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Abstract: Symmetry between mathematical constructions is a very desired phenomena in mathemat-
ics in general, and in algebraic geometry in particular. For line arrangements, symmetry between
topological characterizations and the combinatorics of the arrangement has often been studied, and
the first counterexample where symmetry breaks is in dimension 13. In the first part of this paper, we
shall prove that two arrangements of smooth compact manifolds of any dimension that are connected
through smooth functions are homeomorphic. In the second part, we prove this in the affine case in
dimension 4.
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1. Introduction

An arrangement is a finite collection of affine subspaces (of possibly varying dimen-
sions) in Rl or Cl , or a collection of linear subspaces of a projective space CPl−1 or RPl−1.
The topology of the complement of the union of the planes is of considerable interest.
In 1989, Randell [1] proved a deep theorem, which shows that two arrangements have
the same topology if they can be transferred from one to the other using a smooth one
parameter family of arrangements. This resulted in the invention of a new invariant–the
moduli space. Randell’s study was very fruitful and resulted in many important theo-
rems concerning symmetry rope. For instance, in [2] it was implemented for lines which
in this case are a linear subspace of C2, for example, the solution in C2 to the equation
y = (5 + i)x + 2 + 4i. In [3,4], it was proven that the combinatorial structure determines
the fundamental group of the complement for a six line arrangement. Using Van Kampen
theorems [5] and the Moishezon-Teicher algorithm [6], it was extended to seven and eight
lines [7,8]. Later, it was generalized to nine lines in [9], ten lines in [10] and eleven lines
in [11].

In this paper, we are going to improve Randell’s theorem and we move to diffeomor-
phisms of smooth manifolds in general, a contemporary topic (see, e.g., [12,13]). Whereas
Randell talks about changing hyperplane arrangements through smooth families of hyper-
planes, we are going to show that we can also transfer from one arrangement of smooth
manifolds to another using smooth families of hyperplane arrangements. As a conse-
quence, we show that we can transform arrangements of lines to other arrangements of
lines through symmetry of arrangements to polynomials, families of polynomials of any
degree. Since lines in the complex planes are homeomorphic to two dimensional sets in R4,
our theorems will use that idea for another improvement of the theorem.

2. Definitions and Notations

The following theorems and definitions are well known.

Theorem 1 (Topological invariance of dimension [14]). A non-empty n-dimensional topological
manifold cannot be homeomorphic to an m-dimensional manifold unless m = n.

Symmetry 2021, 13, 981. https://doi.org/10.3390/sym13060981 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://www.mdpi.com/article/10.3390/sym13060981?type=check_update&version=1
https://doi.org/10.3390/sym13060981
https://doi.org/10.3390/sym13060981
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13060981
https://www.mdpi.com/journal/symmetry


Symmetry 2021, 13, 981 2 of 11

Definition 1 ([14]). For any smooth manifold M, we define an open submanifold of M to be any
open subset with the subspace topology and with the smooth charts obtained by restricting those
of M.

Theorem 2 (Open sub-manifold [14]). Suppose M is a smooth manifold. The embedded subman-
ifolds of codimension 0 in M are exactly the open submanifolds.

Proposition 1 ([14]). Suppose M and N are smooth manifolds with or without boundary, and
F : M→ N is an injective smooth immersion. If any of the following holds, then F is a smooth em-
bedding:

(a) F is an open or closed map;
(b) F is a proper map;
(c) M is compact;
(d) M has empty boundary and dim M = dim N.

Theorem 3 (Proper continuous maps are closed [14]). Suppose X is a topological space and Y
is a locally compact Hausdorff space. Then every proper continuous map F : X → Y is closed.

Definition 2. A stratification of a manifold is a partitioning of the manifold into a finite collection
of submanifolds {U} (called the strata) so that the following frontier condition is satisfied: Whenever
U and V are strata with V ∩ cl(U) 6= ∅, then V ⊂ cl(U).

Definition 3 ([14]). A stratification is called a Whitney stratification if it satisfies Whitney’s
condition (b): For all strata U, V, with V ∩ cl(U) 6= ∅, and for all x ∈ V, whenever xi and yj are
sequences in V and U, respectively, with xi 6= yi so that xi converges to x and yi converges to x, so
that the secants xiyi converge to l ∈ RPn−1 and so that Tyi U converges to τ in the Grassmannian
of dimension U planes in Rn, then l ⊂ τ.

Theorem 4 ([1]). Any stratification in which the closure of every stratum is a smooth submanifold
is a Whitney stratification.

Theorem 5 (Thom’s first isotopy theorem [15]). Let f : M→ R be a proper, smooth map which
is a submersion on each stratum of a Whitney stratification of M. Then there is a stratum-preserving
homeomorphism h : M → R× ( f−1(0) ∩M) which is smooth on each stratum and commutes
with the projection to R. In particular, the fibers of f are homeomorphic by a stratum-preserving
homeomorphism.

