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Abstract: In this study, we developed a modified version of the CRiteria Importance Through Inter-

criteria Correlation (CRITIC) method, namely the Distance Correlation-based CRITIC (D-CRITIC) 

method. The usage of the method was illustrated by evaluating the weights of five smartphone cri-

teria. The same evaluation was repeated using four other objective weighting methods, including 

the original CRITIC method. The results from all the methods were further analyzed based on three 

different tests (i.e., the distance correlation test, the Spearman rank-order correlation test, and the 

symmetric mean absolute percentage error test) to validate D-CRITIC. The tests revealed that D-

CRITIC could produce more valid criteria weights and ranks than the original CRITIC method since 

D-CRITIC yielded a higher average distance correlation, a higher average Spearman rank-order cor-

relation, and a lower symmetric mean absolute percentage error. Besides, additional sensitivity 

analysis indicated that D-CRITIC has the tendency to deliver more stable criteria weights and ranks 

with a larger decision matrix. The research has contributed an alternative objective weighting 

method to the area of multi-criteria decision-making through a unique extension of distance corre-

lation. This study is also the first to propose the idea of a distance correlation test to compare the 

performance of different criteria weighting methods. 
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1. Introduction 

The primary purpose of any standard multi-criteria decision-making (MCDM) anal-

ysis is to evaluate and rank the available alternatives based on a predetermined set of 

decision criteria [1]. There are four fundamental stages in executing an MCDM analysis. 

In the first stage, the decision-makers identify all the relevant criteria that can be used to 

evaluate the alternatives. Such an identification can be made either by reviewing the lit-

erature, based on the decision-makers’ knowledge, or by seeking advice from experts [2]. 

The decision-makers should invest ample time in this stage because omitting any salient 

criterion will result in a futile analysis. 

In the second stage, the decision-makers need to collect each alternative’s data or 

local score with respect to all the criteria identified in the earlier stage to form the decision 

matrix. Assume an MCDM problem where ai = {a1, a2, … , am} denotes the set of alter-

natives under investigation and cj = {c1, c2, … , cn} represents the set of evaluation crite-

ria. The general form of the decision matrix can then be expressed as in Equation (1), 

where ��� denotes the score of alternative � with respect to criterion � [3].  
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In the third stage, the weight of each criterion is determined. It is worth noting that 

it does not make sense to treat all the criteria equally as, in reality, they may carry different 

degrees of importance in a decision system [4]. In the final stage, these criteria weights 

and the local scores belonging to each alternative are aggregated into a global score. Based 

on these global scores, the alternatives can then be ordered from the most to the least pre-

ferred one [5].  

The focus of this paper is on the third stage, which is the weight determination stage. 

Imprecise weights will result in misleading global scores, causing us to choose an inap-

propriate alternative or solution for the decision problem. One, therefore, needs to be ex-

tremely cautious in determining the weights. Unfortunately, this process can quickly 

transform into a complex one, especially when the decision problem involves many crite-

ria. Hence, various methods have been proposed to determine the criteria weights sys-

tematically.  

The remainder of this paper is organized as follows. In Section 1.1, the motivation of 

the study is elucidated by reviewing the previous literature. The contributions of the study 

are explicated in Section 1.2. Section 2 introduces the proposed modified CRITIC method. 

The usage of the modified method is illustrated in Section 3 through a smartphone criteria 

evaluation problem. The validity of the method is tested in Section 4. In Section 5, im-

portant findings from Sections 3 and 4 are discussed. Section 6 describes the research lim-

itations and potential future studies. 

1.1. Literature and Motivation 

The existing literature classified the weighting methods into two distinct groups, 

namely subjective and objective methods [6,7]. Subjective methods require some initial 

information from the decision-makers prior to weight determination, with such infor-

mation usually provided based on the decision-makers’ knowledge or experience [8]. 

Some popular subjective weighting methods are pairwise-comparison-based methods 

[9,10], SWARA [11], KEMIRA [12], SIMOS [13], P-SWING [14], PIPRECIA [15], FUCOM 

[16], and DEMATEL [17], to name a few. Although subjective methods have the advantage 

of integrating information from experienced decision-makers, such information may 

sometimes favour a specific criterion because of the decision-makers’ past belief, thus 

leading to biased results [18]. Besides, decision-makers who do not have complete 

knowledge about the decision problem under consideration may be unable to furnish the 

needed initial information [19]. Apart from this, the process of delivering such infor-

mation may become complex when the MCDM problem involves many criteria.  

Unlike subjective methods, objective methods do not require any sort of initial infor-

mation or judgment from the decision-makers [20]; they merely assess the structure of the 

data available in the decision matrix to determine the weights [21–23]. These methods are 

known for eliminating possible bias associated with subjective evaluation, thus increasing 

objectivity [24]. The following are some examples of objective methods, as mentioned in 

the literature: entropy-based methods [25,26], CRiteria Importance Through Inter-criteria Cor-

relation (CRITIC) [27], and the recent CILOS and IDOCRIW methods [28].  

