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Abstract: The commercialization of future wireless communication systems faces crucial problems in
terms of reduced network cost of deployment and high power consumption. As a result, reconfig-
urable intelligent surfaces (RIS) have been suggested as a promising approach to overcome these
existing challenges. In this paper, the performance of RIS in a wireless-powered interference-limited
communication network is investigated. In this network, an energy-constrained access point (AP)
is powered by a dedicated multiantenna power beacon (PB) and communicates to a destination
limited-interference node via the RIS. It is assumed that the RIS experiences generalized-K fading
distribution while the PB and interferers links are subjected to Nakagami-m fading distributions. To
evaluate the system performance, the analytical closed-form expression of the probability distribution
function (PDF) for the concerned system is derived. Through this, the exact closed-form expressions
of the systems outage probability, average delay-tolerance throughput and average bit error rate are
obtained. The analysis quantifies the effects of the number of reflecting elements in the RIS, number
of interferer nodes, fading parameters on the AP and interferer links and number of antennas on the
PB. It is deduced from the results that there is a kind of symmetry relationship between the analytical
and simulation results. Additionally, the results illustrate that the proposed system with an RIS
outperforms the conventional system without an RIS. Finally, the accuracy of the derived analytical
expressions is validated through a Monte-Carlo simulation.

Keywords: energy harvesting; interferer nodes; power beacon; reconfigurable intelligent surface

1. Introduction
1.1. Background Information

Today, reconfigurable intelligent surfaces (RIS) have emerged as a new innovative
technology in the research community due to its great potential for reconfiguring propa-
gation environments and enhancing the quality of signal reception [1]. RIS is expected to
play a key role in improving the coverage area, energy efficiency and data rates of future
wireless networks such as fifth-generation (5G) and beyond [2]. Compared with conven-
tional systems, it requires no additional power supply, complex encoding or decoding
operation to enhance the system’s performance [3,4]. In this case, the RIS concept is based
on the utilization of large number of small, low-cost and passive reflecting elements to
effectively control the propagation characteristics of the desired incident signal through
the adjustable amplitude and phase shift of each reflecting element with no signal pro-
cessing [4]. Practically, an RIS can be fabricated to conform to any infrastructural surfaces
such as walls, ceiling and buildings for easy signal reflection [5]. As a result of this, an
RIS eliminates the blockage and fading effects that are usually experienced by large-scale
antenna wireless systems due to the existence of trees, buildings and humans [3], and also
reduces the system’s complexity and cost [6].
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Recently, wireless energy harvesting (EH) has been suggested as one promising
technique to prolong the lifetime of energy-constrained wireless devices [7]. It involves
the conversion of received RF energy to electrical power to boost the power of wireless
devices. Generally, EH can be classified as wireless-powered communication networks
(WPCNs) and simultaneous wireless information and power transfer (SWIPT). The formal
technique involves the AP scavenging RF energy from a dedicated PB and employing
the energy to send its information to the system destination. The latter technique usually
employs energy-constrained relay nodes to harvest RF energy from the AP and uses the
energy to transmit information to the system destination [8,9]. In both cases, there are
three EH protocols, and this includes the time switching (TS) protocol, power splitting (PS),
and ideal relaying protocol which are detailed in [10,11]. Thus, the performance of both
approaches has been studied in literature in the context of cooperative relaying systems.

1.2. Related Works

Recently, various research works have evaluated the performance of RIS in wireless
communication systems. Specifically, the performance of a RIS-assisted UAV relaying
system was investigated in [12]. Additionally, the performance of an RIS-aided power line
communication system was studied in [13] where the RIS was employed to improve system
coverage. The authors in [4] evaluated the performance of an RIS-enhanced underwater
communication system. The performance of an RIS-aided network over a Nakagami-
m fading channel was investigated in [6]. In [14], the performance of an RIS-assisted
source multi-user mixed radio frequency/free space optical (FSO) relay network was
evaluated with opportunistic user scheduling. Moreover, the performance of the RIS-
assisted mobile network under random user mobility was investigated in [15]. The authors
in [16] presented the performance of an RIS-enhanced internet of things network over
an F-distribution fading channel. Further, the impact of modulation index techniques
on an RIS-based space shift keying wireless network was evaluated in [17]. In [18], the
performance analysis of an RIS-assisted non-orthogonal multiple access network was pre-
sented. Yang et al. [19] considered RIS in an FSO setup under the influence of atmospheric
turbulence and pointing error. The authors in [20,21] studied the security performance
in vehicle networks with different modes of RIS. However, in all the aforementioned
works, the systems under study did not considered co-channel interference. As a matter
of this, in [22], the performance of RIS in an interference-limited RIS-aided network was
studied, where the interference links at the system destination were subjected to Rayleigh
fading distribution. It is worth noting that the system model in [22] did not consider a
wireless-powered communication technique. To the best of authors’ knowledge, the RIS in
interference-limited networks in context of a wireless-powered communication scenario
has not been yet studied in literature.

1.3. Motivation and Contributions

Motivated by this, the performance of RIS in a wireless-powered interference limited
communication system is presented in this paper. In this system, an energy-constrained AP
harvests energy from a dedicated multi-antenna PB and uses the energy to send its infor-
mation to a destination limited-interference node via the RIS. The RIS link is subjected to
generalised-K fading distribution while the PB and interferer links experience Nakagami-m
fading distributions. To this end, the system end-to-end probability distribution function is
obtained, through which the exact closed-form expressions of the system outage probability,
average delay-tolerance throughput and average bit error rate are obtained. Additionally,
a kind of symmetry can be deduced in the relationship between the analytical results and
the simulated results, which proves the accuracy of the derived analytical expression. The
main contributions of this study are summarised as follows:

• A closed-form expression of the system end-to-end probability distribution function
is derived,

• The exact closed-form expression for the system outage probability is obtained,
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• The analytical expression of the system average throughput under the delay-tolerant
transmission mode is also derived,

• The exact closed-form expression for the system average bit error rate is obtained
under the binary and coherent modulation scheme, and

• Related to [22], the co-channel interference system considered in this work utilizes
wireless-powered communication technique.

