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Abstract: In this paper, we introduce and investigate a new class of the parametric generalization of
the Baskakov-Schurer-Szasz-Stancu operators, which considerably extends the well-known class of
the classical Baskakov-Schurer-Szasz-Stancu approximation operators. For this new class of approxi-
mation operators, we present a Korovkin type theorem and a Griiss-Voronovskaya type theorem, and
also study the rate of its convergence. Moreover, we derive several results which are related to the
parametric generalization of the Baskakov-Schurer-Szdsz-Stancu operators in the weighted spaces.
Finally, we prove some shape-preserving properties for the parametric generalization of the Baskakov-
Schurer-Szédsz-Stancu operators and, as a special case, we deduce the corresponding shape-preserving
properties for the classical Baskakov-Schurer-Szasz-Stancu approximation operators.
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1. Introduction

One of the most powerful theorems in the approximation theory is known as the
Weierstrass Approximation Theorem, which states that any continuous function f(x) defined
on the closed interval [a, b] can be approximated by an algebraic polynomial P(x) with real
coefficients for each x € [a, b].

The idea of finding concrete algebraic functions for better approximation has been
studied extensively, and a number of polynomial operators have been used directly. The
first results are given for the Bernstein operators, which were generalized by Szasz [1]

as follows: ‘
nx)/ '
()
j! n
for x € [0,00). Baskakov [2] defined the following sequence of linear operators:

Ls(f,x) = (1ﬂ396)3 i <S+:_1>(1fx)rf(§>

r=0

Su(f,x) = i
j=0
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fors € Nand x € [0,00), N being the set of positive integers. Subsequently, Schurer [3]
generalized the Bernstein operators in the following form:

m+p
Lm,p(f/x) = Z <m + P> xk(l _ x)m+p+k f<k> .
P k m
Stancu [4] defined the following sequence of operators:

0= % (3) w0 (1)

r=0

for 0 < o < B. More recently, the following form of the Baskakov-Schurer-Szész-Stancu
operators was introduced by Sofyalioglu and Kanat [5]:

Bre N = (s+p+r—1 x"
Mo (fix) = s+ ) ZO ( r (14 x)stPer
r=

® —rp AP (s p)tta
./0 g~ (s+p)t ~ f( i )dt,

where s is a positive integer, p is a non-negative integer, and 0 = a < .

2. The New Generalized Baskakov-Schurer-Szasz-Stancu Operators

In this paper, we are interested in investigating a more generalized new class of
operators, namely, the parametric generalization of the Baskakov-Schurer-Szadsz-Stancu
operators. We define these operators as follows:

VBN ok © ((ntptt+a) i
MR = e p) Ll (G e
with
k— k—
dpt = |2 (") —asmasn ("I T)
xk*l

+(1_7)x(n+p;—k—l>

wheren,p,k e N,0Sa < B,v€Rand x € [0,00).

(1 + x)n+p+k—1 /

Remark 1. It is clearly seen that M}l’f;”g (f;x) = Miﬁ (f;x).

The aims of this paper are to first study the Korovkin type theorem, the Griiss-
Voronovskaya type theorem, and the rate of the convergence for the parametric general-
ization of the Baskakov-Schurer-Szasz-Stancu operators. We then present some results
related to the parametric generalization of the Baskakov-Schurer-Szasz-Stancu operators
in the weighted spaces. Finally, in the last section, we give some preserving properties
of the parametric generalization of the Baskakov-Schurer-Szdsz-Stancu operators such
as convexity.

3. Preliminary Results

By simple applications of the principle of mathematical induction, one can obtain
Lemmas 1 and 2 below:
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Lemma 1. Forall ¢ = 0,

oS m(k+£)
sk (1) dt = ¢
Jy st dr =

n-+ p>5+1 :
Proof. We proceed to the proof by the principle of mathematical induction on N given by
N:=/+k=0.

First of all, for N = 0 (¢ = k = 0), we have

[ee) o0 1
0 _ —(n+p)t _
t) dt = dt =
/0 np(t) /0 ¢ n+p’

as claimed in Lemma 1.
We now assume that the claimed result holds true for some N given by

N:=(+k=20.
We then prove the claimed result for
N+1:=(l+1)+k

Indeed, by partial integration, we have

00 1) k
/ Pk (1) dt = / L1, (nt-p)t (n+p) dt
0 ? 0 k!

df _ (n+p)?
_ {+k+1 n+p)t
,‘/0 t dt{e (n+p) o dt

€+k+l/ thrk —(n+p)t (I’l—i—p) dt
n+p k! ’

Thus, by the induction hypothesis, we have

(£_|_1) (k+/+1)
/O £ sk (1) dt—W,

which shows that the claimed result also holds true for N + 1 = ¢ + k + 1. This evidently
completes our proof of Lemma 1 by the principle of mathematical induction. [

Lemma 2. Forallm =0,

m
[T (k+7)
i bk,’Y(x) ]=1 — f gm + hm
= ()t ()t
where fm, gm and hy, are defined as follows:
n+p+k—1\ & . x*
fu=L( a0 et
m ]@20 k ]11 (1 +x)n+p+k
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and

n+p+k—1\ &4 . xk
hw = Z(l—fy)( pk )E(k—F])MW’

and they satisfy the following recurrence relations:

far = (m 1 x4 p)) o x(1 %) (o),

d
1 = (m 424 x(n+p —1))gm +x(1+x) T—{gn}
and
d
M1 = (m 14 x(n+ p = 1))k + x(1+x) Al },

with fo =7, 80 =x(1—y)and hy = (1 + x)(1 — 7).

