
symmetryS S

Article

Hardware in the Loop Topology for an Omnidirectional Mobile
Robot Using Matlab in a Robot Operating System Environment

Constantin-Catalin Dosoftei * , Alexandru-Tudor Popovici, Petru-Razvan Sacaleanu, Paul-Marcelin Gherghel and
Cristina Budaciu

����������
�������

Citation: Dosoftei, C.-C.;

Popovici, A.-T.; Sacaleanu, P.-R.;

Gherghel, P.-M.; Budaciu, C.

Hardware in the Loop Topology for

an Omnidirectional Mobile Robot

Using Matlab in a Robot Operating

System Environment. Symmetry 2021,

13, 969. https://doi.org/10.3390/

sym13060969

Academic Editors: Aviv Gibali,

Kok Lay Teo and Yonghong Wu

Received: 6 May 2021

Accepted: 28 May 2021

Published: 30 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Automatic Control and Applied Informatics, “Gheorghe Asachi” Technical University of Iasi,
700050 Iasi, Romania; alexandru-tudor.popovici@academic.tuiasi.ro (A.-T.P.);
petru-razvan.sacaleanu@student.tuiasi.ro (P.-R.S.); gherghel.paul@ac.tuiasi.ro (P.-M.G.);
cristina.budaciu@academic.tuiasi.ro (C.B.)
* Correspondence: constantin-catalin.dosoftei@academic.tuiasi.ro

Abstract: The symmetry of the omnidirectional robot motion abilities around its central vertical
axis is an important advantage regarding its driveability for the flexible interoperation with fixed
conveyor systems. The paper illustrates a Hardware in the Loop architectural approach for integrated
development of an Ominidirectional Mobile Robot that is designed to serve in a dynamic logistic
environment. Such logistic environments require complex algorithms for autonomous navigation
between different warehouse locations, that can be efficiently developed using Robot Operating
System nodes. Implementing path planning nodes benefits from using Matlab-Simulink, which
provides a large selection of algorithms that are easily integrated and customized. The proposed
solution is deployed for validation on a NVIDIA Jetson Nano, the embedded computer hosted
locally on the robot, that runs the autonomous navigation software. The proposed solution permits
the live connection to the omnidirectional prototype platform, allowing to deploy algorithms and
acquire data for debugging the location, path planning and the mapping information during real
time autonomous navigation experiments, very useful in validating different strategies.

Keywords: logistic robot; omnidirectional mobile robot; kinematic model; symmetrical configuration;
hardware in the loop; navigation; ROS environment

1. Introduction

Due to the implementation of new technologies in many industrial plants, the ef-
ficiency of production activities has seen a continuous increase and the bottleneck has
moved to the logistics area. Logistic includes a variety of processes such as: picking,
packing, warehousing, inventory, delivery, and routing. In the last decade, the intelligent
robot technology was extended to non-manufacturing sectors as logistic processes, and
the logistic robots appeared especially for picking, packaging, palletizing and handling
as a link between these operations [1]. Another factor favouring the optimization in the
logistics field is represented by the development of autonomous systems. Initially the
idea transposed in automated guided vehicles (AGVs), which are systems able to move
following a fixed route between some predefined points. The operation of such a system in
the field of logistics results in a number of shortcomings such as increased costs of system
installation, lack of flexibility of systems to a route change, fleet management, rigidity from
the perspective of collaboration with other systems or the human operator [2]. A superior
technology to these AGVs is represented by autonomous mobile robots (AMRs), through
which all the described disadvantages are eliminated.

The main changes are in the perception system where smart sensing solutions ap-
peared: laser scanners, stereo vision cameras, inertial measurement unit, localization
sensors and advanced processing using an additional embedded system capable of fast
processing the information. AMRs can make decisions based on the perception and give to

Symmetry 2021, 13, 969. https://doi.org/10.3390/sym13060969 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6095-3944
https://orcid.org/0000-0002-8479-771X
https://doi.org/10.3390/sym13060969
https://doi.org/10.3390/sym13060969
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13060969
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13060969?type=check_update&version=3


Symmetry 2021, 13, 969 2 of 17

the robot an advanced mobility in a dynamic environment, which may be continuously
changing. In recent years, AMRs are regular occupants in the modern logistics system,
helping warehouse workers to fulfil orders with increased promptness.

The AMRs used in internal logistics contributes to improving processes by increasing
productivity, reducing downtime due to lack of components and more efficient use of
human resources to focus where it can bring more added value. Nowadays, AMRs is one of
the fastest expanding fields of scientific research wherein academic groups and industrial
companies frequently work together. AMRs attract attention more and more from the
perspective of applications that have already branched off in various areas, as in search
and rescue missions [3], planetary exploration [4], medical care [5], intervention in extreme
environments like mining [6] and military operations [7], agriculture [8], household and
office applications [9], logistics and manufacturing applications [2,10–12], as well as other
industrial and non-industrial applications.

Current logistic facilities typically represent high-traffic environments, with narrow
aisles among diverse obstacles where omnidirectional mobile robots (OMRs) are a better
suited solution for improved manoeuvrability.

The main contribution of the paper is a comprehensive description of a practical
approach for developing an OMR system useful to those who want to extend their research
from pure simulations into practical higher level applications, since the majority of the
recently published research papers focus mainly on simulation results. In this regard, our
study might be of interest to researchers who want to design and follow the necessary steps
for the realization of the hardware in the loop (HiL) architecture using recent hardware
(NVIDIA Jetson Nano, light based detection and ranging system (LiDAR), depth-camera,
etc.) and software (Robot Operating System (ROS) nodes developed in MATLAB).