Stereographic Projection

The following definitions and claims are well known: the function

ϕn : Sn \ (0, 0, . . . , 1)→ Rn

defined by

ϕn(x1, . . . , xn+1) =

(
x1

1− xn+1
, . . . ,

xn

1− xn+1

)
is a homeomorphism and so is from

ψn : iSn \ (0, 0, . . . ,−1)

to Rn defined by

ψn(x1, . . . , xn+1) =

(
x1

1 + xn+1
, . . . ,

xn

1 + xn+1

)
.
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The inverse functions are:

ϕ−1
n (y1, . . . , yn) =

 2y1
n
∑

i=1
y2

i + 1
, . . . ,

2yn
n
∑

i=1
y2

i + 1
, 1− 2

n
∑

i=1
y2

i + 1



ψ−1
n (y1, . . . , yn) =

 2y1
n
∑

i=1
y2

i + 1
, . . . ,

2yn
n
∑

i=1
y2

i + 1
,−1 +

2
n
∑

i=1
y2

i + 1

.

The composition defined from Rn minus the origin to itself is:

ψn ◦ ϕ−1
n (y1, . . . , yn) = ϕ ◦ ψ−1(y1, . . . , yn) =

 y1
n
∑

i=1
y2

i

, . . . ,
yn

n
∑

i=1
y2

i

.

In this paper we denote p := (0, 0, 1) ,ϕ := ϕ2,ψ := ψ2.

3. Topological and Geometric Aspects of Manifolds

With the previous theorems in mind we prove the following.

Lemma 1. Let A, B and C1, . . . , Cn be manifolds such that B is a closed submanifold of A and
C1, . . . , Cn are closed submanifolds of B. Assume that for all 1 ≤ i ≤ n, dim(Ci) < dim(B).

Then
n⋃

i=1
Ci is nowhere dense in the subspace topology of B and in addition Cl(B \

n⋃
i=1

Ci) = B.

Proof. First we prove that for any 1 ≤ i ≤ n, Ci is nowhere dense. Indeed, since Ci is
closed it is sufficient to show that it has an empty interior. Assume to the contrary that S
is an open set of B contained in Ci, then from the definition of subspace topology it is an
open set also in Ci by Theorem 2. We get that S is a manifold of dimension equal to the
dimension of B and also a manifold with a dimension equal to Ci. The contradiction to

Theorem 1 proves the statement. Since a finite union is nowhere dense so is
n⋃

i=1
Ci and since

1 ≤ i ≤ n Ci is closed then Cl(B \
n⋃

i=1
Ci) = B.

Proposition 2. Let A, B, C, D be Hausdorff spaces where A is compact. Let f : A× B→ C be a
continuous function and g : B→ D be continuous and proper. Let h : A× B→ C× D be defined
by sending (x, y) to ( f (x, y), g(y)) then h is continuous and proper.

Proof. Let p be the projection of C × D to D and let S be some set. Then, an element
(a, b) is in h−1(S) if there exist (c, d) ∈ C × D such that h((a, b)) = (c, d). By definition,
h((a, b) = ( f (a, b), g(b)) and h((a, b)) = (c, d) if and only if ( f (a, b), g(b)) = (c, d)). This
implies that f (a, b) = c and g(b) = d so h−1(S) = f−1(S) ∩ g−1(p(S). First we prove
that h is indeed continuous. Let S1 be an open set since p is an open function and f , g are
continuous. Then f−1(S) ∩ g−1(p(S) is an intersection of the two open sets and, therefore,
open. Next we will prove that h is proper: let S be a compact set. In particular it is closed
so h−1(S) is closed. On the other hand, h−1(S) = f−1(S) ∩ g−1(p(S) ⊂ A× g−1 p(S) since
p is continuous, P(S) is compact and since h is proper g−1 p(S) is also compact. Since A
and g−1 p(S) are compact so is A× g−1 p(S). To conclude, we get that h−1(S) is closed and
a subset of compact subset and, therefore, compact.
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Proposition 3. Let Q and M be smooth manifolds and f : Q × R → M a smooth function.
For any t ∈ R, let f t : Q→ M be the function sending q to f (q, t). Let F : Q×R→ M×R be
the function that sends (g, t) to ( f (g, t), t). Then

1. if any t ∈ R f t is injective then F is injective;
2. if f is smooth then F is smooth;
3. if f is smooth and for any t ∈ R f t is an immersion then F is an immersion;
4. if f is smooth and dim(Q) = 0 then F is an immersion;
5. if Q is compact,f is smooth, for any t ∈ R f t is injective and if dim(Q) > 0 it is also an

immersion then F is an embedding with a closed image;
6. if F is an embedding and π is the projection of M × R to the second factor then π|Im(F)

is a submersion.