Proof. By using similar arguments as in the proof of Lemma 1, we can establish the result

asserted by Lemma 2. We choose to skip the details involved. [

By means of Lemmas 1 and 2, and, by using the principle of mathematical induction

on m, we are led to the following result.

Proposition 1. Forall m 2 0,

n k— " , xk
fm:Z'Y( +P;{i— 1)H(k+])(1+x>n+p+k

k=0 i=1

Lo(m\ (n+p—14+7\ _;
=m!y <)< . >x],
];) J ]

g\ m k-1
ngZ(l’Y)(nJij;{ 3>H(k+]')(1+;)n+p+k2
= (1—9)m! i (T_:—zz) <n+p._1+j>xj+l

and

Furthermore, for all m = 0,

m

Mk+j) m ¥
j=0

[ee] h

@>u1w<@><ﬁb>40”f“Wf

ky j=1 _
L 00 Gy = CEI
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By (1), we have

Byl oy _ o 1k ° ((n+p)t+a)
M (#5x) = (n + p) Z bn,Z(x)/O Wsﬁ,p(ﬂ dt
. n+p) () e

-y Y b (x) /O sk (1) dt.

=0 7’1 + p + ,B) k=0

Thus, by Lemma 1, we obtain

" ! al=i 0N & k+
MY () = Y ( ) 5 bmx)( J);

Hence, by applying the above Proposition, we can prove the following result.

Theorem 1. Forall ¢ = 0,

£ a0t () 8 (0 + 1= [() - (D] ) (74

M'y,a,/g e ;x ] 0 i=0
ny' (e0%) = (n+p+p)

For instance, Theorem 1 for £ = 0, 1,2 gives the following moments:

__atl n+p+2’y—2x
n;kp—l—/% n+p+p
2 2 2 2 2 2p -2 -

3. anﬁ(ez, %) = o+ 20 + [(n+p+2y)a+2n+2p — 20+ 5y 5}x

7

(n+p+p) (n+p+p)?
(n+p)n+dy+p-3) ,
(n+p+p)? '

In what follows, we will prove the Korovkin type theorem for the parametric gener-
alization of the Baskakov-Schurer-Szadsz-Stancu operators. In the last several years, this
subject is widely studied, and it is treated, among others, in the following references (see,
for example, Refs. [6-20]). Some other related recent developments on this subject can be
found in [21-24].

Theorem 2. Let (M,Zl’g’ﬁ ) be a sequence of positive linear operators defined on C|0, R] for any finite
R such that, for every i € {0,1,2},

lim HMZP’S(eI, ) —eil| =0, )

n—oo

where e; = xt. Then, for every f € C[0,R],

lim || M7o? (f;x) - f|| = 0. (3)

n—o0

Proof. From Theorem 1, we have

[M75P (e;x) —eof| =1—1=0,
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a+1 n+p+2y-—2

VB, L _
| My (e1;x) —eq]| et pt B APt B

=0

X —X

and
MY (2 %) — e

> +20+2  2((n+p+2y)a+2n+2p—2a+5y—5)

(n+p+p)> (n+p+pB)?
(n+p)(n+4y+p-3) _
+ CESEYL x2— 2% = 0.

By means of the basic form of the Korovkin type theorem (see, for example, Ref. [25]),
we complete the proof of Theorem 2. [

Lemma 3. Forall £ 2 0,
70,8 ¢ Lot (= p g 1B
M ((y = 0)%52) = 1 () (=0 Ml (e0).
Proof. Lemma 3 follows immediately from (1). O
Example 1. By Theorem 1 and Lemma 3 for £ = 0,1, 2, we obtain
M;Zyl’g’ﬁ((y -x)%x) =1,

, a+1 2(y—=1)—B
MZ,Pﬁ(<y_x)l;x):n+p_|_ﬁ n_'_p_|_ﬁ

and

" a?+20+2 2n+p—af+2uy—2a—B+5y—5
MIB (g — x)%7) = (n+p—ap +2uy p+57-5),

~ (ntp+p)? (n+p+p)>?
B2 —4By+n+p+4p
(n+p+p) ‘

Moreover, if we consider Lemma 3 for £ < 6 and n — oo, we obtain

lim nMys? (y —x)5x) =a+ 14 2y —2- B)x,

n—oo
lim nMZ,’Z’ﬁ((]/ —x)%x) =2x + %%,

lim 72 MyyP ((y — x)% %) = 6(a +2)x + 3(a — 28 + 4y — 1) + (67 — 36 — 4)x°,

n+—oo

lim 7? M;’,’;;’ﬁ (y—x)%x) = 1242 + 12x° + 324,

n—00

lim n3MZ:g’ﬁ((y —x)%; x) = 60(a + 3)x2 4+ 60(x — B+ 27 +2)x°

n—o0o

+5(3a — 128 + 24y — 1)x* + 5(67 — 38 — 2)x°

and
lim 7% MJ® ((y — x)% x) = 120x° + 180x* + 90x° + 15x°.

n—0o
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4. Direct Estimates

With B[0, o), C[0, 00), and Cg([0, o)), we will denote the space of all bounded func-
tions, the space of all continuous functions, and the space of all continuous and bounded
functions defined in the interval [0, 00), respectively, endowed with the norm given by

£l = sup |f(x)].

x€[0,00)
The modulus of continuity of the function f € C[0, o) is defined by
w(f;0) = sup{|f(x) = fy)]: x,y €[0,00) and [x—y| =}

It is known that, for any value of the |x — y|, we have

() — )] < <ffs>("‘ '+1).