This paper is structured as follows: Section 2 summarizes the related work that
uses OMRs in the logistic field, Section 3 describes the ROSY platform prototype with
essential features regarding the mechanical design and the associated kinematic model,
the hardware configuration, the vehicle controller firmware, followed by the description
of the ROS software topology. In Section 4, real-time motion control using ROS nodes
implemented in MATLAB is detailed. Moreover, the experimental evaluation methodology
is presented and the OMR position control performance is demonstrated by experimental
results. Two types of scenarios are proposed: the first is related to the validation of tracking
predefined trajectories and the second refers to building a map of the environment using
the simultaneous localization and mapping (SLAM) algorithm with inputs from LiDAR
and the robot odometry module. The platform is also tested to navigate between points
defined in the map which qualified the mobile platform to be equipped with conveying
system and used in logistic area. Some limitations and difficulties from experimental
tests are also described. Discussions of the results and future work conclude the paper
in Section 5.

2. Related Work

Recent independent studies reflect significant research on Mecanum wheeled robots,
the study [13] compares recent research results with various OMR prototypes in the context
of logistic applications, and the authors provide a review for the development of mobile
robots based on Mecanum wheels which were previously used in different research centers.

Considering the issues of traditional mobile robots applications, the Mecanum wheeled
platforms gain attention in different groups of researchers, and while the focus was initially
on simulation results, currently it is moving towards applied, real-time, implementations.
In terms of simulations, there are consistent studies for kinematic modelling [2,7,14], their
main focus being the controller design, which can be of different forms based on classical
or advanced modern approaches [14–16]. Moreover, path planning is also an important
subject, especially in the logistic framework [17,18].

From the practical implementation point of view, different OMR prototypes have
been designed and implemented to achieve autonomous navigation, the platforms have



Symmetry 2021, 13, 969 3 of 17

to obtain environment perception, localization, path planning and trajectory following
abilities [19–22]. In most of the research studies, the STM32 micro-controller is the core
of the low level control system, which performs various data calculations and real-time
processing for different type of embedded computers [20,21]. The authors from [19]
proposed a low cost robot using an Arduino based system for the low level controller and
Raspberry Pi as the on board computer which runs a GNU/Linux distribution. Due to
the recent trends and the complexity of the tasks required for logistics applications, the
currently proposed solution is deployed on a NVIDIA Jetson Nano embedded computer
hosted locally on the robot, that runs the autonomous navigation software. The research
presented in this paper is part of a larger project, aimed at developing an intelligent logistics
system using autonomous OMRs - identified by the name ROSY-Logistic.

The main objective consists of the development of an intelligent logistics system
using autonomous robot for flexible exchange of items between different fixed conveyor
systems, all operations being coordinated by a warehouse management system. The
ROSY platform is meant to transport materials between predefined locations in a dynamic
warehouse environment by autonomously optimizing its trajectory plan in response to
its surroundings. The initial steps for developing the autonomous OMRs specialised in
exchanging items between conveyor systems are detailed in this study. The main purpose
of the current paper is to address symmetrically the integration testing level of the V-
model process by designing a HiL architecture appropriate for the technologies used in the
research project, such as the integration of ROS.

3. Omnidirectional Mobile Robot in a Logistic Application

The workflow of this project follows the well-known symmetric V-model development
process methodology [23,24] presented in Figure 1. The approach starts on the design (left)
branch by defining project requirements and goes through the lower layers to obtain an
actual implementation that is verified and validated by following the symmetric testing
branch that deals with module, integration and system testing, respectively.

The initial steps for developing the autonomous OMRs, specialised in exchanging
items between conveyor systems are detailed in the following sections. The content of
the study is addressed by the integration testing level of the V-model process through
designing a HiL architecture appropriate for the proposed technology used in this research
project, the ROS software package integration.

Due to the complexity of a mobile robotic structure and especially of an omnidi-
rectional structure, in approaching the development of high-performance structures, a
hierarchical leadership structure is adopted, top-down, with a strict organization, each
hierarchical level being completely subordinated to the higher hierarchical level. This
hierarchical approach also allows a special flexibility in the design and realization of mobile
robotic structures, the changes made on a module having minimal influences on the func-
tional structure. The control of a mobile robot can be approached either from a kinematic or
from a dynamic perspective. The kinematic perspective consists in decoupling the control
in two overlapping loops: the kinematic loop and the dynamic loop. The dynamic approach
considers only one loop that ensures a dynamic global control. However, this last approach
has a number of disadvantages: the necessary analysis as well as the real-time calculation
become very complex. The kinematic approach is simpler and overall stability can be
guaranteed [18]. Thus, although for physical reasons the robot model is a dynamic one,
this dynamic can be neglected if the actuators used can develop much higher accelerations
than required and therefore the prescribed torque is developed instantly relative to the
time constants of the system. These considerations allow the development of a sufficiently
general control structure, based on the kinematic model of the robot [25]. In Figure 2 it
is shown the structure of the controller, derived from a typical cascade structure which
contains 3 control loops: the trajectory planning loop, the kinematic loop and the dynamic
loop. In this way, if the dynamic loop is much faster than the kinematic loop which, in turn,
is much faster than the planning loop, then the stability of the system is guaranteed.



Symmetry 2021, 13, 969 4 of 17

Figure 1. V-model development process methodology.

Figure 2. Controller structure of the mobile robot.

The position of the mobile platform which navigates in 2D space can be completely
specified by means of the pose, consisting of three scalar sizes:

p = [x y θ]T (1)

The pose derivative generates the speed vector:

ṗ = [vx vy Ω]T (2)

Dynamic control can include a current control loop and takes into account the inertial
masses of rotation and translation of the robot, as well as strong forces and torques in
order to obtain control voltages, U, of motors which in turn are used to determine imposed
rotation speeds, ω∗. High level control can consider some aspects in the phase of generating
the reference path (avoidance of collisions, singular configurations, etc.) depending on the
degree of intelligence of the designed mobile robot. Starting from the measured rotational
speeds, ω, using the direct kinematic model of the mobile robot, the speed vector from
Equation (2) can be obtained and then the position estimation. In this way it is possible
to implement the middle level control, which involves a control of the position from a
kinematic perspective.