Our review of the literature suggests that entropy-based methods and CRITIC are 

the most widely applied objective methods for the weighting of criteria. However, CRITIC 

is found to have extra merit as it considers both the contrast intensity and the conflicting 

relationship held by each decision criterion [29,30], unlike the Shannon entropy method, 
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which addresses only the contrast intensity [31]. Below, we describe these two aspects in 

more detail. 

a. Contrast intensity of decision criteria 

The contrast intensity reflects the degree of variability associated with the local scores 

of each criterion. The original CRITIC method uses standard deviation to measure the 

contrast intensity of each criterion [32]. The method ensures that a criterion with a 

higher contrast intensity or standard deviation is assigned with a higher weight. The 

logic of this scenario can be explained as follows. If a criterion’s scores show more 

variance from one alternative to another, this criterion is expected to provide more 

exciting or meaningful information [33]. Thus, from a decision-making viewpoint, 

more attention or weight should be given to such a criterion than to criteria with ho-

mogeneous scores. 

b. Conflicting relationships between decision criteria 

The alternatives considered in an MCDM problem are usually characterized by con-

flicting criteria [34]. Thus, it is sometimes impossible for an alternative to perfectly 

satisfy all the predetermined criteria [25]. For instance, it is difficult for a buyer to 

purchase a brand new car that has a higher engine capacity and is cheaper at the same 

time: generally, the higher the engine capacity, the more expensive the car. In short, a 

conflict between criteria represents a type of relationship that can be present between 

decision criteria. The CRITIC method considers such conflicting relationships by uti-

lizing the Pearson correlation coefficient [35], which ranges between −1 and 1. When 

the coefficient is zero, it implies that the two criteria, �� and ��� , are independent of 

each other. Meanwhile, a negative coefficient indicates that both criteria move in an 

opposite direction. To be precise, as the coefficient approaches −1, the conflict between 

the two criteria becomes stronger. On the other hand, a positive coefficient indicates 

a parallel direction between both criteria. It means that two criteria with a high posi-

tive coefficient share too much redundant information. Hence, a criterion that holds 

high positive correlations with other criteria does not deliver any extra information 

[36] and is considered to play a minor role in the entire decision system. By adhering 

to this principle, based on certain formulas, the CRITIC method ensures that a crite-

rion with a higher degree of conflict or a lower degree of redundancy, is assigned with 

a higher weight.  

Overall, it can be claimed that the CRITIC method assigns a higher weight to a crite-

rion that has a higher contrast intensity and a higher degree of conflict with other criteria 

[37]. Because of this aspect, CRITIC has been used in many real applications. Previous 

studies also show that CRITIC has been used jointly with other objective or subjective 

methods for weight determination. For instance, Yerlikaya et al. [38] used a combination 

of a pairwise comparison method and CRITIC to evaluate the weights of logistic location 

selection criteria. Marković et al. [39] used the fuzzy PIPRECIA method and the CRITIC 

method to measure the weights of bank performance criteria. Piasecki and Kostyrko et al. 

[40] applied a combination of an entropy method and CRITIC to determine the weights of 

indoor air quality criteria.  

Surprisingly, there are not many modified versions of CRITIC available in the litera-

ture. Only two modified methods have recently been introduced [41,42], with both meth-

ods using different data normalization techniques. The methods were claimed to better 

model the contrast intensity of each criterion; however, additional statistical tests were 

not performed to validate the reliability or accuracy of the methods. 

In fact, the limited number of studies on modified CRITIC methods implies that re-

searchers may not have detected any serious issues with CRITIC’s fundamental compo-

nents, suggesting that major modifications may not be needed. However, in the present 

study, we discovered that the original CRITIC method has a shortcoming in properly cap-

turing the conflicting relationships between criteria, since it merely utilizes the Pearson 

correlation for this purpose. Studies indicate that this correlation does not always denote 

the actual relationships between criteria [43]. For instance, two criteria with a zero Pearson 
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correlation coefficient may not be completely independent [44]. This undesirable situation 

occurs because the Pearson correlation detects only the linear relationship between two 

criteria and not the nonlinear relationship [45,46]. Thus, the validity of the weights com-

puted by the original CRITIC method can be disputed.  

Therefore, this research was motivated by the need for a modified CRITIC method 

that does not misrepresent the conflicting relationships between decision criteria. Proving 

that such a modified method can perform better than the original CRITIC method was 

another challenge that was addressed in this research. 

1.2. Statement on Contributions  

The key contribution of this research is twofold. First, in the context of the MCDM 

literature, we have introduced an improved version of the CRITIC method, namely D-

CRITIC. D-CRITIC was developed by incorporating the idea of distance correlation into 

the original CRITIC method. Such a novel extension has not been reported in any of the 

studies relating to criteria weighting methods. The proposed D-CRITIC method has the 

merit of modelling the conflicting relationships between criteria more reliably with the 

aid of distance correlation. More importantly, this research has proven that D-CRITIC can 

produce a more valid set of criteria weights and ranks than the original CRITIC method. 

The introduction of D-CRITIC can also be regarded as an attempt to diversify the current 

literature, which is concentrated more on subjective weighting methods than on objective 

methods [47]. 

The second contribution of our research is linked to one of the tests conducted to 

validate the performance of D-CRITIC. Overall, we have conducted three different tests 

to compare the performance of the method. The purpose of the first test was to compare 

the degree of agreement of the criteria weights derived by D-CRITIC against four other 

weighting methods, including the original CRITIC method. Usually, the Pearson correla-

tion test is conducted for this purpose [48,49]. However, we discovered that this test could 

deliver misleading results since the Pearson correlation is unable to capture a nonlinear 

association [50] between any two sets of weights. Therefore, we used the distance correla-

tion test as an alternative approach to comparing the degree of agreement between differ-

ent sets of criteria weights. The study is the first to offer a distance correlation test to meas-

ure the performance of different weighting methods.  