Theorem 3. Let f € Cp[0,00). Then, the following inequality for the operators (1) holds true:

M35 Ef — £
. ntpl, (=o)((n+p+x+1)
gw(fr\/ﬁ)<l+ \/ﬁ 1- (1+x)n+p
20+ 14 (8ay —8a — 2B + 14y — 14)x — 8B(y — 1)x?
4(n+p)(n+p+p)>
N 4o? + (—8ap +4a + 3)x + (4% — 4B +2)x?
4(n+p+B)?
x2(n+ p)?

+2x(4xB — x —4a)(n + p)? +

)

are linear and positive. Let f € Cp[0, c0). In view of

(n+p+p)?

Proof. We know that operators M,/ v b

the modulus of continuity, we have

T .- ©l o (ntpttay k
MEEP 0 - 7] < () e 7|7 (U EERE ) < eyt a
o 1k | (ntp)tta k
fw <1+ (n+p) k;)bn,’;(x)/o n_'_p_’_ﬁ—xsn,p(t)dt) @)
Let us set ( )
e gk ©l(ntptta |
B._Igbn,p(x)/o g () dt

Then, by the Cauchy-Schwarz inequality, we get

1 1
) 2 =) o0 F+a 2 by 2
B< | Y obrn)| - b"”x/ (M—x> 1P a] . 6)
< L_zo e >] L_ZO e (s s5p(0)]
By direct calculations, we see that
1—7)(n+p+1)x+1]

kv 1
kzzobn,p(x) =1 (1 +X)n+p ’ (6)
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and also that

- 2k
to= [0 0 dt = gl
o 2%k +1) (%
AV:A rhﬁAﬂfdh=§mQ@IZ;
and
N k+1)(2k+1) (%

These last three equalities lead us to the following consequence:

/oo ((n+p)t+tx _ x>2 . [s’;,p(,{)}z dt

Jo n+p+p

(n+p)? ( « ) n+p ( « )2
S U - At [ —2 %) A,
mrprpr 2w pap nrpep T wprpY) 0

Hence, in view of the positivity of bf{,”;, (x), if we use the following expression:

K5 ) e

together with the fact the
2k
< n2k
(%) =2

gy (SRR N e 2
Lt ) | ( > [, dr < u,

we obtain

n+p+p

where

20+ 1+ (8ay —8a —2B + 14y — 14)x — 8B(y — 1)x?
B 4(n+p)(n+p+p)?
4a? + (—8apf +4a +3)x + (48> — 4B+ 2)x?
i it p+ P
x%(n+p)?
(n+p+p)?

u

+2x(4xB — x —4a)(n + p)? +

From (6) and (5), we find that

1-a)((n+p+1x+1
BS\/(l— (52 >u.

Putting 6 = \/n, we get the result asserted by Theorem 3. [

In what follows, we will give an upper bound for the sequence of the parametric
generalization of the Baskakov-Schurer-Sz4sz operators.
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Theorem 4. Forany f € Cg[0, ),
[ME*F0 £ e

Proof. From the definition of the parametric generalization of the Baskakov-Schurer-Szasz-
Stancu operators in (1), we have

e}

MR (0] < sup FO]-0n+p) 1 Wb o) [ b, () at
k=0

teRt+
= sup |f(t)] - My (e x) = | flic,

teRT
as asserted by Theorem 4. [

For f € C[0,00) and 6 > 0, the second-order modulus of smoothness of f is defined
as follows:

wa(f,V/6) = sup sup  {|f(x +21) = 2f(x) + f(x — h)|}.

0<h<y/6 xx+hel0,00)
The Peetre’s K-functional is defined by

Ko(f,6) = inf {||f — gllcio,e0) + 118" llcpoeo) : § € W2},

where § > 0 and
W? = {g€C[0,0):¢,8" €C[0,00)}.

It is known that there exists a positive constant C > 0 such that (see [26] (Theorem
3.1.2)),

Ka(f,8) S Cwy(f,V6)  (6>0).
Theorem 5. Let f € C[0, A] for any finite real number A. Then,
2 3
MyyP (Fix) = F(0)] £ ZIFIV + S(A+ 0 +2)wa(fD),

where

b= M (s — )2 x).
Proof. Let fs be the Steklov function of the second order for the function f(x). Know-
ing that
M (e;x) = 1,
which follows from Theorem 1, we have
(M (F52) = F ()| S IMEGP (F = fos )|+ 1M (i) = fs (o)l + [fs () = f(0)
< 2l fs — £+ M3 P (fs %) = f ()] )

Now, from the Lemmas in [27], we find that

IMYSP (%) = F(2)] S Swa(f;) + [MEP (Fs; %) — fs(x)]. ®)

I\)\UJ

Knowing that fg € C2[0, A], and from the Lemmas in [17], we obtain

M (fs;%) < (A2l /MR (G5 = x)2) + I MES? (5 = )5).
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The following inequality is valid (see [27]):

121 € sopn(fib). ©)
In light of (8) and (9), (7) takes the following form:
IME? (520 = fs)] < 1)) /M2 (s = %)
3
+ 122 (FOMI (s — 2% x).