Proof.

1. Let (q1, t1), (q2, t2) ∈ Q×R such that F((q1, t1) = F(q2, t2). Then by the definition
of F we get that ( f (q1, t1), t1) = ( f (q2, t2), t2). Therefore, t1 = t2 and we denote
it as t, so we get that f (q1, t) = f (q2, t). By the definition of f t this implies that
f t(q1) = f t(q2) and since f t is injective, then q1 = q2.

2. Since f is a smooth function from Q × R to M, there exist for every p ∈ Q × R
smooth charts (U, ϕ) containing p and (V, ψ) containing f (p) such that f (U) ⊂ V
and ψ ◦ f ◦ ϕ−1 is a smooth function from U to V. Since the domain is Q×R then
(U, ϕ) = (U1 ×R, ϕ1 × IdR). Since (V, ψ) is a chart of M then (V ×R, ψ× IdR) is a
chart for M×R. If we take the point q ∈ U it is equal to (q1, t) where q1 ∈ U1 and
t ∈ R. We look at the charts (U1 ×R, ϕ× IdR) and (V × IdR, ψ× IdR). Then

(ψ× IdR) ◦ F ◦ (ϕ× IdR)−1(q1, t) = (ψ× IdR) ◦ ( f × idR) ◦ (ϕ−1(q1), t)

which is equal to

(ψ× IdR) ◦ ( f ◦ ϕ−1(q1, t), t) = (ψ ◦ f ◦ ϕ−1(q1, t), t).

Let us assume that M is of order k. Then ψ ◦ f ◦ ϕ−1 have k component functions
f1, . . . , fk which are all smooth. So we can write F as k + 1 components f1, . . . , fk, p
where p is the projection from Q×R to R. We can see that all the components are
smooth and, therefore, F is smooth.

3. Let p be a point as in the previous paragraph and that ψ × IdR ◦ F ◦ ϕ−1 has k
+ 1 components f1, . . . , fk, t. Since ϕ = ϕ1 × IdR then the coordinates of the do-
main of ψ× IdR ◦ F ◦ ϕ−1 are x1, . . . , xm, t when we assume that the order of Q is m.
Let 1 ≤ i ≤ k and 1 ≤ j ≤ m, then the partial derivative of fi in the coordinate xj is
equal to

lim
h→0

fi(x1, . . . , xj−1, xj + h, xj+1, . . . , xk, t)− fi(x1, . . . xk, t))
h

which is equal to

lim
h→0

f t
i (x1, . . . , xj−1, xj + h, xj+1, . . . , xk)− f t

i ((x1, . . . xk, t))
h

,

where f t
i is the i-th component of ψ ◦ f t ◦ ϕ−1

1 . We can see that the partial derivative
of fi in the coordinate xj is equal to the partial derivative of f t

i in the coordinate
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xj. The xj partial derivative of t is 0 and the t-th derivative of t is 1. To conclude,
the Jacobian of F in the point p is A 0

...
0

∗ · · · ∗ 1


where A is the Jacobian of f t. Since f t is an immersion so is F.

4. Since dim(Q) = 0, it is a union of points with the discrete topology and every point
has a homeomorphism to R0 which is precisely one point by a function that sends
one point to the other. So if we take one point a×R and the homeomorphism to R as
the natural one, then we have that one function f (t) = z where z is the variable of R
in M×R which is obviously an immersion.

5. By paragraphs (1)–(4) F is injective immersion. Since the identity is obviously
proper, then by Lemma 3 F is proper. So by Proposition 1 it is a smooth embed-
ding. By Theorem 3 it is closed; in particular, it has a closed image.

6. It is sufficient to prove that F ◦π is a submersion but F ◦π is a projection of the second
factor of Q×R which is known to be a submersion.

4. Main Theorem

In order to prove the main Theorem 4, we need the following lemma.

Lemma 2. Let M, S be smooth manifolds. H is a finite set of closed smooth submanifolds of M.
s : M→ S is a submersion such that:

1. for every h ∈ H, dim(h) < dim(M);
2. for every h1, h2 ∈ H such that h1 ( h2, dim(h1) < dim(h2);
3. for every h1, h2 ∈ H, there exist H1 ⊂ H such that h1 ∩ h2 = ∪H1. For all h ∈ H, s|h is a

submersion.

Let us denote

1. for h ∈ H h = {h \ ⋃
h1∈H∧h1(h

h1 | h ∈ H};

2. H :=
⋃

h∈H
{h};

3. M = M \ (∪H);
4. W := H ∩ {M}.

Then H ∪M \ ∩H is Whitney’s stratification, and for all w ∈W, s|w is a submersion.