In short, we employed the idea of distance correlation not only to develop a modified 

version of the CRITIC method but also to validate the performance of the modified 

method, that is, the D-CRITIC method. 

2. The Proposed D-CRITIC Method 

The proposed D-CRITIC method was developed by incorporating the idea of dis-

tance correlation into the original CRITIC method. All in all, as summarized in Figure 1, 

the application of D-CRITIC involves five crucial steps. A detailed explanation of each 

step is provided in the following sections.  
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* Note: The main difference between the original CRITIC and the proposed D-CRITIC method 

presents in Step 3, where the former one requires the users to compute the Pearson correlation 

between criteria and not the distance correlation. 

Figure 1. The steps involved in using D-CRITIC. 

a. Normalization of the decision matrix (Step 1) 

The scores of different criteria are incommensurable as they are expressed in different 

measurement units or scales. Normalization is a process of transforming the scores 

into standard scales, which range between 0 and 1. In the proposed method, as a first 

step, we use Equation (2) for normalizing the scores available in the decision matrix. 

������� =
������

�����

��
����� ��

�����, (2)

where ������� is the normalized score of alternative � with respect to criterion �, ���  is 

the actual score of alternative � with respect to criterion �, ��
���� is the best score of 

criterion �, and ��
����� is the worst score of criterion �.  

b. Calculate the standard deviation of each criterion (Step 2) 

In the second step, the standard deviation of each criterion, ��, is calculated using 

Equation (3). Note that ���  in Equation (2) is the mean score of criterion � and that � 

is the total number of alternatives. 

�� = ��∑ ����������
��� �

�

���
, (3)

     where ���  is the mean score of criterion � and � is the total number of alternatives. 

c. Calculate the distance correlation of every pair of criteria (Step 3) 

The main difference between the proposed D-CRITIC and the original CRITIC 

method can be observed in the third step. In the original CRITIC method, the con-

flicting relationships between criteria are captured with the help of the Pearson cor-

relation. However, as explained in Section 1.1, the Pearson correlation has the risk of 

inaccurately capturing the actual relationships between criteria. More precisely, two 

criteria with a zero Pearson correlation coefficient may not be completely independ-

ent. Accordingly, Székely et al. [43] introduced a new correlation measure, called dis-

tance correlation, that is zero if, and only if, the criteria are independent. Therefore, 

in the modified D-CRITIC method, the distance correlation is used as an alternative 

way to model the relationships, with the aim of minimizing the possible error in the 

final weights. Equation (4) defines the distance correlation between �� and ��� . 

�������, ���� =
�������,�

���

�����������������������
, (4)

where ������� , ����  is the distance covariance between ��  and ��� , �������� =

 �������, ��� is the distance variance of ��, and ��������� =  �������� , ���� is the dis-

tance variance of ���  [51]. The detailed steps of determining the distance correlation 

of every two criteria, �� and ��,, can be summarized as follows: 

Step 1
Normalization 

of 
decision matrix

Step 2
Calculate 

the 
standard 

deviation of 
each 

criterion

*Step 3
Calculate 

the 
distance 

correlation 
of 

every pair 
of criteria

Step 4
Compute 

the 
information 

content

Step 5
Determine 

the 
objective 
weights
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 Step 3.1—Construct the Euclidean distance matrix of �� based on its scores associ-

ated with all the alternatives under consideration. Construct a similar matrix for ��� . 

 Step 3.2—Perform the following double-centring steps on each matrix, so that the 

row means, column means, and the overall mean of the elements in each matrix be-

come zero: Deduct the row mean from each element; in the result, deduct the column 

mean from each element; in the result, add the matrix mean to each element.  

 Step 3.3—Multiply the double-centred matrices elementwise and calculate the aver-

age value of the elements from the resulting matrix, that is, the sum of elements di-

vided by the total number of elements. The square root of this average value is the 

distance covariance of �� and ��� , that is, �������, ����. 

 Step 3.4—Compute the distance variance of ��, ��������, and the distance variance 

of ��� , ��������� . Since �������� =  �������, ���  and ��������� =  �������� , ���� , 

these two values can be computed by repeating Steps 3.1–3.4.  

 Step 3.5—The available �������, ��,�, ��������, and �������,� are substituted into 

Equation (4) to determine the distance correlation between ��  and ��� , that is, 

�������, ����. 

At the end of this step, the symmetrical distance correlation matrix, ��������, �����, 

can be formed. 

d. Compute the information content (Step 4) 

The amount of information contained in criterion � is calculated by applying Equa-

tion (5). 

�� = �� ∑ (1 − �������, �����
���� ), (5)

     where �� denotes the information content of ��. 

e. Determine the objective weights (Step 5) 

The objective weight of criterion � is determined using Equation (6). 

�� =
��

∑ ��
�
���

, (6)

     where ��  is the objective weight of ��. 

3. Application of D-CRITIC to a Decision Problem 

Many popular gadget websites provide a list of crucial criteria for smartphone selec-

tion. Some even rank these criteria from the most to the least important one. Since the 

smartphone market is becoming more and more competitive, providing such information 

will undoubtedly be helpful for the manufacturers to develop the right product strategies 

to sustain them in such a competitive marketplace.  