From the relation (9) and the Landau inequality (see [28]), we get

Ifsll = *Ilfll 2 4b2 wy(f; D). (10)

Using relations (9) and (10), and upon setting

b= \/MnY 2P (s — x)?2 ;X),
we obtain 5 3
M (fsix) = fs(x)] < ZIAIP + (A +P)an(fb).
Now, from relation (8), we complete the proof of Theorem 5. O

Let
C3[0,00) = {f € Cp[0,00) : f/, f" € Cp[0,00)}

with the norm given by

Ifllcz = N flloo + 1L£ lleo + 1Ll

and the Peetre’s K-functional given by (see [29])
K(£;0) = {llf = 8lleo +6liglicz }-
Theorem 6. Let f € Cp[0,00). Then, the following inequality holds true:
IMP (fx) = ()] £ A p,a, B,7,9) ez

for every x 2 0, where

A(n,p,a,B,7v,x) = { at1 +2(’Yl)ﬁx]

n+p+p n+p+p
a? 420 +2 2(n+p—zxﬁ—|—2a’y—2a—ﬁ+57—5)x
(n+p+p)? (n+p+p)*

ﬁ2—4,3'y+n+p+4,3x2
(n+p+B) '

Proof. By using the Taylor formula and the linearity of the operators M7 b (f;x), we obtain

MR () — () = MESP (6 = x)5x) f () + 5 MR (8= 0%5x) £ (9),
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where ¢ € (x, ). In addition, from the above Example, we have

B, T a+1 2(y—-1) -8
MR i) — ] = 1) [+ 2]

LU 2202 2(ntp—apt2ay —2a—p45y—5)
2 |(n+p+p)? (n+p+p)?
B2 —4By+n+p+4p o
(n+p+p)

é A(Tl, P« ﬁ/ Y, X) Hf”c%’

where

A(n,p,a,B,7v,x) = { at1 +2(’)/1),8x]

n+p+p n+p+p
w2 +20+2  2(n+p—ap+2ay—2u—B+5y—5)

(n+p+p)> (n+p+p)>?
B2 —A4By+n+p+4B ,
i (n+p+p) x}

which proves Theorem 6. []

Theorem 7. Let f € C[0,00). Then,

|M7”4/3 (fix) — f(x)] £2M lwz <f,\/; A(n,p,uc,,[%,y,x))

. 1
+min{1, 3401, p,0,,7,7) | ||f|oo] :
where M is a positive constant and A(n, p,«, B, 7y, x) is defined as in Theorem 6.

Proof. From the linearity of the operator MZ:g’ﬁ (f; x) and the following relation:

f(8) = f(x) = f(8) = g() +g(t) —g(x) +8(x) —g(h),

we obtain

IMYSP(fix) = f(2)] < MR (F = g5x) — flx >|
+ MY (%) — g (x)] + [ (x) — g(x)]-

Now, from Theorems 4 and 6, and, by considering that g € C2, we get
MU (fix) = ()] S 20f = gll + Aln, pa B, 0) gl
= 2K<f;;A(n,p,oc,[3,'y,x)).
It is known that
K(f:6) £ C|wa(f; V3) +min{1, 5} f[l,

where C is a positive constant, holds true for every § > 0 (see [26]). From the last two
relations, we get the result asserted by Theorem 7. [J
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We will give the Voronovskaya type theorem for the parametric generalization of the
Baskakov-Schurer-Szédsz-Stancu operators.

Theorem 8. For f € Cg[0,00), the following limit relation:

Tim n[M3# (F(0;2) — F(0)] = £+t 27 -2 B + T (201 2),

holds true for every x € [0, M] and any finite M.

Proof. By Taylor’s expansion theorem of the function f in Cg[0, o), we obtain:

f(#) = f(x) +(t—=x)f'(x) + %(f—x)zf"(X) + (£ — )%y (1),
where

_ _(+ — ! 1y N2 e
f(t) —flx) — (¢t (9;)}:9(:;3 3 (t—x)% f'(x) (x £ 1)

Px(t) =
0 (x=1t)

and the function ¢, (+) is the Peano form of the remainder, ¢, (-) € Cp[0,00) and 9 (t) — 0
as t — x. Applying the operator M7 # on both sides of the above relation, we find that
1/
x
WM (F0);3) — F() = £ mMi (6= 032) + it (- 202)
M ((t = 2)%e(8); ).

In addition, from the above Example, we get

lim 1 [Mys? (F(£);x) — ()] = F/(x)[1+a+ 2y —2 - p)x]

n—o0

4L ”2(") (2x + xz) + lim nMISP (¢ — x)2pe(s); %),

n—o0

which, after applying the Cauchy-Schwarz inequality, yields

MR (= x)2a(s);%) < {m2MIEP (= )% 2) )2 (M0 (92 (8);%) } 2.

We now observe that ¢2(t) — 0 ast — x and ¢2(-) € Cp[0, c0). Thus, from Theorem 2,
it follows that

(MY (@2(;2) ) = 0

as n — co. Then, by using the last relations for every x € [0, M], we get

lim n[M,/, ﬁ(f( t);x) — f(x)] = fl(x)1+a+ 2y —2—B)x] + f”(x) (2x—|—x )

n—o0
This completes the proof of Theorem 8. [J

In what follows, we will give the Griiss-Voronovskaya type theorem (see [30]) for the
parametric generalization of the Baskakov-Schurer-Szasz-Stancu operators.