Symmetry 2021, 13, 969 5 of 17

3.1. Mechanical Architecture

The platform used in this study consists of four Mecanum wheels driven by individual
motors and has important capabilities, especially for industrial environments, as it is able
to move in any direction whilst spinning around its vertical axis. In order to minimize the
vibrations caused by the spacers between rollers which affect the stability, the platform
is provided with suspension mechanism based on traditional dampers. The robot was
completely set up for autonomous navigation utilizing ROS, camera and a 360° LiDAR.

Figure 3 presents the geometrical model of the OMR prototype with the coordinates
system assignments to each wheel, platform configuration, and all variables necessary for
developing the kinematic model. As described at the beginning of Section 3, the control
system deals with two kinematic transformations: the forward model which uses the
speeds of all wheels to determine the relative speed of the platform, while the inverse
kinematic model takes the components of the decomposed relative speed of the platform
in order to obtain the required speed for each wheel.

The building process of the kinematic model of the omnidirectional platform with
four Mecanum wheels having the arrangement of rollers direction in a square is a classic
bottom-up approach, that starts from the process of composing the movement (vgi ) in the
Cartesian coordinate system of the roller that is in contact with the floor (oixiyizi). The
movement is translated to the wheel’s angular velocity (ωi) with its attached coordinate
system (Oωi Xωi Yωi Zωi ), and the wheel’s radius, R. The resulting velocity vector v is
determined by instantaneous translation velocities of the robot (vx respectively vy) in the
coordinate system of chassis OXYZ.

Figure 3. Description of the Cartesian coordinate system from the Mecanum wheel and symmetrical
OMR chassis with four Mecanum wheels (all conventions are in concordance with the right-handed
Cartesian coordinate system and representation of the wheel in 2D space is judged in terms of wheel
tracks left on ground).

The position of each wheel i is uniquely determined in relation to the distance consid-
ered as a vector (thus having a sign depending on the direction of the axis to which it refers)
as well as rotation angle between the wheel frame and roller frame (for a Mecanum wheel
this angle is equal ±45°). In concordance with notations from Table 1 the particularized
symmetric values for the structural parameters from Figure 3 are presented in Table 2.
Therefore the impact of the linear velocity vector (vi) of the wheel i and the velocity
of the roller in contact with the ground (vgi ) on the velocity vector of the robot can be
calculated [26–28] by:

vi + vgi cos(γi) = vx − lyi Ω (3)



Symmetry 2021, 13, 969 6 of 17

vgi sin(γi) = vy + lxi Ω (4)

Because vgi is an uncontrollable variable of the passive roller, it will be eliminated
through substitution from Equations (3) and (4):

vi = vx − lyi Ω − 1
tan(γi)

(vy + lxi Ω) (5)

By customizing the parameters from Table 2 for each wheel and transforming linear
velocity of each wheel to angular wheel velocity (vi = Rωi), the wheels speed equations
can be written as: 

Rω1 = vx + vy − (lx + ly)Ω
Rω2 = vx − vy − (lx + ly)Ω
Rω3 = vx + vy + (lx + ly)Ω
Rω4 = vx − vy + (lx + ly)Ω

(6)

Table 1. Kinematic model variables and their definitions.

Variable Definition

vx instantaneous longitudinal velocity component of the robot
vy instantaneous lateral velocity component of the robot
Ω rotational speed
vgi velocity of roller from wheel i in contact with the ground
ωi angular wheel i velocity
vi instantaneous longitudinal velocity of the wheel i
lx half distance between front and rear wheel axles
ly half distance between left and right wheels
lxi x coordinate of wheel 3 i relative to the robot center O
lyi y coordinate of wheel i relative to the robot center O
γi rotation angle between the wheel frame and roller frame
R radius of wheel

Table 2. Mechanical parameters for each wheel i of the rectangular-symmetric ROSY platform.

Wheel Index i 1 2 3 4

γi −45° 45° −45° 45°
lxi −lx lx lx −lx
lyi ly ly −ly −ly

The matrix representation, which is the most used method for inverse kinematics
calculations, is presented in Equation (7):

ω1
ω2
ω3
ω4

 =
1
R


1 1 −(lx + ly)
1 −1 −(lx + ly)
1 1 (lx + ly)
1 −1 (lx + ly)


vx

vy
Ω

 (7)

The inverse kinematic Jacobian matrix J of the OMR is expressed as:

J =
1
R


1 1 −(lx + ly)
1 −1 −(lx + ly)
1 1 (lx + ly)
1 −1 (lx + ly)

 (8)



Symmetry 2021, 13, 969 7 of 17

In order to obtain the forward kinematic equations, used for calculating the linear
and angular speeds of OMR relative to the ground, the deduction starts from Jacobian
matrix, which has 4 × 3 dimensions, it must be used a pseudo inverse matrix J+ such that
J+ · J = I3, which it is determined with the formula from [27]:

J+ = (JT · J)−1 · JT (9)

The values calculated for OMR with conventional notations from Table 2 for forward
kinematics are:

J+ =
R
4

 1 1 1 1
1 −1 1 −1

−(lx + ly)−1 −(lx + ly)−1 (lx + ly)−1 (lx + ly)−1

 (10)

And the resultant direct kinematics transformation representing linear and angular
velocities of the OMR relative to ground is:

vx
vy
Ω

 = J+


ω1
ω2
ω3
ω4

 (11)

The matrix equations Equations (7) and (11) are essential components of the vehicle
controller firmware implementation that is presented in Section 3.3.