There are several MCDM-based studies conducted to determine the weights and 

ranks of smartphone criteria scientifically. For instance, Peaw and Mustafa [52] evaluated 

various smartphone criteria, including the dimension and screen resolution, using the 

combination of AHP and Data Envelopment Analysis. Meanwhile, Ho et al. [53] analyzed 

the responses collected from a sample of customers using a modified AHP to evaluate 

eight selected criteria, which include the display quality, camera, and price. In another 

study, Okfalisa et al. [54] applied both the fuzzy AHP and fuzzy analytical network pro-

cess for a similar smartphone criteria evaluation purpose.  

Surprisingly, most of the previous studies on the evaluation of smartphone criteria 

were more focused on using subjective weighting methods, e.g., AHP. In this section, we 

are interested in establishing that the objective weighting methods, particularly the D-

CRITIC method, can be used as a potential alternative tool to determine the weights and 

ranks of smartphone criteria.  

Table 1 shows the decision matrix of five smartphone models that were compared 

according to five criteria, namely the base price measured in dollars (��), the screen size 
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measured in inches (��), the pixel density measured in pixels per centimetre (��), the thick-

ness measured in millimetres (��), and the mass measured in grams (��). The smartphone 

models were renamed as Models A, B, C, D, and E for confidentiality. 

Note that the actual smartphone comparison data obtained from 

https://www.trendhunter.com/trends/smartphone-guide (accessed on 2 November 2020) 

consists of ten criteria. However, we had to drop five criteria from further analysis due to 

some reasons. The operating system, processor, and special feature criteria were removed 

since they are qualitative in nature, making them not compatible as input criteria for D-

CRITIC. A similar reason applied to storage criterion as the data are mixed with quanti-

tative and qualitative values, besides the fact that there is no single, fixed value with re-

spect to each smartphone. The battery criterion was removed due to the issue of data in-

completeness. To simplify, after taking into consideration the suitability of the criteria 

data with the proposed method, only five criteria were finalised for the analysis. 

Table 2 is the normalized decision matrix derived from Equation (1). The worst and 

best values of each criterion were carefully identified before applying Equation (1). Note 

that the base price, thickness, and mass are nonbeneficial criteria, whereas the remaining 

are beneficial criteria. Therefore, for the case of a nonbeneficial criterion, the lowest value 

is considered the most preferred or best value. In contrast, for a beneficial criterion, as 

usual, the highest value is considered the best one. For instance, the best and worst values 

for the base price are $400 and $749, respectively. Meanwhile, for screen size, 5.7 in. and 

4.7 in. are considered the best and the worst value, respectively. The standard deviation 

value of each criterion, which was computed using Equation (2), is also presented in the 

same table. These values suggest that the data pattern of pixel density has the highest 

contrast, followed by thickness, screen size, mass, and base price. However, at this level, 

it is too early for us to identify pixel density as the essential criterion, for the following 

two reasons:  

a. The standard deviation values, which are relatively close to each other, do not show 

a clear distinction in terms of their contrast intensity, so we are unable to make a 

concrete decision about the importance of the criteria. 

b. The relationships held by the criteria are yet to be considered. 

Table 1. Decision matrix of smartphone models. 

Model/Criterion 
��  

(Nonbeneficial) 

��  

(Beneficial) 

��  

(Beneficial) 

��  

(Nonbeneficial) 

��  

(Nonbeneficial) 

Model A 649 4.7 326 7.1 143 

Model B 749 5.5 401 7.3 192 

Model C 740 5.7 520 7.6 171 

Model D 400 5.7 520 11.1 179 

Model E 600 5.5 538 8.9 152 

Source: https://www.trendhunter.com/trends/smartphone-guide. (accessed on 2 November 2020) 

Table 2. Normalized decision matrix. 

Model/Criterion �� �� �� �� �� 

A 0.2865 0 0 1 1 

B 0 0.8000 0.3538 0.9500 0 

C 0.0258 1 0.9151 0.8750 0.4286 

D 1 1 0.9151 0 0.2653 

E 0.4269 0.8000 1 0.5500 0.8163 

Standard deviation 0.4062 0.4147 0.4394 0.4161 0.4063 

The analysis, therefore, proceeded by computing the distance correlation measures 

of the criteria. Table 3 depicts the distance correlation matrix of the criteria. To facilitate a 
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better understanding, we present in Appendix A an example of calculating the distance 

correlation for �� and ��, ���� (��, ��). Based on Table 3, the highest distance correlation 

measure is noticed between the base price and the thickness (i.e., 0.9437), indicating a 

strong redundancy between both criteria. It also appears that the mass criterion does not 

largely overlap with any other criterion since none of the measures are above 0.8. This 

situation suggests that the mass could be identified as the most important criterion by the 

end of the analysis. Table 4 shows the information content and the weight of each criterion 

determined using Equations (5) and (6), respectively. In short, as expected, D-CRITIC 

identifies �� as the most important criterion with a weight score of 0.2118, followed by 

criteria ��, ��, ��, and ��.  

Table 3. Distance correlation matrix. 

Criterion �� �� �� �� �� 

�� 1 0.4777 0.5114 0.9437 0.6229 

�� 0.4777 1 0.8465 0.5499 0.7564 

�� 0.5114 0.8465 1 0.6957 0.6043 

�� 0.9437 0.5499 0.6957 1 0.5027 

�� 0.6229 0.7564 0.6043 0.5027 1 

Table 4. Information content and weight of each criterion. 