Theorem 9. Let f/, f",¢',¢"” € Cp[0,00). Then,

hm n’M fg, x) — M,Z;,Z"ﬁ(f,x)MZjﬁ'ﬁ(g;x)\ = (2x+27)f (g (x),
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for each x € [0, 9], where M is finite.

Proof. After some calculations, we obtain
n|MIP (Faix) — MU (Fix) M P (g, )]
= [n(ME3? i) - £)) — [ (27— 2= BI(F) () — (2x-+) LB
~ () [n(MEP(3) = ) = [+ a4 @y =2 paIf ) - x4 T |

- M (£ ) [ (M P(g%) —g(x)) = [+ + (27 — 2= B)x]g/ ()

— (2x +x%) gllz(x ]
+ (2x+x2)f’(x)g’ (2x+x2) g”z(x MWﬁ(f;x)]
Fl+a+ 2y —2—B)xlg (x)[f(x) — MWﬁ(f x)].

The proof of Theorem 9 now follows from Theorem 8 and the above Example. [J

The following results give light to the speed of the change between the difference of
the parametric generalization of the Baskakov-Schurer-Szész-Stancu operators and their
derivatives, measured in terms of the modulus of continuity.

Theorem 10. Let b, b/, b” € C[0,00). Then,

(n+p+B) M1 (0;x) = b(x)] — b (x) e +1+ (2(7 = 1) — B)a]

~b'(x) a2+20c+2+2(n+p—oc,8+21x'y—2¢x—,3+5'y—5)x
2 n+p+p n+p+p

- 4ﬁ’r+n+p+4ﬁ)x2> ‘ —0(1) ~w(b”;) (n = oo)

for every x € [0, M] for any finite M.

Proof. From the Taylor’s theorem, we have

b() = b(x) + /() — 1)+ L (= 02 4 R(w, )

where "
R ) = O=YG),

u — x)?

for 6 € (u,x). We thus find that

M (0:x) — () — B (M P — ) — T M (- )

< MYy P (IR (u, %)]; %).
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From this last relation, we get

(n+p+B) My (0;x) = b(x)] — b/ (x) [w+ 1+ (2(y — 1) — )]

b (x)

o + 20 +2 2(n+p—ap+2uy—20—B+5y-5)
2

n+p+pB n+p+p

+ (B> — 4By +n+p+4B)x*|| £ (n+p+/3)MZ,’§’ﬁ(|R(u/x)|?x)-

By the properties of the modulus of continuity, we have

b"(6) —b"(x)| . 1 16 — x| "

On the other hand, it is easily seen that

w(b”;9) (lu—x| =9)
b (0) — " (x)
2!

A

)
L owe) (u—xl20)

For 0 < § < 1, we obtain that

b(6) — b” (x)
2!

(54

<wlp;o) (14 ‘x>4),

which yields

u—x)* 6
IR(u,x)| < w(n";5) (1+( = )(u—x)z—w(f)”;é)((u—x)z—i— =) )

By the linearity of MZ/’;;’ﬁ and the above relation, we obtain

1

MIP (R (1,2)];2) < w(8";9) (M;I;;?'ﬁ((u —0)%x) + 5

MZ/’;’ﬁ ((u—x)°; x))

Now, in view of the above Example, for every x € [0, 0], we have

¥,0,B . . 1 1 1 - 1 .
MEE (R, x)|:2) € w(b'0) [o() ‘o o(g)] =o(; )wlv'so).
Thus, for
1
0= —,
Vvn
we complete the proof of Theorem 10. O

The next result gives an estimation of the parametric generalization of the Baskakov-
Schurer-Szédsz-Stancu operators in the special Lipschitz-type space Lipj,«([1]), defined

as follows:
ip* = 00):|f(s) — f(x \s—x|”‘x o0) and s 1)
Lipio (@) = {£ & Co0,09) £ £(5) — £ £ M0, x e (0.00) and s € (0.0) ),

where M is a positive constant and « € (0,1].
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Theorem 11. Let f € Lipj,(a). Then, forall x,t € (0,00), n € Nand a € (0,1],

MY P(frx) — f(2)]

s M & + 20 +2 +2(n+p—tx,3—0—2¢x’y—21x—ﬁ+5’y—5)x
T (x+)z\(ntp+p)? (n+p+p)7?
PP—4By+n+p+4p o :
(n+p+p) ’

where M is a positive constant.

Proof. Let f € Lipy,(a) and a € (0,1]. We will distinguish between the following
two cases.