Proof. Since every element in H is a submanifold minus a finite union of closed sets, it is an
open submanifold of h and by Theorem 2 every h ∈ H is a submanifold. It is also closed in
M and, therefore, M is also an open submanifold. It is obvious that ∪W = M. Next we will
prove that every two different sets in W are disjoint. It is sufficient to show for elements in H.
Let h1, h2 ∈ H where h1 6= h2. Assume to the contrary that x ∈ h1 ∩ h2. From the definition
of H there exist h1, h2 ∈ H such that h1 = h1 \

⋃
h∈H∧h(h1

h and h2 = h2 \
⋃

h∈H∧h(h2

h. We

can see that x ∈ h1 and x ∈ h2 and, therefore, x ∈ h1 ∩ h2. By our assumption there exist
H1 ⊂ H such that h1 ∩ h2 = ∪H1. Therefore, x ∈ ∪H1 which implies that there exist
h3 ∈ H1 such that x ∈ h3 and h3 ⊂ h1 ∩ h2. If h1 were equal to h2 then w1 would be equal
to w2. Therefore, there exist hi(i = 1, 2) such that h1 ∩ h2 ( hi, hence h3 ( hi and, therefore,
x /∈ wi. This contradiction proves our statement.

Until now we proved that W is a partitioning of the manifold M into a finite collection
of submanifolds. Let w ∈ W. Then it is equal to h1 \

⋃
h∈H∧h(h1

h since by our assumption
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every h that is strictly contained in h1 has a smaller dimension by Lemma 1 Cl(w) = h1.
Similarly, since for every h ∈ H dim(h) < dim(M) and M = M \ ∪H. Then by Lemma 1
Cl(M) = M. Assume now that we have two elements w1, w2 such that Cl(w1) ∩ w2 6= ∅.
Then, by our last statement, Cl(w1) = h1 for some h1 ∈ H and w2 = h2 \

⋃
h∈H∧h(h2

h for

h2 ∈ H. If h1 ∩ h2 6= h2, h1 ∩ h2 ( h2, and, therefore, h1 ∩ h2 ∩ w2 = ∅. Since w2 ⊆ h2
we get that h2 ∩ w2 = w2 and, therefore, h1 ∩ w2 = ∅. This contradiction forces us to say
that h1 ∩ h2 = h2 which implies that h2 ⊆ h1 and, therefore, w2 ⊆ h1. Since Cl(M) = M,
it is obvious that every element in W is a subset of cl(M). To conclude, we get that W is a
stratification. Since for every w ∈W there is h ∈ H such that Cl(w) = h and every h ∈ H
is a smooth submanifold and the closure of M = M, which is also a smooth manifold,
by Theorem 4 W is also a Whitney stratification. Since submersion is a local property and
s|h and are submersions, this is also true for their open subspaces, namely the elements in
W.

Proposition 4. Let M be a compact smooth manifold, J a finite set. For every j ∈ J, Qj is a
compact smooth manifold and gj : Qj ×R→ M is a smooth function. For every j ∈ J and t ∈ R,
let gt

j : Qj → M be the function that sends q to gj(q, t). f : J × J → P(J) is a function such that:

1. for any (i, j) ∈ J × J and for all t ∈ R Im(gt
i ) ∩ Im(gt

j) =
⋃

k∈ f ((i,j))
Im(gt

k);

2. for all j ∈ J and t ∈ R gt
j is injective;

3. for all j ∈ J and t ∈ R if dim(Qj) > 0 gj
t is an immersion;

4. for all j ∈ J dim(Qj) < dim(M);
5. for all j, k ∈ J if there exist t ∈ R such that Im(gk

t ) ( Im(gt
j) then dim(Qk) < dim(Qj).

Then M \ ⋃
j∈J

Im(g0
j ) is homeomorphic to M \ ⋃

j∈J
Im(g1

j ).

Proof. We define for any j ∈ J, Gj : Qj ×R→ M×R by Gj(x, t) := (gt
j(x), t). Since gj is

smooth, Qj is compact. For all t ∈ R, gt
j is injective and if dim(Qj) > 0 then it is also an

immersion. Then, by Proposition 3 Gj is an embedding with a closed image, and for π
equal to the projection of M×R to the second factor π|Im(Gj)

is a submersion.
Now we are going to show that for any (i, j) ∈ J × J,

Im(Gi) ∩ Im(Gj) =
⋃

k∈ f ((i,j))

Im(Gk)

Indeed, (x, t) ∈ Im(Gi) if and only if x ∈ gt
t. Therefore, (x, t) ∈ Im(Gi)∩ Im(Gj) if and

only if x ∈ Im(gt
i ) ∩ Im(gt

j) which by (1) this happens if and only if x ∈ ⋃
i∈ f (k)

Im(Gt
i ) and

happens if and only if (x, t) ∈ ⋃
k∈ f ((i,j))