Criterion �� �� �� �� �� 

Information content 0.5867 0.5680 0.5898 0.5442 0.6149 

Weight 0.2021 0.1956 0.2031 0.1874 0.2118 

4. Comparison Analysis 

In this section, the weights of the same five smartphone criteria were determined 

using four other objective methods to validate the performance of D-CRITIC. Those meth-

ods were Hwang’s entropy-based method [25], CILOS [28], IDOCRIW [28], and not to 

mention the original CRITIC method [27]. The entropy-based method was chosen because 

of its long existence and widespread application in real problems, apart from its ability to 

capture the contrast intensity of each criterion. On the other hand, the recently developed 

CILOS and IDOCRIW methods were selected because they consider the criteria’s impact 

loss element in the determination of the weights.  

We had to exclude subjective weighting methods, which usually use different input 

types, from our comparison analysis to ensure an apples-to-apples comparison. In this 

study, such a fair comparison can be assured by only considering similar objective meth-

ods since they use the same input, i.e., the data in the decision matrix. Indeed, many earlier 

studies, which introduced a new or modified objective weighting method, presented their 

comparison analysis similarly. For instance, the study that introduced the original CRITIC 

method compared the method with only two different objective methods, and not with 

any other subjective methods [27]. 

Table 5 shows the weights and ranks obtained by all five methods, including D-

CRITIC. Meanwhile, Figure 2 offers a visual summary of the variances between the 

weights determined by those methods. The complete calculation associated with each 

method can be found in the provided Supplementary File. Based on these different results, 

the performance of D-CRITIC was then compared by conducting the following tests: (a) 

the distance correlation test, (b) the Spearman rank-order correlation test, and (c) the sym-

metric mean absolute percentage error square error (sMAPE) test. 
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Figure 2. Criteria weights from different methods. 

Table 5. Results of different methods. 

Criterion 
Entropy  CILOS  IDOCRIW  CRITIC D-CRITIC 

Weight  Rank Weight  Rank Weight  Rank Weight Rank Weight  Rank 

�� 0.3481 1 0.0738 5 0.1465 3 0.1872 3 0.2021 3 

�� 0.1360 5 0.3864 1 0.2996 2 0.1838 4 0.1956 4 

�� 0.1690 3 0.0997 4 0.0960 5 0.1691 5 0.2031 2 

�� 0.1463 4 0.1467 3 0.1223 4 0.2599 1 0.1874 5 

�� 0.2006 2 0.2934 2 0.3355 1 0.2000 2 0.2118 1 

4.1. Distance Correlation Test 

The degree of agreement or consistency between two sets of weights, resulting from 

two different methods, is usually measured using the Pearson correlation [55]. However, 

as explained in Section 1.1, the Pearson correlation coefficient could inaccurately represent 

the correlation between two data arrays. Therefore, the distance correlation was used to 

measure consistency. Table 6 shows the computed distance correlation between every two 

different sets of weights. Table 6 also shows the average correlation score of each method. 

Table 6. Distance correlation between criteria weights. 

Method Entropy CILOS IDOCRIW CRITIC D-CRITIC 

Entropy 1 0.5897 0.4609 0.4658 0.6336 

CILOS 0.5897 1 0.9527 0.4968 0.5975 

IDOCRIW 0.4609 0.9527 1 0.5057 0.5919 

CRITIC 0.4658 0.4968 0.5057 1 0.8186 

D-CRITIC 0.6336 0.5975 0.5919 0.8186 1 

Average 0.6300 0.7273 0.7022 0.6574 0.7283 

4.2. Spearman Rank-Order Correlation Test  

The Spearman rank-order correlation test is a popular tool for measuring the degree 

of agreement between two different sets of ranks [56,57]. We therefore used this test to 

assess the consistency across the criteria ranks obtained by all five methods. This correla-

tion test was chosen due to its appropriateness as a non-parametric test that efficiently 

measures the association between two different ordinal data arrays [58], apart from its 

computational simplicity [59]. Table 7 reports the Spearman rank-order correlation 
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between every pair of methods, including the average Spearman rank-order correlation 

score of each method.  

Table 7. Spearman rank-order correlation between criteria ranks. 

Method Entropy CILOS IDOCRIW CRITIC D-CRITIC 

Entropy 1 −0.7000 0.1000 0.1000 0.6000 

CILOS −0.7000 1 0.6000 0.1000 −0.1000 

IDOCRIW 0.1000 0.6000 1 0.3000 0.3000 

CRITIC 0.1000 0.1000 0.3000 1 −0.3000 

D-CRITIC 0.6000 −0.1000 0.3000 −0.3000 1 

Average 0.2200 0.1800 0.4600 0.2400 0.3000 

4.3. sMAPE Test 

There exist many error metrics that can be used to quantify the degree of difference 

between a group of estimated values and actual values, e.g., mean absolute error, mean 

squared error, root mean square error, mean absolute percentage error (MAPE), and sym-

metric MAPE (sMAPE). The literature suggests that these error metrics can also be em-

ployed to test the accuracy of the results generated by different MCDM methods [60]. 

Usually, the lower the error value, the higher the accuracy of the method. A set of actual 

values is needed to enable the use of any error metrics.  