I For « = 1, we have

MY (F(1);x) — f(x)]
< [ MEP () — F(x)];)]
|

t_
< mompf (=2
(x+1)}
M

(x+1)2

A

My (1t = x|; x)

for a positive constant M.
If we apply the Cauchy-Schwarz inequality in the last expression, we get

IMYP (F(1);x) — f(x)]

M N
: (x+1)? ME3A (1 = xa)
SL\/M'Y“Ig )
T (x+1)2
M a? 420 +2 2(n+p—o¢ﬁ+2(x'y—2a—ﬁ+5'y—5)x
(x+1)2 \(n+p+p)> (n+p+p)?
1
B —4pytntp+ap 5\’
(n+p+p) '

II. Fora e (0,1), wehave

|MYP (F(8); %) — f(x)]
< |IMEP(IF(8) — f(x)]; %))
< M Mw,ﬁ<|t x| )
"o\ (1)t
M
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If we apply the Holder inequality on the last relation under the conditions that

_1
P_Délq_ 7

we obtain

I 03) = 0] S 72 MR e =)

for a positive constant M. Thus, after applying the Cauchy-Schwarz inequality, obtain the
following estimate:

MY (F(); %) — F(2)]

M x *
<
_ M > +20+2 2n+p—af+2ay—20—pB+5y—5)
(x+8)5 | (n+p+B)? (n+p+pB)>
ﬁ2—4ﬁ'y+n+p+4ﬂx2 £
(n+p+p) '

which completes the proof of Theorem 11. [

The Ditzian-Totik uniform modulus of smoothness of the first and the second orders
are defined as follows (see [26]):

wy(f;6) == sup sup {[f(x+hy(x)) = f(x)|}

0<|h|S8 x,x+hy(x)€[0,00)

and

W} (f;0) = sup sup  {|f(x+hp(x)) — 2 (x) + f(x — h(x))

0<|h|S6 x,xth$(x)e[0,00)

1

respectively, where ¢ is an admissible step-weight function on [g, b], that is,

¢(x) = [(x —a)(b—x)]'?

if x € [a, b]. The corresponding K-functional is defined as follows:
Ko p(x) (f,0) = e mf {||f 8lico,ee) +611978" I clo,o) }-
where § > 0,
W(¢) = {g € Cp[0,00) : g’ € AC[0,0), ¢°g" € Cp[0,00)} and g € AC[0, o0)

means that ¢’ is absolutely continuous on [0, o). It is known that there exists an absolute
constant € > 0 such that (see [26])

w§ (f; V8) < Ky g (f,6) < € Wl (f;V3). (11)
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Theorem 12. Let & = /x(1—x) (x € [0,1]) be a step-weight function of the Ditzian-Totik
modulus of smoothness. Then, for any f € Cg[0,1] and x € [0,1], n € Nand 2y < p+2,

My ((s = 0)%2) +aa(n, p, mﬁ))

MY (f:2) = F(x)]| € 4K (f,

492(x)
a1 (n,p, o B)
(),
where o a+1 2(7—1)—,8
al(”’p’“’ﬁ)_n_‘_p_'_ﬁ 71+P+,3 .
Proof. Let
M (%) = MU (Fix) + f(2) = f(x + Ba(n,p, 0, B, %)),
where

a+1 2(y—-1)—B
n+p+p n+p+p

,81(7’[, P, ,B/ X) =
We then observe that
MpP Lx) =1 and  MIP((s—x);2) =0,

Let ¢ € W2(¢). Then, by using Taylor’s expansion, we write
8(s) = 8(x) +8'(x)(s —x +/ s—u)g"(u)du (s €[0,00)),
which implies that

My P (g:2) — g(x) = My P ( / (s — w)g" (u) dus x)

x+B1(n,p,a,B,x)
_/ 1 [x"'ﬁl(n/f)/“/ﬁlx)—M]g//(u) du.
x

Therefore, we have
M (g50) — g (x)]

S
[ (s =g (w) du;
xX+p1 (m,p.a,B,x)
v
X

")
x4 Baln,p,a, B x) —ul - |5 ()] du

|S |du x)+||¢2 // )HH

¢?g" (x) szz'ﬂ(‘ 2 (0)
| e )
. ¢*(u)

Let u = px+ (1 —p)s (o € [0,1]). Since ¢? is concave on [0,0), it follows that
#2(u) > pg?(x) + (1 - p)¢2(s) and hence

s —ul _ plx—s| - plx —s|

P?(u) — PP(u) T pd?(x) + (1 —p)¢?(s)

|du.

|x —s|

$*(x)
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We thus obtain

1M (2) - g]| < W(W%ﬁ'ﬁ((s—x%x)] +xﬁ1<n,p,mﬁ,x>).
From the above relations, we obtain
1M (f, %) = £ ()|
< |My (= 9| + [ My (8) = 8ll + 11 = gl + [|f (x + Ba (o, p,, B x)) = £(2)|
<4l|f - gl + ”q‘fz(g )” (M P (s = )% %) + xBu(n, p, B, )]
+[|fx+pi(np,a, B,x) — f(x)]-

We know that

VOB (0 ).
1f(x+ Ba(n, p, 0, B,%)) — ()] < f<x+7(x)M"’p (s ")”‘)>—f<x>

v(x)
Bi(n, p,a, ﬁ,x)>
< (R A EAA A

R

Therefore, we have
v7.0,8 -
IMESA (%)~ 0] € 4K <f/ Ve (o= shom) - o ")>
+w7<f 7[31(”;7(;‘)/8 x)>. (12)

From the conditions given in Theorem 12, the properties of the K-functional, and the
modulus of continuity, we get

1.
a+1 2(')/—1)—,3x< a+1 2(y—=1)—-B
n+p+p n+p+B " T n+p+p n+p+p "’
2.
Mwﬁ _ ]
Koo <f ((s - ) 4@)2(+)x[31(n paﬁx>>
M ((s — %)% s
§K2,q>(x)<f/ G Xiq);fgx?“l(npaﬁ))’
3.
Bi(n, p,a, B, x) w(npap)
n (TP ) < (500

for every x € [0,1]. Combining the relation (12) and the other preceding relations, we obtain

VB (o N2,
M3 (i) - f(x)H§4K2,¢,(x)<f,M"rP (s xiq;;c()gm(n,p,a,m)
*“’”(f' ) >

as asserted by Theorem 12. [
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5. Weighted Approximation

Let p(x) = x% + 1 be the weight function and let M 7 be a positive constant. We define
the weighted space of functions as follows:

(i) B,[0,0) is the space of functions f defined on [0, o) and satisfying

[f ()] = Mpp(x).
(ii) C,[0,00) is the subspace of all continuous functions in B,[0, o).