Im(Gk). Let i, j ∈ J. If Im(Gi) ( Im(Gj). We would

like to show that dim(Im(Gi)) < dim(Im(Gi)). We know that (x, t) is in Im(Gi) if and only
if x ∈ gt

j and the same is true for j. So if (x, t) ∈ Im(Gj) \ Im(Gi), then x ∈ Im(gt
i ) \ Im(gt

j)

and for this specific t if x ∈ gt
i then (x, t) ∈ Im(Gi) which implies that (x, t) ∈ Im(Gi) and,

therefore, x ∈ gt
t. Combining these two facts, we get that Im(gt

i ) ( Im(gt
j) which implies

by our condition that dim(Qj) < dim(Ql) which imply that dim(Qj ×R) < dim(Ql ×R)
which means that dim(Im(Gj)) < dim(Im(Gl)), as needed. Let H := 〈Im(Gj) | j ∈ J〉.
Then H is a finite subset of closed smooth manifolds. For all h1, h2, there exist H1 such that
h1 ∩ h2 = ∪H, for all h1, h2 ∈ H such that h1 ( h2 dim(h1) < dim(h2) and for all h ∈ H
dim(h) < dim(N).

We denote W = {h \ ⋃
h1 H∧h1(h

| h ∈ H}, N := (M × R) \ ∪H and W := W ∪ {N}.

Then by Lemma 2 W is a Whitney stratification and for all w ∈ W, π|w is a submersion,
and since M is compact. π is proper on M × R. Therefore, by Theorem 5, there is a
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homeomorphism from π−1(0) to π−1(1) which is a stratum-preserving homeomorphism,
so we can see that π−1(0) = M. If h ∈ H then there exist k ∈ P(I) \∅ such that h = H(k)
π−1(1)∩ h =

⋂
i∈k

hi
1 ⊂ hl

1 where l is some element in k. In particular, for i ∈ I, if h = H({i}),

π−1(0) ∩ h = hi
1), so π−1(0) ∪ H =

⋃
i∈I

hi
1 which means that π−1(1) ∩ N = M \ ⋃

i∈I
hi

1.

In the same way, π−1(0) ∩ N = M \ ⋃
i∈I

hi
0 and, therefore, they are homeomorphic.

5. Adaptation of the Main Theorem to Curves

This section is a corollary of the main theorem in the case of curves. We are going to
use the following definition for simplification.

Definition 4. Let F : X × R → Y be a function. We define for every t ∈ R, Ft : X → Y by
Ft(x) = F(x, t). Then we say that F satisfies condition 1 if it satisfies the following conditions:

1. F is smooth;
2. for every t ∈ R, Ft is injective;
3. if dim(X) > 0 then for every t ∈ R, Ft is injective.

Theorem 6. Let F : S2 × R → S2 × S2 be a function such that F on S2 \ p is (ϕ× Id) ◦ g ◦
(ϕ−1× ϕ)−1 where g(x, y, t) = ((x, y), (H1, H2 + (x2 + y2)k), such that H1, H2 are polynomials
of the variables x, y over the smooth function with one variable, k = max{deg(H1), deg(H2))}
and (p, t) sends to p× p. Then F satisfies condition 1.

Proof. Let
H1 := ∑

i,j
h1

ijx
iyj,

H2 := ∑
i,j

h2
ijx

iyj

such that for all i, j and k = 1, 2, hk
ij is a smooth function. First, we prove that F is a smooth

function. Let a ∈ S2 \ p, then we choose for the domain the chart ϕ1 × Id and for the image
ϕ× ϕ, so we need to prove that

(ϕ× Id)−1 ◦ F ◦ (ϕ× ϕ)

is smooth. Indeed we get that

(ϕ× Id)−1 ◦ F ◦ (ϕ× ϕ) = (ϕ× Id)−1 ◦ (ϕ× Id) ◦ g ◦ (ϕ× ϕ)−1 ◦ (ϕ× ϕ) = g.

It is easy to see that “g” is smooth. For the points (p, t), we take the domain chart to
be ψ2 × Id and the image chart to be ψ2 × ψ2. So we need to prove that (ψ2 × Id)−1 ◦ F ◦
(ψ2 × ψ2) is smooth. Indeed for a point (a, t) where a 6= p

(ψ2 × Id)−1 ◦ F ◦ (ψ2 × ψ2) = (ψ2 × Id)−1 ◦ (ϕ× Id) ◦ g ◦ (ϕ−1 × ϕ)−1 ◦ (ψ2 × ψ2)

= ((ψ2)
−1 ◦ (ϕ)× Id) ◦ g ◦ (ϕ−1 ◦ ψ2 × (ϕ−1 ◦ ψ2)).