In this research, Equation (7), based on the geometric mean, was used to aggregate 

the weights from different methods.  

�� =
���� ,   ��������.���� ,   ������.���� ,   ��������.���� ,   �������.���� ,   ���������

∑ [���� ,   ��������.���� ,   ������.���� ,   ��������.���� ,   �������.���� ,   ���������]�
���

, (7)

where ��  is the final aggregated weight of criterion �, ��� is the weight of criterion � es-

timated using each method, and � ={1,2,3,4,5}. 

By treating these aggregated weights as the actual ones, Equation (8) was then used 

to identify the sMAPE of each method. Out of many metrics, sMAPE was chosen because 

unlike MAPE, it does not impose a larger penalty for negative error (when the estimated 

value is higher than actual value) than for positive error [61,62].  

����� =
���%

�
∑

������� �

(������ )/�
�
��� .  (8)

Table 8 shows the aggregated weights, and Table 9 illustrates the sMAPE of each 

method compared with the aggregated weights. Meanwhile, Figure 3 summarizes the per-

formance of each method based on its average distance correlation score, average Spear-

man rank-order correlation score, and sMAPE. 

Table 8. Aggregated weight of each criterion. 

�� �� �� �� �� 

0.1802 0.2375 0.1493 0.1763 0.2568 

Table 9. sMAPE of each method. 

Entropy  CILOS IDOCRIW CRITIC D-CRITIC 

34.6994% 40.6001% 29.9940% 20.9825% 17.3267% 
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Figure 3. Performance metrics of each weighting method. 

5. Sensitivity Analysis 

In this section, we furthered our investigation to understand the robustness of the 

proposed D-CRITIC method. Robustness explains the steadiness of the results produced 

by a method. As far as MCDM literature is concerned, sensitivity analysis has always been 

a popular choice of tool to examine the robustness of various MCDM methods, e.g., 

[63,64]. Generally, a sensitivity analysis explores how a little change in the input parame-

ters could affect the output resulting from a method.  

Therefore, in this study, the sensitivity analysis was conducted with the aim of un-

derstanding how the variation in the size of the decision matrix will affect the criteria 

weights and ranks estimated by D-CRITIC. Since the weights estimated by D-CRITIC are 

subjected to the data structure in the decision matrix, it is then rational to analyze the 

effect of different dimensions of the decision matrix on the criteria weights and ranks. 

We commenced the analysis by generating ten different scenarios. These scenarios 

were created by merely amending the existing decision matrix that comprises data of five 

alternatives, i.e., smartphones (� = 5). The amendment was done so that at the end, we 

would have slightly smaller (� = 4) and larger (� = 6) decision matrices than the actual 

ones. For the first five scenarios, we eliminated one alternative while retaining the other 

four. Meanwhile, for the next five scenarios, we duplicated the data of one selected alter-

native so that each scenario would have a decision matrix with � = 6. More details about 

these ten scenarios are summarized in Table 10. 
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Table 10. The scenarios for sensitivity analysis. 

Scenario Amendment Done Decision Matrix Normalized Decision Matrix 

Scenario 1 (Sc1) 
Removed the data of Model 

B 
  

Scenario 2 (Sc2) 
Removed the data of Model 

C 
  

Scenario 3 (Sc3) 
Removed the data of Model 

D 
  

Scenario 4 (Sc4) 
Removed the data of Model 

E 
  

Scenario 5 (Sc5) 
Removed the data of Model 

A 
  

Scenario 6 (Sc6) 
Duplicated the data of 

Model A 

  

Scenario 7 (Sc7) 
Duplicated the data of 

Model B 

  

Scenario 8 (Sc8) 
Duplicated the data of 

Model C 

  

Scenario 9 (Sc9) 
Duplicated the data of 

Model D 

  

Scenario 10 (Sc10) 
Duplicated the data of 

Model E 

  

The D-CRITIC method was then applied to each scenario. Table 11 summarizes the 

criteria weights resulting from every different scenario. Figure 4 displays the variations 

observed in the ranking of each criterion across the ten scenarios. Meanwhile, Figure 5 

displays the comparison between the criteria weights of each scenario against the weights 

estimated from the actual decision matrix, together with the sMAPE of each scenario and 

average sMAPE for Sc1-Sc5 and Sc6-Sc10. On the other hand, Table 12 provides a compar-

ison of the criteria ranks from all ten scenarios against the actual estimation. Note that the 

green highlight in Table 12 indicates that the ranking of the criterion under that specific 

scenario has remained unaffected when compared to the actual ranks.  

Table 11. Criteria weights resulting from different scenarios. 

Criterion Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10 

�� 0.2242 0.1657 0.2071 0.2309 0.1836 0.1898 0.1896 0.2125 0.2245 0.1880 

�� 0.1897 0.2018 0.2021 0.1849 0.3058 0.2039 0.2008 0.1925 0.1805 0.2015 

�� 0.2227 0.1868 0.2091 0.1898 0.1826 0.2114 0.1901 0.2110 0.1947 0.2146 

�� 0.1905 0.1710 0.1999 0.2180 0.1669 0.1825 0.1857 0.1955 0.2031 0.1719 

�� 0.1729 0.2747 0.1818 0.1765 0.1611 0.2123 0.2338 0.1886 0.1973 0.2240 
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Figure 4. The variations in criteria ranks across each scenario. 
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Figure 5. sMAPE between the criteria weights of each scenario and actual estimation. 