3.2. Hardware Architecture

The architectural design diagram of the hardware platform [29] is presented in
Figure 4. The components of the architecture are grouped by their functional role: power
supply unit, chassis with the mechanical actuators, perception layer (that includes the
environment scanning sensors), and the human machine interface (HMI) elements. The
remaining interlinking components, that are not part of the marked groups, are part of the
control and communication layer.

Furthermore, the control components can be subdivided in two logical levels, in
accordance with the control diagram presented in Figure 2: high level control implemented
in the ROS nodes running on the central unit controller and the low level control functions
implemented in the firmware of the vehicle controller.

The power supply unit is customized in order to provide flexibility between mobility,
required during dynamic tests, and autonomy, needed during development and static tests.
For this purpose it features a main power switch that allows to select between the internal
power source (Lithium-Ion battery pack that includes a battery management system), an
external power source and the power off mode.

The chassis is equipped with four Mecanum wheels. Each wheel is actuated using
a separated 24 V DC Motor fitted with a quadrature encoder having 500 increments per
mechanical rotation and an 18.5:1 ratio planetary gear box speed reduction for traction
torque amplification.

The HMI provides system monitoring functions and several local or remote control
options, including an emergency stop button. The embedded vehicle controller state
(status, control source, wheels’ speed references and actual values, power supply volt-
age) can be directly observed on the organic light emitting diode (o-LED) mini display
attached to the control board. The same state information can be viewed remotely using
an Android™smart phone application connected over a BlueTooth™ serial port profile
(BTSPP) link. In addition to viewing the state information, the Android™application
can also be used for manual remote control of the platform and for tuning the wheel’s
proportional-integrative speed controllers’ parameters. As alternative methods for low
level remote control are provided a local (wired) Play Station™2 (PS2) compatible joystick
and a standard radio remote controlled (RC) 2.4 GHz 6 channel servo receiver for manual



Symmetry 2021, 13, 969 8 of 17

wireless remote operation. It is also possible to achieve HMI interaction using the high level
control layer through special PC applications that implement remote control ROS nodes.

Power & I/O
Expansion Board

Emergency
STOP Button

Central Unit 
Controller

(ROS Host)
PC

Front Video +
Depth Camera

WiFi

Vehicle 
Controller

Board (RTOS)

USB-C
Power

I/O BUS

oLED
Display

RC 
2.4GHz
Remote 

Rx

Wired PS2
Joystick

USB 2.4GHz
360
LIDAR

BT
SPP

2.4GHz
Android
Smart Phone

 UART

Motor
Encoder
Gearbox

Drivers

x4

Mecanum
wheel

B
at

te
ry

M
an

ag
em

en
t

S
ys

te
m

Battery
Pack

Charge
Port

Fuse

Main
Power
Switch

External
Power
Port

Power Supply Unit

IMU
Perception

HMI

Wireless 
Joystick

2.4GHz

USB

USB

Chassis

USB
VCP

I2C

Control

Figure 4. OMR hardware platform modules interconnection diagram.

The perception layer contains the environment scanning sensors: the 360° LiDAR,
a video camera with depth perception and an intertial measurement unit (IMU). The
LiDAR is used for scanning the general occupancy map of the surroundings. The front
video camera with depth perception is used for a more accurate detection of obstacles and
objectives on the immediate path of the robot. The IMU provides additional information
that can be correlated with the movement commands in order to improve the odometry or
to detect abnormal operation.

The central unit controller is a NVIDIA Jetson Nano™ system operated using a
GNU/Linux Ubuntu distribution which represents the host for the ROS that runs the nodes
dealing with high level control layer. The central unit controller provides access to the
perception layer and can dictate the robot’s relative motion speeds through a virtual serial
COM port (VCP) over the universal serial bus (USB) port on which the vehicle controller is
connected, in order to guide it on a specific trajectory. The ROS nodes and the NVIDIA
Jetson Nano’s Ubuntu operating system can be remotely accessed from a PC using Wi-Fi
connection made available through a USB dongle network card.

The vehicle controller is a STM32F103RC micro-controller from ST Microelectronics®

which is hosted on an expansion board used for distributing the power and interconnecting
with the rest of the attached modules. The central unit controller is powered from the
expansion board over dedicated USB-C connector and data connection to the vehicle
controller is made through an additional USB connection that tunnels VCP serial connection.
The motor drivers, motor encoders, emergency stop button, remote control receiver, blue-
tooth module and the PS2 joystick are also attached on the expansion board connectors
which links them to the vehicle controller.

3.3. Vehicle Controller Firmware

The vehicle controller is designed to be commanded in autonomous mode through
the USB VCP connection by the ROS software, which represents the navigation abstraction
layer (NAL), running on NVIDIA Jetson Nano™, but also manually through the other
HMI channels.



Symmetry 2021, 13, 969 9 of 17

On the vehicle controller it runs a customized implementation of FreeRTOS™, real time
operating system (RTOS) distribution maintained by Amazon®. Its main responsibilities
are to monitor the command sources (USB VCP, BTSPP, PS2 joystick, RC joystick), arbitrate
between them, monitor the motor encoders to obtain the speeds of the wheels, sample the
IMU, properly control the motor drivers to obtain the desired speed references, and report
system status through different communication channels (VCP, BTSPP, and controller area
network (CAN)). This responsibilities are implemented using the following set of tasks
running on the RTOS software infrastructure: IMU sampling, PS2 joystick handling, o-LED
display management, data reporting, and motion control.

The motion control and data reporting tasks are essential for the implementation of the
hardware abstraction layer (HAL) of the OMR. For this reason the firmware includes the
parameters of the OMR geometry needed to evaluate the inverse kinematics Equation (7)
for controlling the wheel speeds according to the requested relative motion reference
speeds, while at the same time the data reporting task is using the same parameters for
evaluating the direct kinematics Equation (11) required to obtain the actual OMR relative
motion speeds used by the central unit controller for odometry.

