric matrix.

A =
(

aj,l

)
0≤jk ,lk≤d

, aj,l =
∫
S

tj+lw(t)dt, 0 ≤ jk ≤ d, 0 ≤ lk ≤ d, k = 1, . . . , n. (10)

The main property of matrix A is that it is positive definite. Indeed, according to (10),
the following relations hold true:

∑
0≤jk≤d,
0≤lk≤d

aj,lλjλl =
∫
S

(
∑

0≤jk≤d
λjtj

)2

w(t)dt > 0

for all not null vectors λ =
(
λj
)

0≤jk≤d,
1≤k≤n

. As a consequence, all eigenvalues of matrix A are

positive. In particular, 0 is not in the spectrum of A, so that this matrix is invertible and its
inverse is also positive definite. Since (9) can be written as follows:

Aλt = yt,
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we infer the following unique solution:

λt = A−1yt. (11)

Hence, the problem is reduced to the computation of A−1. A related evaluation might
be useful. For example, if we denote by ΩA the greatest eigenvalue and by ωA the smallest
eigenvalue of A, then the following applies:

‖ λ ‖2≤‖ A−1 ‖‖ y ‖2= (1/ωA) ‖ y ‖2, (12)

where ‖ ‖2 is the Euclidean norm on RN . Similarly, from the following inequality:

A−1 < (1/ΩA)I,

also using (11) and the Cauchy–Schwarz inequality, the following evaluations hold:

‖ λ ‖2‖ y ‖2≥ 〈λ, y〉 =
〈

A−1y, y
〉
≥ (1/ΩA) ‖ y ‖2

2 .

It results in the following:

‖ λ ‖2≥ (1/ΩA) ‖ y ‖2 . (13)

The proof is complete. �

4. Discussion

The first part of Section 3 is completely devoted to characterizing the existence and
uniqueness of the solution for a class of the Markov moment problem, also controlling
the norm of the solution. The necessary and sufficient conditions are written in terms
of the moment sequences. The domain is an L1

ν(S) space, where S is a closed subset of
Rn, n ≥ 1, and ν is a moment determinate positive regular Borel measure on S, with
finite absolute moments of all order. For such measures, the nonnegative polynomials are
dense in

(
L1

ν(S)
)
+. The case when the domain is C(K), the Banach lattice of all real-valued

continuous functions defined on the compact subset K ⊂ R+, is also under attention. Here,
the novelty is the approximation of the nonnegative elements of C(K), by dominating poly-
nomials that are nonnegative on the entire semi axes R+. Therefore, the second condition
of (b), Theorem 3, can be formulated in terms of quadratic forms. The motivations for
considering such problems are mentioned. Namely, K could be the spectrum of a positive
self-adjoint operator (see Corollary 1). Besides a well-known old result on the extension
of linear positive operators preserving positivity (Theorem 1), polynomial approximation
results on unbounded subsets are also used. These methods allow controlling not only the
positivity (which implies its continuity), but also the norm of the linear solution T. This is
the reason for considering the codomain Y as an order complete Banach lattice, not only an
order complete Banach space. One solves, partially, the difficulty arising from the fact that
on Rn, n ≥ 2 there exists nonnegative polynomials that are not sums of squares. Theorem
5 proposes a polynomial solution for the truncated moment problem. The norm of the
vector of the coefficients of this solution is evaluated without computing effectively the
coefficients. This method could work for the full moment problem, where a real analytic
solution should replace the polynomial solution of the truncated problem. This can be a
direction for future work.

5. Conclusions

In Section 3, it seems that the main results are as follows: Lemma 1, Theorem 3,
the discussion outlined in Remark 3, Theorem 4, Corollaries 2, 3, and Theorem 5. All of
these results (except Theorem 5) are based on main non-trivial lemmas and theorems on
polynomial approximation, recently reviewed in [37]. With respect to the paper [37], the
new element of the present work is the condition T ≥ T1 on the positive cone of the domain



Symmetry 2021, 13, 986 13 of 14

space, where T1 is not necessarily the null operator. On the other hand, Theorem 4 (whose
proof is not trivial) works for any sub-cone P++, which verifies (5). Finally, Theorem 5
brings new elements, compared with first formulation of this idea sketched in [38].
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