(ili) C;[0,00) is the subspace of functions f € C,[0,00) for which J’% is convergent as
X — 0o.
We note that the space B,[0, o) is a normed linear space with the norm given by

o )]
||f||P - xgg p(x) .

In order to calculate the rate of convergence, we consider the weighted modulus of
continuity Q(f;6) defined on infinite interval [0, ) as

e osup M) = f(3)] ‘10, 0o
Q(f'(s)_xgo;ogh\éé A1 12)p(x) (V f € C;[0,00)).

For any y € [0, o), the weighted modulus of continuity Q(f;¢) verifies the follow-
ing inequality:

Q(f; u8) = 2(1+ ) (1 +8)Q(f;0),

and, for every f € C;[0,00), we get
_ < M 2 . 2 2
() = f)] = 2{ == +1) (1 +)Qf;0) (1 +27) (1 + (£ —x)).
Theorem 13. Let p(x) be a weight function on [0, o). Then, for each function f € C}[0,00),

lim || M5 (f3x) = f(x)]|, = 0.

n—co P

Proof. It suffices to check that MZ:Z’ﬁ (e;; x) converges uniformly to e;, fori € {0,1,2},as n
tends to co and applies the well-known weighted Korovkin type theorem, where ¢;(x) = x'.
The uniform convergence arises from the fact that

lim || M7 Pe; —eif] , =0 (i=0,1,2).

Using Theorem 1, the result for i = 0 is trivial.
We now prove that the results are true for i = 1 and i = 2, respectively. Indeed, for
f € C;[0,00), we obtain

M'Y/”‘nB _
||MZ'Z'ﬁ€1 — |, = sup [Myp"er — e < sup l71(n, p, “/ﬁ/x”‘
’ P >0 p(x) x>0 p(x)

By a similar consideration, we have

M2 FPe, —e | |v2(n, p,a, B, %)|
My _ ol — supd M 22| | {'rzp}
57 = el ii%{ PIETI B S GIE)
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where
a4l n+p+2y-2
YNW%%ﬁW)*n+p+ﬁ n+p+p
and
02 +2u+2  2((n+p+2y)a+2n+2p—2u+5y-5)
Y2(n,p,a, B, x) = (n+p+ﬁ)2+ (n+p+p)? X
(ntplntdytp=3) > .
(n+p+ B)>? '

We thus conclude that
. B, _ P
nh_r)rgo | Mo e el||p 0 (i=0,1,2),
which completes the proof of Theorem 13. O

Theorem 14. Let f € C;[0, ). Then, the following inequality holds true:

M (F5) — £(x)] o
XGSEE)I,IZO) (1+x2)(1+Cx+Dx2+gx3+fx4) = KQ(f,n 4)

for a sufficiently large n, where C, D, £ and F are positive constants dependent only on n, p, a, B
and vy, and K is a positive constant.

Proof. For x € [0,00), we have

s p(t) dt.

B e F(x) = (n v (mtptta) o
MEEP (0 1) = o) D00 [ (G ) s

Using the properties of the weighted modulus, we obtain

|MP (f; x) —f(x)!
< (n+p) zb x)2(1+ 62)Q(f; 61) (1 + x%)

k=
(n+p)t+1x . 2
o0 ntp+p x‘ (n+ptta P
/0 (6n +1) + (n+p+/3 x) sk () dt.
Let us define

(nt+p)t+a x’
S(t,x) = (””;’Z +1>

Since s’,i,p(t) > 0 for every t € (0,00), we have

(n+pt+a 2
1 + <1’l—|-p—|—,3 — X) ]Sﬁlp(t).

21+ 33)sk (1) ( ntp)tta

n+p+p

((n+p)t+ax)4
2(1+482) . (1) ( (ntpitta
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which implies that

((n-l—p)t—f—oc _x>4
n+p+
S(t,x) <21+ 82| 1+ P 5%[3 k

Thus, clearly, we get

MIAP(fx) — £(x)| S 4(n+p) Y B A+ 2)Q(F:60) (1 +22)

k=0
((n—l—p)t+zx_x>4
Y 2 n+p+p k
/0 (1+(5n) 1+ 5 sk (1) dt.