3.4. High Level Software and the Control Application of the ROSY Platform

ROS is a flexible framework for writing robot software. It is a collection of tools,
libraries, and conventions that aim to simplify the task of creating complex and robust
robot behavior across a wide variety of robotic platforms. ROS can integrate, run or
support any application and also provides: operating system (OS) services, HAL, low-
level device control, implementation of commonly-used functionalities, message-passing
between different processes and package management. There are many advantages of
using ROS, especially due to the fact that it is open-source [30,31].

ROS application is the high level software that allows the developer to integrate the
OMR into a HiL process. A ROS application includes individual pieces of software that are
integrated into the ROS ecosystem as ROS nodes.

The relationship between nodes running on NVIDIA Jetson Nano is illustrated in
Figure 5. The underlying communication of ROS is based on XML-RPC protocol. It
allows cross-platform software to make remote calls by sending and receiving messages in
XML format.

The main nodes that enable the serial communication and provide information about
robot’s real-time position while executing a certain task are:

• Matlab navigation ROS node specially designed for the HiL architecture proposed in
the paper

• Vehicle Controller serial communication ROS node: enables the serial communication
and the data transfer between NVIDIA Jetson Nano and STM32 robot controller. The
ROS system receives data sent by the lower level controller and, at the same time,
sends instructions to the micro-controller to handle the robot, by specifying the desired
orthogonal translation speeds and the rotational velocity.

• LiDAR ROS node “rpLidarNode”: enables the LiDAR which communicates with
the application controller via a serial port and used, further on, in the ROS software
applications.

• Extended Kalman filter (EKF) Odometry ROS node: provides encoder odometer data
and IMU data.

• Teleop Keyboard node: used in manual mapping of OMR environment.



Symmetry 2021, 13, 969 10 of 17

Figure 5. ROS Software Architecture.

4. Real-Time Motion Control Using a ROS Node Implemented in MATLAB

ROS Toolbox provides an interface that allows the connection between Matlab Simulink
and ROS ecosystem. Using this facility, there is possible to create a cross-platform network
of ROS nodes. The toolbox includes MATLAB functions and Simulink blocks to import, an-
alyze, and play back ROS data recorded in rosbag files [32]. It is also possible to connect to
an existing live ROS network to access ROS messages. ROS Toolbox enables the generation
of ROS nodes from a Simulink model and also to integrate the simulated ROS node into a
ROS network from a physical hardware [30].

The toolbox includes algorithms for collision checking, trajectory generation and
forward or inverse kinematics. For mobile robots, such as the OMR, it includes algorithms
for mapping, localization, path planning, path following and motion control. The toolbox
provides reference examples of common industrial robot applications and it also includes
libraries of commercially available industrial robots that can be imported, visualized and
simulated. In order to evaluate the performances of the proposed approach, the first goal
was to implement a ROS node package using the features that Matlab provides to perform
localization of the OMR [33].

4.1. ROS Node Implementation

Figure 6 shows the modules implemented, the main part consists of the Control block
with the Trajectory Controller whose role is to calculate the command for linear velocity
and angular speed using two PID type controller in order to reach the destination goal.
This command is sent to the next block, being saturated before to be published in the last
block throw the topic /cmd_vel. During navigation through a previously constructed map,
the robot behaves as expected with only a few shortfalls. These errors were most likely
caused by errors in odometry data.

To generate a route for the robot to move in an optimal way it is needed a map space for
a path planner algorithm. In Waypoint planer, the coordinates [x y] are sent to pathPoints
as a goal destination. currentPosition represents the current position of the robot acquired
for pose topic and when the goal position was reached the signal done_cmd is send for
receiving the new position. Because the robot has 60 cm on every side, it is necessary to
insert a threshold applied on the edges of the obstacles. This threshold has two effects,
one is to create a space bounds in order to avoid collision of the robot with the obstacles
and the second is for path planning, where we use a probabilistic roadmap algorithm
with the purpose to eliminate areas where it is not necessary to calculate the network
graph of the possible path. Also position of the robot on the map is known in real time by



Symmetry 2021, 13, 969 11 of 17

subscribe to topic /pose generated by wheeltec_robot node. In the Perception Subscription
block, position of the robot on the map is known in real time by subscribe to topic /pose
generated by wheeltec_robot node. Through the Planner block, the matlab_navigationNode
develop a feasible path from its location to the goal utilizing the probabilistic road map
and generates a road path for SLAM algorithm.

Figure 6. ROS application nodes implemented in Matlab.

4.2. Practical Experiments and Evaluation

This section presents the control performances of the OMR using the proposed ap-
proach. Real time experiments are obtained using ROS and Matlab features. The experi-
mental flow has two main parts: (i) test run and data acquisition in Matlab and (ii) data
processing and reporting according with the proposed approach used in the Figure 5. The
first part, the OMR platform is subject to several scenarios and the data are acquired in real
time from IMU and LiDAR sensors. The working environment is a restricted area, the real
platform and the environment are illustrated in Figure 7. In the second part, the tests are
reported and analysed from the reference tracking performance perspective. The following
parameters were monitored on the OMR: raw sensor data (XY movement, linear speed and
angular speed) and reference trajectory. The first experiments were performed considering
circle and square reference signal, respective, considering reference signals for position
x (forward movement) and y (lateral movement). Further, a map of the environment
is built based on LiDAR scans, then the OMR navigates inside the map following the
reference trajectory.

Figure 7. The used OMR hardware platform in its testing area.

The simple motion controller moves the OMR to a new waypoint in two phases: an
initial azimuth orientation (if the azimuth differs significantly), followed by a longitudinal
translation together with slight azimuth corrections until a vicinity of the destination
is reached. Due to the symmetry of the OMR operation, all translations are expected
to perform in a similar way, so the longitudinal translation motion was studied for the
tracking performance in the square trajectory experiment.