Table 12. Criteria ranks of each scenario vs. actual ranks. 

 Scenarios with � = � 
Actual scenario with 

� = � 
Scenarios with � = � 

Criteria Sc1 Sc2 Sc3 Sc4 Sc5 Actual Estimation Sc6 Sc7 Sc8 Sc9 Sc10 

�� 1 5 2 1 2 3 4 4 1 1 4 

�� 4 2 3 4 1 4 3 2 4 5 3 

�� 2 3 1 3 3 2 2 3 2 4 2 

�� 3 4 4 2 4 5 5 5 3 2 5 

�� 5 1 5 5 5 1 1 1 5 3 1 
 Total unaffected ranks = 4  Total unaffected ranks = 10 

Note: The green highlight indicates that the ranking of the criterion under that specific scenario has remained 

unaffected when compared to the actual ranks.  

6. Discussion and Conclusions 

The proposed D-CRITIC method and four other objective weighting methods were 

applied to a smartphone criteria evaluation problem to demonstrate the workability of D-

CRITIC. D-CRITIC identified mass as the most salient criterion with a weight of 0.2118 
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(see Table 5), followed by pixel density (0.2031), base price (0.2021), screen size (0.1956), 

and thickness (0.1874). Interestingly, two other methods, namely CILOS and IDOCRIW, 

also reported mass as the most critical smartphone criterion. We realize that the results of 

D-CRITIC are consistent with the findings reported in several past studies. Yildiz and 

Ergul [65] applied a subjective weighting method, i.e., ANP, for evaluating a long list of 

smartphone selection criteria and proved that the mass of a smartphone is more important 

than its thickness. Lee et al. [66] indeed claimed that mass is an essential criterion for an 

ergonomic smartphone since it helps in providing the expected one-handed grip comfort 

to users. In another study conducted by Mishra et al. [67], similar to the results of D-

CRITIC, it was reported that pixel density is more crucial than screen size. In fact, Zhu et 

al. [68] stated that the specifications of the camera and the quality of taken photos are 

becoming dominant criteria for customers purchasing smartphones. Many smartphone 

manufacturers also tend to promote their smartphones by emphasizing the strength of 

their smartphone camera specifications, including the pixel density.  

It could be surprising to notice that D-CRITIC did not identify price as the most im-

portant smartphone selection criterion. Similar to our findings, Bhalla et al. [69] also re-

cently reported that price has less effect on a customer’s buying decision when compared 

to other physical features of a smartphone. In a similar vein, Osman et al. [70] claimed that 

customers nowadays care more about the physical features of a smartphone and are will-

ing to pay more in exchange for better features. More importantly, from the MCDM per-

spective, the price data of the five smartphone models considered in this study are found 

not to vary too much (with the lowest standard deviation value), indicating that this spe-

cific criterion has the lowest degree of contrast intensity and least information to tell. Such 

a data pattern further strengthens the logic as to why D-CRITIC did not identify price as 

the most crucial criterion. 

On the other hand, a somewhat uniform line for D-CRITIC compared with the other 

lines (see Figure 1) indicates that D-CRITIC assigns weights that are relatively close to 

each other. In other words, it appears that D-CRITIC concludes that all five smartphone 

criteria hold a similar degree of importance, with only marginal differences. Although the 

weights estimated by D-CRITIC are relatively close, it has to be emphasized that they are 

still distinct enough to enable a decent ranking on the criteria. It is acceptable to have 

relatively close weights since, in some situations, that could be the actual case. For in-

stance, Suh et al. [71], who used an integrated weighting method to evaluate eight mobile 

service criteria, discovered that the computed weights did not vary too much and merely 

ranged between 0.0870 and 0.1780.  

More importantly, further analyses (the distance correlation test, the Spearman rank-

order correlation, the sMAPE test, and the sensitivity analysis) have provided obvious 

evidence that the weights estimated by D-CRITIC are more acceptable than those of other 

methods. 

The distance correlation test reveals that the set of weights derived by the D-CRITIC 

method is strongly consistent with the sets of weights produced by the other methods 

since all the coefficient values are above 0.6. The highest consistency is reported for the 

original CRITIC method, with a coefficient value of 0.8186. This finding is undoubtedly 

the result of the similarity between the two methods in determining the criteria weights. 

More specifically, unlike other methods, both methods capture the contrast intensity and 

the conflicting nature of the criteria while determining the weights. However, overall, the 

set of weights produced by D-CRITIC has the highest degree of consistency compared 

with the weights produced by the other four methods; that is, D-CRITIC yielded the larg-

est average distance correlation score (0.7283). The second most consistent weights were 

derived by CILOS (0.7273), followed by IDOCRIW (0.7022), CRITIC (0.6574), and the en-

tropy-based method (0.6300).  

On the other hand, the Spearman rank-order correlation test reveals that the most 

consistent criteria ranks, which agree well with the other four sets of criteria ranks, re-

sulted from the IDOCRIW method. Interestingly, as in the case of criteria weights, it 
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appears that the set of ranks derived by D-CRITIC is more consistent than that derived by 

CRITIC, since the former has a higher average Spearman rank-order correlation score 

(0.3000).  