Thus, ψ2 is injective and ψ2(p1) = (0, 0). So if (x, t) ∈ R2 \ (0, 0)×R and we denote
z := x2 + y2, we get that ((ψ1)

−1 ◦ (ϕ1)× Id)(x, y, t) = ( x
z , y

z , t). If we apply g on the result
we get: ( x

z
,

y
z

)
,

(
∑
i,j

h1
ij(t)

xiyj

zi+j , ∑
i,j

h2
ij
(x)i(y)j

zi+j +

((
(x)2

z2 +
(y)2

z2

)k))
.
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Now
( x

z
)2

+
( y

z
)2

= x2+y2

z2 = z
z2 = 1

z , so we get

( x
z

,
y
z

)
,

(
∑
i,j

h1
ij(t)

(x)i(y)j

zi+j , ∑
i,j

h2
ij
(x)i(y)j

zi+j +

((
1
z

)k
))

.

This is equal to

( x
z

,
y
z

)
,

(
∑
i,j

h1
ij(t)

(x)i(y)jzk−i−j

zk , ∑
i,j

h2
ij

xiyjzk−i−j

zk +

(
1
z

)k
)

.

If we denote A := ∑
i,j

h1
ijx

iyjzk−i−j and B := ∑
i,j

h2
ijx

iyjzk−i−j, we note that since k is always

larger than i + j in every summand, then when (x, y) approaches (0, 0) then A and B
approach 0. So we get ( x

z , y
z ), (

A
zk , B+1

zk ). If we apply (ϕ−1 ◦ ψ2)× (ϕ−1 ◦ ψ2), we get(
x
z

( x
z )

2 + ( y
z )

2
,

y
z

( x
z )

2 + ( y
z )

2

)
,

( A
zk

( A
zk )

2 + ( B+1
zk )2

,
B+1

zk

( A
zk )

2 + ( B+1
zk )2

)
.

This is equal to (x, y),
(

Azk

A2+(B+1)2 , (B+1)zk

A2+(B+1)2

)
.

We can see that when x, y converges to (0, 0) the expression converges to (0, 0), (0, 0).
If we apply (ψ2 × Id)−1 ◦ F ◦ (ψ2 × ψ2) on (0, 0, t), we get ((0, 0), (0, 0) because applying
(ψ2 × Id)−1 will give us (p, t) Then, applying F will give us p× p and, finally, applying
ψ2 × ψ2 will give us ((0, 0), (0, 0)). So the function is continuous and a smooth function
divided by a smooth function other than 0 in a small neighborhood is smooth. Let t ∈ R.
We will show that Ft is injective and is an immersion for all t ∈ R. First we show it is
injective for an element in S2 \ p. Let R := S2 \ p× t then F = (ϕ× Id)|R ◦ g ◦ (ϕ× ϕ).
Since (ϕ1 × Id)|R, g, ϕ× ϕ are injective, Ft is injective on S2 \ p. Since the p× p is not in
the image of ϕ× ϕ then S1 \ p1 is not going to p× p since p1 is going to p× p, then Ft is
injective. Now we will show that the function is an immersion. For a point a ∈ S2 \ p,
we choose for the domain the chart α sending X to (ϕ(X), t) and for the image ϕ× ϕ we
get α ◦ F ◦ ϕ× ϕ = α ◦ (ϕ× Id) ◦ g ◦ (ϕ× ϕ)−1 ◦ (ϕ× ϕ). This function sends (x, y) to
((x, y), (∗, ∗)). If we look at the minor of the Jacobian, we get(

a11 a12
a11 a12

)
=

(
1 0
0 1

)
so these points have rank 2. For the point “p” we choose for the domain the chart β
sending X to (ψ(X), t). For the image (ψ× ψ) for similar reasons as before, the image is
((x, y), (∗, ∗)) which is also of rank 2. Therefore, on these points the function has rank 2,
hence it is an immersion.

The next theorem is an adaptation to lines in C2 which are topologically equivalent to
sets in R4.

Theorem 7. Let gi : R→ P(R4) (i = 1..n) be functions defined by t→ {(x, y, H1, H2) | x, y ∈
R} such that H1, H2 are polynomials of the variables x, y over the smooth function with one variable.
Let κi : R→ R4(for i=1..m) be a smooth function and let f : [1..n]× [1..n]→ [1..m] be a function
such that the following conditions hold:

1. for all t ∈ R and 1 ≤ i, j ≤ n, gi(t) ∩ gj(t) = κ f (i,j)(t);
2. for all i 6= j and t ∈ R κi(t) ∩ κj(t) = ∅;
3. if there exist t ∈ R and i, r such that κi(t) ∈ gr(t) then there exists j such that f (i, j) = r.
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Then

R4 \
(

n⋃
i=1

Im(gi(0)) ∪
m⋃

i=1

Im(κi(0))

)
is homeomorphic to

R4 \
(

n⋃
i=1

Im(gi(1)) ∪
m⋃

i=1

Im(κi(0))

)
.