Symmetry 2021, 13, 969 12 of 17

Tests were performed and the platform’s relative velocity to ground was recorded
using a set of local coordinates (considering x the longitudinal movement axis and y the
lateral movement axis), and the angular velocity around the vertical z-axis.

4.2.1. Circular Trajectory

Figure 8 shows with the red line the target circular trajectory with 1 m radius is given
as reference and with the black points the actual trajectory of the robot, considering that it
starts from the origin of the circle, approaches in a straight line the periphery, then aligns
with the closest tangent to the circle and follows the path in the trigonometric direction.
Figure 9 illustrates the performances of the OMR, when attempting to follow the circular
path. It can be observed that the OMR reaches in the vicinity of the reference points on
both x-axis and y-axis, while the control effort is being accomplished by the linear and
angular speed controllers.

Figure 8. Circle path tracking.

Figure 9. Illustration of control performances for circle scenario.

The linear speed of the platform illustrated in Figure 9 reaches the maximum 0.1 m s−1

allowed by the controller when navigating from the origin to the periphery, then it returns
to 0 m s−1 while the controller rotates the platform tangent to the circle. When the platform
orientation becomes tangent, the linear speed controller accelerates towards the next way-
points on the circular path, but it is visible that the linear speed is limited by the controller at
about maximum 0.08 m s−1 and it oscillates because while following the circular trajectory
the orientation of the platform needs continuous realignment, fact that triggers the linear
speed reduction to guarantee the proper reference tracking.



Symmetry 2021, 13, 969 13 of 17

4.2.2. Square Trajectory

Figure 10 illustrates with the red line a square reference trajectory with each side
measuring 1 m, which is defined by only four way-points representing the corners, while
with the black points it is marked the actual trajectory of the OMR in-between them. The
tracking performances considering that the robot starts from the origin point, reaches the
goal points and follows all four sides in about 2.5 min, as Figure 11 shows.

In Figure 11 it is also easily visible how the linear speed controller and angular speed
controller interact: when the desired motion direction differs significantly from the actual
direction the linear speed reference is switched to zero in order for the angular speed
controller to properly adjust the direction towards the target.

Figure 10. Square path tracking.

Figure 11. Illustration of control performances for square scenario.

4.2.3. Navigation Using the Map Obtained with SLAM

Autonomous map building focuses on the widely used SLAM approach. The platform
keeps track of its motion using odometry while navigating in the known environment as
illustrated in Figure 12. The experiments build, in the first phase, the environment map
based on LiDAR scans, while in the second phase, robot navigates inside the map which is
represented in Figure 13. In order to perform the real time tests, a ROS node package was
used, based on the features that Matlab provides to perform localization and mapping.

The approach was to create a LiDAR SLAM object and set the map resolution and
max LiDAR range. The maximum LiDAR range was set to 4 m, while it is smaller than the
maximum scan range, which is 12 m, as the laser reading are less accurate near maximum
range. The grid map has a resolution of 2 cm per division. However, odometry uncertainty
confuses the robot about its current position.



Symmetry 2021, 13, 969 14 of 17

Figure 12. Scene reconstruction by plotting the scans and poses tracked during an initial
manual navigation.

Figure 13. Navigation using the facilities from probabilistic road-map (yellow point is the initial
position, the green point is the first destination which produced a secondary way-point to avoid the
obstacle, the blue point is the second destination for which an additional way-point was created, and
the magenta point is the final destination.

To generate a route for the robot to move in an optimal way, it is needed a map space
for a path planner algorithm. Because the robot has 60 cm on every side, it is necessary
to insert a threshold applied on the edges of the obstacles, an inflation of the size of the
obstacles which can be observed when comparing Figure 12 with Figure 13. This threshold
has two effects, one is to create a space bounds in order to avoid collision of the robot with
the obstacles and second is for path planner, where a probabilistic road-map algorithm
is used, as is illustrated in Figure 13. In order to have a realistic static map of the indoor
environment where only the allowed and forbidden areas are represented, the occupational
map was binarized and saved in the robot’s memory, for a later use in the navigation node.



Symmetry 2021, 13, 969 15 of 17

5. Conclusions

The strategic control level of the OMR and implementation presented in this article
use a HiL approach designed for integration in the Matlab environment, in which it will
be developed the strategy for managing the robotic structure. The strategy is expected
to be complex because it depends on a large number of factors, among which the OMR’s
architecture, the decision algorithms that take into account the activity to be performed,
the necessary operating accuracy, the operating speed and the energy consumption opti-
mization. At this level, the complex action can be decomposed into elementary operations
that can be transmitted to be executed by the lower hierarchical level represented by the
vehicle controller.

MATLAB is recognized as a very powerful tool for testing control systems satisfying
the need for rapid control prototyping. Facilities offered by the Robotics Systems Toolbox
has contributed to increasing interoperability with mobile robotic systems that prefer to
use the ROS environment more and more.

The preliminary experimental results from laboratory for testing of the four Mecanum
wheels mobile platform was done from three perspectives. The first is related to the
validation of tracking predefined trajectories, usually used in the testing of mobile robots:
circle and square. The second perspective refers to building a map of the environment
based on LiDAR scans and the position using SLAM algorithm, procedure used partly
in commissioning of industrial mobile robot. The last perspective is the performing of
navigation between points defined in the map which qualified the mobile platform to
be equipped with conveying system and used in logistic environment as it is the aim of
ROSY-Logistic project.

Future research will be directed towards the development of reactive control algo-
rithms in order to cope with the dynamic changes that may occur in the workspace captured
with the static map inclusively equipping the platform with other perception systems to
obtain accuracy of navigation.