By Lemma 1, we have

((n+p)t+a . x>4
o0 n+p+p

A 1+ (5—4 S]':l,p(t) dt
n

g 1 L /4 '
= S””’(t)dt+5%(n+p+ﬁ)4g(j>(”+py

Aa— (et pr Pt [T st () dr

1 1 S o (A (Kt
n+p+53(n+p+ﬁ)4(n+p)]§)( (n+p+p)) ]]'<J')< j )

Thus, by using the above Proposition, we have

((n+p)t+ocx>4
- n+p+p o

K, *
Y bk (%) /0 14 5 o

k=0

X —(ntp+ PO
+]20,;o —] '5%(n+p+ﬁ)4(n+p)

Qoo Q-G
1 W (x+2)%(n+p) - 20A+ 355
:"+P+ (n+p+pB)*o;

4

where

A = —6a% — 240 — 36 4 (—3a> + 12ap — 24ay
+ 600 + 24P — 84y + 48)x + (6ap — 12ay — 6B% + 24Py + 8a — 6B — 54 + 38)x

+ (=3B +12By — 8B — 87 +5)x°



Symmetry 2021, 13, 980

22 of 24

and

B = ot + 443 + 1242 + 240 + 24 + (—4a°B + 8a’y — 843 — 1242 + 6042y — 60a>

— 240 + 216ay — 2160 — 24 + 336y — 336)x

+ [~6B(—a2B + 4a>y — 4a® — 2aB + 20ay — 20 — 28 + 367 — 36)] x>

+ 4% (—ap + 6y — 6 — B+ 15y — 15)x° + [ (—B + 87 — 8)]x*.

From the above relation, we obtain

MY (%) = £ ()]
< 4(n+p)(1+67)2Q(f;60) (1 4 2%
((n+p)t+¢x _x>4
= ® n+p+

s [T+ ptp o
k=0

1 n,
o; P

=4(n+p)(1+62)2Q(f;6,)(1 + x?)
1 3x2(x+2)2(n+p)—2xA+%
(w5 )

(n+p+p)*o;
In addition, for 6, = n~ i , we have

M (fi %) = f()]
< KQ(f:60) (1 + x%) (1 + Cx + Dx® + Ex° + Fat),

where C, D, £, and F are positive constants depending only on n, p, «, 8, and <, and K is a

positive constant. This proves Theorem 14. [

6. Shape-Preserving Properties

In this section, we will present some shape-preserving properties by proving that the
parametric generalization of the Baskakov-Schurer-Szasz-Stancu operators preserves the

convexity under certain conditions.

Theorem 15. Let f € C[0,00). If f(x) is convex on [0,00) and n + p + 4y > 3 fora, B,y € R,
then, the parametric generalization of the Baskakov-Schurer-Szdsz-Stancu operators are also convex.

Proof. Let us suppose that f(x) is convex and that xp and x; are distinct points in the
interval [x,y], where x < xo < x1 < yand x,y € [4,b] C [0,). Then, the Lagrangian

interpolation polynomial through the points (xo, f(xo)) and (x1, f(x1)) is given by

X —X X — X
L F(x0) + 2

P = —
(x) X0 — X1 X1 — X0

fx1).

Then, based upon Theorem 1, we have

MZ’;"ﬁ(P;x)]N _ {f(xl)_f(x0)< atl  ntpt+2y-2 x> L 11f(xo) = %of (1) ]"

X1 — Xp n+p+B n+p+B X1 — Xp

=0.



Symmetry 2021, 13, 980

23 of 24

On the other hand, we have
7,0,B 7,0,B F"(8) ThmaBp2 70,8
My (f;x) = My (P;x) + —r [Mn,p (t7x) — (xo + xl)Mn,p (t,x) + xoxl]
a2 420 +2
(n+p+p)?
2[(n+p+27)a+2n+2p —2a + 5y — 5] (nm+p)(n+4y+p-3) ,
x
(n+p+p)? (n+p+p)?
a+1 n+p+2y—2
n+p+pB n+p+pB

"
— My (pix) + L 2(!@)

+

- (xo+x1)< x) + X1

From this last relation, we find that

(n+p)(n+4y+p-—3)

(n+p+pB)? =0

14
(M (i) = (@)
under the given conditions. This completes the proof of Theorem 15. [J

Corollary. The classical Baskakov-Schurer-Szdsz-Stancu operators preserve the property of convexity.

Proof. We know that, for v = 1, we are led to the Baskakov-Schurer-Szasz-Stancu operators
from the parametric generalization of the Baskakov-Schurer-Szasz-Stancu operators. Since
n,p € N, in the special case when vy = 1, we have n + p + 4y > 3. The proof now follows
from Theorem 15. O

7. Concluding Remarks and Observations

In our present investigation, we have introduced, and systematically studied the
properties and relations associated with, a new class of the parametric generalization
of the Baskakov-Schurer-Szasz-Stancu operators. Our findings have considerably and
significantly extended the well-known family of the classical Baskakov-Schurer-Szasz-
Stancu approximation operators. For our new class of the Baskakov-Schurer-Szész-Stancu
approximation operators, we have established a Korovkin type theorem and a Griiss-
Voronovskaya type theorem. We have also studied the rate of its convergence. Moreover,
we have proved several results which are related to the parametric generalization of the
Baskakov-Schurer-5zész-Stancu operators in the weighted spaces. Finally, we have derived
a number of shape-preserving properties for the parametric generalization of the Baskakov-
Schurer-Szédsz-Stancu approximation operators. We have also appropriately specialized our
results in order to deduce the corresponding shape-preserving properties for the classical
Baskakov-Schurer-Szész-Stancu approximation operators.

The various results and their consequences, which we have presented in this article,
will potentially motivate and encourage further researches on the subject dealing with the
parametric generalization of the Baskakov-Schurer-Szasz-Stancu approximation operators.
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