Besides, the sMAPE test shows that D-CRITIC has estimated the most accurate crite-

ria weights since the method obtained the lowest sMAPE value, that is, 17.3267%, when 

compared with the aggregated weights. The original CRITIC method is reported as the 

second most accurate method with an sMAPE value of 20.9825%. The test also indicates 

that the entropy method produced the second-least accurate estimates because, unlike D-

CRITIC and CRITIC, the entropy method considers only the contrast intensity of the cri-

teria. 

To sum up, based on Figure 3, it can be claimed that D-CRITIC has a better perfor-

mance than the original CRITIC method. The D-CRITIC method is proven to have the 

ability to produce a more valid set of criteria weights and ranks. The results support the 

initial argument made in Section 1.1 that the weights determined by the CRITIC method 

could be flawed since it misrepresents conflicting relationships between criteria. This 

shortcoming is minimized in the D-CRITIC method, mainly with the aid of distance cor-

relation.  

On the other hand, the results in Table 11 and Figure 4 clearly show that a little mod-

ification in the size of the decision matrix or the data structure, which was done through 

ten different scenarios, have caused changes to the weights or ranking of criteria estimated 

from the actual decision matrix. These changes prove that the D-CRITIC method results 

are sensitive to the variations in the size of the decision matrix. This situation is caused by 

the integrated distance correlation measures. Unlike the Pearson correlation, distance cor-

relation is not only more responsive to the change in the amount of data, but at the same 

time, it is more sensitive to the presence of both linear and non-linear associations between 

data vectors.  

However, it can be claimed that D-CRITIC can produce more stable criteria weights 

with a larger decision matrix. This quality is evident based on Figure 5, where it appears 

that weights generated by Sc6, Sc7, Sc8, Sc9, and Sc10 are more consistent with the actual 

estimation compared to Sc1, Sc2, Sc3, Sc4, and Sc5. Furthermore, the lower average 

sMAPE value for Sc6–Sc10, i.e., 17.5550%, in general, suggests that weights estimated via 

a larger decision matrix have better proximity to the actual estimation. It has to be reiter-

ated that the decision matrix of Sc1–Sc5 only comprises four alternatives, whereas six al-

ternatives make up the decision matrix of Sc6–Sc10.  

In terms of the criteria ranks, few scenarios have generated ranks that tally with the 

actual estimation. For instance, ��, which was identified as the most important criterion, 

has also been ranked first in Sc2, Sc6, Sc7, and Sc10. Besides, ��, which was reported as 

the least important criterion, has remained at the same fifth rank in Sc6, Sc7, and Sc10. 

However, based on the number of green boxes distributed between Sc1-Sc5 and Sc6–Sc10, 

we can specifically claim that the ranks derived from larger decision matrices are more 

consistent with the actual estimation. All in all, the sensitivity analysis reveals that D-

CRITIC has the tendency to deliver more stable criteria weights and ranks with a larger 

decision matrix, or in other words, if the decision problem involves a larger set of alterna-

tives.  

7. Limitations and Recommendations  

Our research has two main limitations that should be addressed in future studies. 

The first limitation relates to the computational load of D-CRITIC. The method is more 

computationally demanding than the original CRITIC method since D-CRITIC is based 

on distance correlation. The original calculation of distance correlation presented in this 

paper can lead to a more complex procedure when a larger number of alternatives is in-

volved. Huo and Székely [72] claimed that the computational complexity of distance cor-

relation could be as high as a constant multiplied by �� (i.e., � ∗ ��), where � denotes 
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the number of alternatives. Future studies, therefore, may consider developing and using 

a simpler algorithm to calculate distance correlation prior to applying D-CRITIC.  

The second limitation is that the proposed D-CRITIC method derives the weights 

merely by analyzing the data structure in the decision matrix without considering experts’ 

inputs. Although it has the advantage of minimizing the possible bias caused by human 

judgment, it may also disregard the valuable inputs from experienced experts. Thus, in 

the future, the users of D-CRITIC may consider using the method together with other 

subjective weighting methods, so that the final criteria weights can be determined by uti-

lizing the benefits of both objective and subjective methods. 

Supplementary Materials: A spreadsheet file that shows the complete calculations performed in 

this study is provided together with this paper. It is available online at www.mdpi.com/arti-

cle/10.3390/sym13060973/s1. The file contains the following data: the normalized decision matrix 

(Sheet 1), the distance correlation between the criteria (Sheets 2 to 11), the weight estimates using 

D-CRITIC (Sheet 12), the weight estimates using CRITIC (Sheet 13), the weight estimates using the 

entropy-based method (Sheet 14), the weight estimates using CILOS (Sheet 15), the weight estimates 

using IDOCRIW (Sheet 16), the validation using the distance correlation test (Sheet 17), the valida-

tion using the Spearman rank-order correlation test (Sheet 18), the validation using the sMAPE test 

(Sheet 19), the amended decision matrices for sensitivity analysis (Sheet 20), and the results of Sce-

nario 1 to 10 (Sheets 21 to 30). 
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Appendix A 

Appendix A, which is a portion of the Supplementary File provided together with 

this paper, depicts the complete calculation of the distance correlation between �� and 

��. Microsoft Office EXCEL was used to enable a speedy calculation. The calculation is 

presented based on the steps outlined in Section 2 (Steps 3.1 to 3.5).  
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Figure A1. Calculation steps of distance correlation between �� and �� 
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