Author Contributions: Conceptualization, C.D., C.B. and T.P.; methodology, C.D. and C.B.; software,
T.P., R.S. and P.G.; validation, C.B., C.D. and T.P.; formal analysis, T.P. and C.B.; investigation, C.D.,
R.S. and T.P.; data curation, C.B.; writing—original draft preparation, C.D.; writing—review and
editing, C.B., T.P. and P.G.; project administration, C.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by a grant of the Romanian National Authority for Scientific
Research and Innovation, CNCS/CCCDI – UEFISCDI, project no. PN-III-P2-2.1-PTE-2019-0731,
contract no. 19/2020, within PNCDI III, second stages.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

HiL hardware in the loop
AGV automated guided vehicle
AMR autonomous mobile robot
OMR omnidirectional mobile robot
UGV unmanned ground vehicle
UAV unmanned aerial vehicle
ROS Robot Operating System
HMI human machine interface
o-LED organic light emitting diode



Symmetry 2021, 13, 969 16 of 17

BTSPP BlueTooth™ serial port profile
PS2 Play Station™2
IMU inertial measurement unit
LiDAR light based detection and ranging system
USB universal serial bus
VCP virtual serial COM port
NAL navigation abstraction layer
HAL hardware abstraction layer
RTOS real time operating system
CAN controller area network
SLAM simultaneous localization and mapping
RC radio remote controlled
OS operating system
API application programming interface
EKF extended Kalman filter

References
1. Wang, C.; Du, D. Research on logistics autonomous mobile robot system. In Proceedings of the 2016 IEEE International

Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016; pp. 275–280. [CrossRef]
2. Fragapane, G.; de Koster, R.; Sgarbossa, F.; Strandhagen, J.O. Planning and control of autonomous mobile robots for intralogistics:

Literature review and research agenda. Eur. J. Oper. Res. 2021. [CrossRef]
3. Semenas, R.; Bausys, R. Modelling of Autonomous Search and Rescue Missions by Interval-Valued Neutrosophic WASPAS

Framework. Symmetry 2020, 12, 162. [CrossRef]
4. Chatila, R.; Lacroix, S.; Siméon, T.; Herrb, M. Planetary Exploration by a Mobile Robot: Mission Teleprogramming and

Autonomous Navigation. Auton. Robots 1995, 2, 333–344. [CrossRef]
5. Kriegel, J.; Rissbacher, C.; Reckwitz, L.; Tuttle-Weidinger, L. The requirements and applications of autonomous mobile robotics

(AMR) in hospitals from the perspective of nursing officers. Int. J. Healthc. Manag. 2021, 1–7.
[CrossRef]

6. Boloz, L.; Bialy, W. Automation and Robotization of Underground Mining in Poland. Appl. Sci. 2020, 10, 7221. [CrossRef]
7. Williams, A. Autonomous Systems: Issues for Defence Policymakers; Nato Comunications and Informations Agency: Norfolk, VA,

USA, 2015.
8. Gonzalez-de Santos, P.; Fernández, R.; Sepúlveda, D.; Navas, E.; Emmi, L.; Armada, M. Field Robots for Intelligent

Farms—Inhering Features from Industry. Agronomy 2020, 10, 1638. [CrossRef]
9. Sahin, H.; Guvenc, L. Household robotics—Autonomous devices for vacuuming and lawn mowing. Control Syst. IEEE 2007,

27, 20–96. [CrossRef]
10. Rubio, F.; Valero, F.; Llopis-Albert, C. A review of mobile robots: Concepts, methods, theoretical framework, and applications.

Int. J. Adv. Robotic Syst. 2019, 16. [CrossRef]
11. Angerer, S.; Strassmair, C.; Staehr, M.; Roettenbacher, M.; Robertson, N. Give me a hand—The potential of mobile assistive robots

in automotive logistics and assembly applications. In Proceedings of the IEEE International Conference on Technologies for
Practical Robot Applications (TEPRA2012), Woburn, MA, USA, 23–24 April 2012; IEEE Computer Society: Woburn, MA, USA,
2012. [CrossRef]

12. Alatise, M.; Hancke, G. A Review on Challenges of Autonomous Mobile Robot and Sensor Fusion Methods. IEEE Access 2020.
[CrossRef]

13. Abd Mutalib, M.A.; Azlan, N.Z. Prototype development of mecanum wheels mobile robot: A review. Appl. Res. Smart Technol.
(ARSTech) 2020, 1, 71–82. [CrossRef]

14. Wang, C.; Liu, X.; Yang, X.; Hu, F.; Jiang, A.; Yang, C. Trajectory Tracking of an Omni-Directional Wheeled Mobile Robot Using a
Model Predictive Control Strategy. Appl. Sci. 2018, 8, 231. [CrossRef]

15. Muir, P.; Neuman, C. Kinematic modeling for feedback control of an omnidirectional wheeled mobile robot. In Proceedings
of the 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, USA, 31 March–3 April 1987; Volume 4,
pp. 1772–1778. [CrossRef]

16. Zijie, N.; Qiang, L.; Yonjie, C.; Zhijun, S. Fuzzy Control Strategy for Course Correction of Omnidirectional Mobile Robot. Int. J.
Control Autom. Syst. 2019, 17, 2354–2364. [CrossRef]

17. Azizi, M.R.; Rastegarpanah, A.; Stolkin, R. Motion Planning and Control of an Omnidirectional Mobile Robot in Dynamic
Environments. Robotics 2021, 10, 48. [CrossRef]