Proof. Let φ : R4 → R4 be the homeomorphism sending (x, y, z, w) to (x, y, z, w + (x2 +
y2)k) where k = max(deg(H1), deg(H2)). Let J1 := {ai | 1 ≤ i ≤ n}, J2 := {b1, b2},

J3 := {c, di | 1 ≤ i ≤ m} and J :=
3⋃

i=1
Ji. To ai we attach the manifold S2 and the

function Gi : S2 ×R→ S2 × S2 which we defined piecewise on S2 \ p. It will be defined
as (ϕ× Id) ◦ (ϕ× Id) ◦ gi ◦ φ ◦ (ϕ× ϕ)−1 and p×R will be sent to p× p. By Theorem 6
they satisfy condition (1). For bi we attach the manifold S2 and the functions βi : S2 ×R→
S2 × S2 are defined as follows: β1(a, t) = (a, p) and β2(a, t) = (p, a). It is easy to see
that these functions satisfy condition (1). For c and di we attach a manifold with a single
point which we denote by Pt. We define the following function: for c we define the
constant function P which sends every element to p× p and for di we define the function
Di : R → S2 × S2 which is defined as κi ◦ ϕ−1 × ϕ−1. Next we define f̃ : J × J → P(J)
as follows:

1. f̃ (ai, aj) = {c, f (ai, aj)};
2. f̃ (ai, bj) = c;
3. f̃ (ai, c) = c;

4. f̃ (ai, dr) =

{
dr ∃j s.t. f (i, j) = r
∅ otherwise

5. f̃ (b1, b2) = c;
6. f̃ (bi, c) = c;
7. f̃ (bi, dj) = ∅;
8. f̃ (c, di) = ∅;
9. f̃ (di, dj) = ∅.

To complete the definition, we add that f̃ (X, X) := X and if f̃ (Y, X) is defined then
f̃ (X, Y) = f̃ (Y, X). Now we would like to prove that for any (i, j) ∈ J × J and for any
t ∈ R if we denote the function attached to k as rk we get that rt

i ∩ rt
j =

⋃
k∈ f ((i,j))

rt
k.

1. For every k and t ∈ R the image of Gt
k is equal to Gk(S2× t), the image of p× t is p× p

and the image of S2 \ p× t is equal to (ϕ× Id) ◦ (φ× Id)gk ◦ (ϕ× ϕ)−1(S2 \ p× t).
Since ϕ is surjective on R2, this is equal to φ× ID(gk ◦ (ϕ× ϕ)−1(R2 × t)). So the
intersection of the images of Gt

i and Gt
j is equal to a p× p union with

(φ× Id) ◦ gi ◦ (ϕ× ϕ)−1(R2 × t) ∩ (φ× Id) ◦ gj ◦ (ϕ× ϕ)−1(R2 × t)

which is equal

(ϕ× ϕ)−1((φ× Id) ◦ gi(R2 × t)) ∩ (ϕ× ϕ)−1((φ× Id) ◦ (gj)(R2 × t)).

Since (ϕ× ϕ)−1 and (φ× Id) are injective, this is equal to (ϕ× ϕ)−1 ◦ (φ× Id)((gi(R2×
t)) ∩ (gj(R2 × t))). From our assumption, we find that gi(R2 × t)) ∩ (gj(R2 × t)) =
κ f (i, j)(t). So applying (ϕ× ϕ)−1 ◦ (φ× Id) will give us (ϕ× ϕ)−1 ◦ (φ× Id)(κ f (i,j)(t))
as needed.
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2. As in paragraph (1) Im(Gt
i ) = p× p ∪ (ϕ× ϕ)−1 ◦ (φ× Id) ◦ gk ◦ (ϕ× ϕ)−1(R2 × t).

Since p× p is also in bj and the image of ϕ× ϕ is S2 \ p× S2 \ p, the intersection is
precisely p× p.

3. As in paragraph (1) Im(Gt
i ) = p × p ∪ gk ◦ (ϕ × ϕ)−1(R2 × t). So the intersection

with p× p is p× p.
4. First, if there exists j we already proved that (Gi(t)) ∩ (Gj(t)) = κr(t) and κr(t)

contain only one point, then Gi(t) ∩ κr(t) = κr(t). Next if j do not exist then as in
paragraph (1) Im(Gt

i ) = p× p ∪ (ϕ× ϕ)−1 ◦ (φ× Id) ◦ gk ◦ (ϕ× ϕ)−1(R2 × t) and
Im(Dt

i ) = ϕ−1 × ϕ−1 ◦ (φ× Id) ◦ κi. Since (ϕ × ϕ)−1 and φ × Id are injective and
do not contain p × p in their image the intersection is equal to (ϕ × ϕ)−1 ◦ (φ ×
Id)(R2× t)∩ (ϕ× ϕ)−1 ◦ (φ× Id)(κr(t)), so we calculate (gi(R2× t)∩ κr(t)). By our
assumption, this is equal to the empty set. Applying (ϕ× ϕ)−1 ◦ (φ× Id) will give
us the desired conclusion.