18. Indiveri, G.; Nuchter, A.; Lingemann, K. High Speed Differential Drive Mobile Robot Path Following Control With Bounded
Wheel Speed Commands. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy,
10–14 April 2007; pp. 2202–2207. [CrossRef]

http://doi.org/10.1109/ICMA.2016.7558574
http://dx.doi.org/10.1016/j.ejor.2021.01.019
http://dx.doi.org/10.3390/sym12010162
http://dx.doi.org/10.1007/BF00710798
http://dx.doi.org/10.1080/20479700.2020.1870353
http://dx.doi.org/10.3390/app10207221
http://dx.doi.org/10.3390/agronomy10111638
http://dx.doi.org/10.1109/MCS.2007.338262
http://dx.doi.org/10.1177/1729881419839596
http://dx.doi.org/10.1109/TePRA.2012.6215663
http://dx.doi.org/10.1109/ACCESS.2020.2975643
http://dx.doi.org/10.23917/arstech.v1i2.39
http://dx.doi.org/10.3390/app8020231
http://dx.doi.org/10.1109/ROBOT.1987.1087767
http://dx.doi.org/10.1007/s12555-018-0633-5
http://dx.doi.org/10.3390/robotics10010048
http://dx.doi.org/10.1109/ROBOT.2007.363647


Symmetry 2021, 13, 969 17 of 17

19. Soares, J.; Fischer Abati, G.; Duarte Lima, G.; Machado de Souza Junior, C.; Meggiolaro, M. Project and Development of a
Mecanum-wheeled Robot for Autonomous Navigation Tasks. In Proceedings of the XVIII International Symposium on Dynamic
Problems of Mechanics (DINAME 2019), Búzios, 10–15 March 2019. [CrossRef]

20. Li, T.; Zhang, F.; Gao, X.; Xu, H.; Ji, S. The Control System Design of a Omni-Directional Mobile Logistics Sorting Vehicle Based on
stm32; Series D, Mechanical Engineering; Scientific Bulletin—“Politehnica” University of Bucharest: Bucharest, Romania, 2020;
Volume 82.

21. Mu, F.; Liu, C. Design and Research of Intelligent Logistics Robot based on STM32. Recent Adv. Electr. Electron. Eng. 2021,
14, 44–51. [CrossRef]

22. Uriarte, C.; Kunaschk, S. Omnidirectional Conveyor System Module, Modular Omnidirectional Conveyor System and Omnidi-
rectional Conveyor System. German Patent DE102012014181A1, 23 January 2014.

23. Dosoftei, C.C.; Lupu, A.; Pascal, C.M. A new approach to create a realistic virtual model of a cylindrical robot using Automation
Studio. IOP Conf. Ser. Mater. Sci. Eng. 2019, 591, 012078. [CrossRef]

24. Rassõlkin, A.; Sell, R.; Leier, M. Development case study of the first estonian self-driving car, iseauto. Electr. Control Commun.
Eng. 2018, 14, 81–88. [CrossRef]

25. Gracia, L.; Tornero, J. Kinematic control of wheeled mobile robots. Latin Am. Appl. Res. 2008, 38, 7–16.
26. Dosoftei, C.; Horga, V.; Doroftei, I.; Popovici, T.; Custura, S. Simplified Mecanum Wheel Modelling using a Reduced Omni Wheel

Model for Dynamic Simulation of an Omnidirectional Mobile Robot. In Proceedings of the 2020 International Conference and
Exposition on Electrical And Power Engineering (EPE), Iasi, Romania, 22–23 October 2020; pp. 721–726. [CrossRef]

27. Maulana, E.; Muslim, M.A.; Hendrayawan, V. Inverse kinematic implementation of four-wheels mecanum drive mobile robot
using stepper motors. In Proceedings of the 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA),
Surabaya, Indonesia, 20–21 May 2015; pp. 51–56. [CrossRef]

28. Li, Y.; Dai, S.; Zhao, L.; Yan, X.; Shi, Y. Topological Design Methods for Mecanum Wheel Configurations of an Omnidirectional
Mobile Robot. Symmetry 2019, 11, 1238. [CrossRef]

29. Company, W. Wheeltec Company Website. Available online: https://wheeltec.net (accessed on 29 April 2021).
30. Feng, Y.; Ding, C.; Li, X.; Zhao, X. Integrating Mecanum wheeled omni-directional mobile robots in ROS. In Proceedings of the

2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; pp. 643–648.
[CrossRef]

31. Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A. ROS: An Open-Source Robot
Operating System. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan,
12–17 May 2009.

32. MathWorks. Get Started with ROS. Available online: https://www.mathworks.com/help/ros/ug/get-started-with-ros.html
(accessed on 28 April 2012).

33. Corke, P. Integrating ROS and MATLAB [ROS Topics]. IEEE Robot. Autom. Mag. 2015, 22, 18–20. [CrossRef]

http://dx.doi.org/10.26678/ABCM.DINAME2019.DIN2019-0171
http://dx.doi.org/10.2174/2352096513999200718002257
http://dx.doi.org/10.1088/1757-899X/591/1/012078
http://dx.doi.org/10.2478/ecce-2018-0009
http://dx.doi.org/10.1109/EPE50722.2020.9305643
http://dx.doi.org/10.1109/ISITIA.2015.7219952
http://dx.doi.org/10.3390/sym11101268
https://wheeltec.net
http://dx.doi.org/10.1109/ROBIO.2016.7866395
https://www.mathworks.com/help/ros/ug/get-started-with-ros.html
http://dx.doi.org/10.1109/MRA.2015.2418513

	Introduction
	Related Work
	Omnidirectional Mobile Robot in a Logistic Application
	Mechanical Architecture
	Hardware Architecture
	Vehicle Controller Firmware
	High Level Software and the Control Application of the ROSY Platform

	Real-Time Motion Control Using a ROS Node Implemented in MATLAB
	ROS Node Implementation
	Practical Experiments and Evaluation
	Circular Trajectory
	Square Trajectory
	Navigation Using the Map Obtained with SLAM


	Conclusions
	References