5. Trivial.
6. Trivial.
7. Since Im(Dt

i ) is a subset of the image of ϕ−1 × ϕ−1 which is S2 \ p× S2 \ p, we get
what is needed.

8. Same proof as paragraph (7).
9. Since Im(Dt

i ) = ϕ−1 × ϕ−1 ◦ (φ× Id) ◦ κi, then

Im(Dt
i ) ∩ Im(Dt

j) = ϕ−1 × ϕ−1 ◦ (φ× Id) ◦ κi ∩ ϕ−1 × ϕ−1 ◦ (φ× Id) ◦ κj

(ϕ× ϕ)−1 and (φ× Id) are injective. This is equal to ϕ−1 × ϕ−1 ◦ (φ× Id)(κi(t) ∩
κj(t)). Since (κi(t) ∩ κj(t)) = ∅ then Im(Dt

i ) ∩ Im(Dt
j) is also empty.

It is easy to see that for every j ∈ J the dimension of the manifold we attach to
it is smaller than the dimension of S2 × S2. Now we will prove that for all j, k ∈ J
if there exist t ∈ R such that Im(rk

t ) ( Im(rt
j), then dim(Qk) < dim(Qj) such that

rk is the function attached to k and Gk is the manifold attached to k. We note that if
Im(rk

t ) ( Im(rt
j) then Im(rk

t ) ∩ Im(rt
j) = Im(rk

t ). Since we know that for any (i, j) ∈
J × J and for any t ∈ R, if we denote the function attached to k as rk we get that
rt

i ∩ rt
j =

⋃
k∈ f ((i,j))

rt
k. If we have i, j that contradicts our statement there must be k where

k ∈ f ((i, j)) where dim(Qi) = dim(Qj) = dim(Qk). It is easy to verify that this is not
the case.

So by Theorem 4, S2 × S2 \ (
n⋃

i=1
Im(G0

i ) ∪
n⋃

i=1
Im(D0

i ) ∪ (p× S2) ∪ (S2 × p) ∪ (p× p))

is homeomorphic to S2 × S2 \ (
n⋃

i=1
Im(G1

i ) ∪
n⋃

i=1
Im(D1

i ) ∪ (p× S2) ∪ (S2 × p) ∪ (p× p)).

We know that A \ (B ∪ C) = (A \ C) \ (B \ C). Then it turns out that

S2 × S2 \ (p× S2 ∪ S2 × p) \
(

n⋃
i=1

Im(G0
i ) ∪

n⋃
i=1

Im(D0
i ) ∪ p× S2 ∪ S2 × p ∪ p× p

)

is homeomorphic to

S2 × S2 \ (p× S2 ∪ S2 × p) \
(

n⋃
i=1

Im(G1
i ) ∪

n⋃
i=1

Im(D1
i )

)
∪ p× S2 ∪ S2 × p ∪ p× p.

We can see that S2 × S2 \ (p × S2 ∪ S2 × p) = S2 \ p × S2 × p. We know from (1) that
Im(Gt

j ) = p × p ∪ φ(gk ◦ (ϕ × ϕ)−1(R2 × t)), so if we subtract p × p we get

Im(Gt
j ) \ (p × p) = (gk ◦ φ ◦ (ϕ × ϕ)−1(R2 × t)). We can see that the image is inside

((S2 \ p)× (S2 \ p) ∪ p× p) and, therefore,

ϕ× ϕ(Im(Gt
j ) \ ((S2 \ p)× (S2 \ p) ∪ p× p)) = Im(gk ◦ φ).
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Additionally, since the image of Dt
i is inside

((S2 \ p)× (S2 \ p) ∪ p× p),

ϕ× ϕ(Im(Dt
i )) = Im(κt

i ◦ φ) and since ϕ× ϕ is a homeomorphism on S2 \ p× S2 × p, if we

apply it we get that R4 \ (
n⋃

i=1
Im(g0

i ◦ φ) ∪
n⋃

i=1
Im(κ0

i ◦ φ)) is homeomorphic to

R4 \ (
n⋃

i=1
Im(g1

i ◦ φ) ∪
n⋃

i=1
Im(κ1

i ◦ φ)). Applying the homeomorphism φ will give us that

R4 \ (
n⋃

i=1
Im(g0

i )∪
n⋃

i=1
Im(κ0

i )) is homeomorphic toR4 \ (
n⋃

i=1
Im(g1

i )∪
n⋃

i=1
Im(κ1

i )), as needed.
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