1.4. Structure of the Paper

The reminder of this paper is structured as follows: in Section 2, the system and
channel models are presented. The system statistical characteristics are detailed in Section 3.
In Section 4, the system performance metrics are analysed. The numerical results and
discussions are illustrated in Section 5. Finally, Section 6 depicts the concluding remarks of
this work.

2. System and Channel Models

A wireless powered interference-limited communication network that consists of a
power beacon (PB), access point (AP), RIS, a destination (D) and multiple NI interferer
nodes is illustrated in Figure 1. The PB and RIS are equipped with NP antennas and N
reflecting elements respectively while the AP, destination and interferer nodes are equipped
with a single antenna. Owing to blockage and fading issues, it is assumed that there is no
direct link between the AP and the destination. In the network, the AP harvests RF energy
from the PB using a time-splitting protocol and uses the energy to transmit its information
to the destination via the RIS. Based on time-splitting, the overall transmission time T is
divided into two phases. During the first transmission phase, the AP harvests RF energy
from the PB with duration ρT and the ρ(0 < ρ < 1) is the time-splitting ratio. During the
second transmission phase with duration (1− ρ)T, the AP utilizes the harvested RF energy
to transmit its information to the destination. Thus, the signal received at the AP can then
be expressed as:

yAP =
√

Psd−ζ
p hpxp + zp, (1)

where Ps denotes the PB transmit power, dp is the distance between the PB and AP with ζ
signifying the path loss-exponent, hp is the channel gain between the PB and AP, xp is the
unit energy signal and zp denotes the additive white Gaussian noise (AWGN) with noise
variance σ2

p and zero mean. Moreover, the amount of energy harvested by the AP at the
energy period ρT can be thus expressed as:

Ep =
βρTPs

dζ
p

, (2)

where β signifies the energy conversion efficiency at 0 < β < 1.
Therefore, the transmit power at the AP during the information transmission period

(1− ρ)T can be expressed as:

Pt =
Ep

(1− ρ)T
,

βρPs

(1− ρ)dζ
p

, (3)

At the system destination, the received signal can then be given as:

yD =

√
PtD

−ζ
R

[
N

∑
i=1

αiexpjφi ηi

]
xt +

NI

∑
j=1

√
PIj d

−ζ
Ij

hIj xIj , (4)
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Figure 1. System model for an RIS aided interference-limited wireless powered network. 
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where xt is the transmit information, φi denotes the phase shift produced by i-th
reflecting elements of the RIS, αi = ωiexp−ψi /

√
LAR and ηi = υiexp−ϑi /

√
LRD are the

channel gain of RIS with ωi and υi are the Rayleigh and Rician random variable, respectively.
LAR = 10log10

(
dζ

AR

)
+ λ and LRD = 10log10

(
dζ

RD

)
+ λ are the RIS link path loss where

dAR and dRD are, respectively, the distances between the AP-to-RIS and RIS-to-D links, and
λ denotes the constant that depends on the signal frequency and transmission environment.
Moreover, the channel gain and the transmit power of the j-th interferer are denoted
respected as hIj and PIj . Additionally, dIj signifies the distance between the destination and
the j-th interferer.

The maximum SNR for the system can be obtained by setting the φi = ψi + ϑi, then
the (4) can be further expressed as:

yD =

√
PtD

−ζ
R

[
N

∑
i=1

ωiυi

]
xt +

NI

∑
j=1

√
PIj d

−ζ
Ij

hIj xIj , (5)

Through (1), (3) and (5), the received signal-to-interference ratio (SIR) at the destination
can be expressed as:

γ = ξ ‖hP‖2 ‖hR‖2

‖hIj‖2 . (6)

where ξ = βρPs

(1−ρ)σ2dζ
PDζ

RPI d−ζ
I

with DR = LARLRD and hR =
N
∑

i=1
ωiυi.

In this paper, it is assumed that the RIS link is subjected to an approximated gener-
alised K-distribution and the PDF of the sum of multiple generalised K random variables
of hR can be defined as [23]:

fhR(y) =
2Ψkq+mq y((kq+mq)/2−1)

Γ
(
kq
)
Γ
(
mq
)
(γR/DR)

(kq+mq)/2
Kkq−mq

(
2Ψ

√
yDR
γR

)
, (7)

where kq and mq represent the distribution parameters and Ψ =
√

kqmq/Ωq with Ωq
denoting the mean power. Kv(.) signifies the modified Bessel function of the second kind
with zero order and Γ(.) is the Gamma function. γR is the average SNR of the RIS link.

By converting the PDF to a Meijer-G function using the identity stated in [24], Equation (14),
the (7) can be further expressed as:
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fY(y) =
Ψkq+mq y((kq+mq)/2−1)

Γ
(
kq
)
Γ
(
mq
)
(γR/DR)

(kq+mq)/2
G2,0

0,2

(
Ψ2DR

γR
y

∣∣∣∣∣ − , −(
kq + mq

)
/2 ,

(
mq − kq

)
/2

)
. (8)

Moreover, it is also assumed that the PB and i-th interferer links experience Nakagami-

m fading distribution. Thus, the PDF of the ‖hw‖2 =
Nw
∑

j=1

∣∣∣hwj

∣∣∣2, w ε { P, I} for the power

beacon and interfered links can be given as [25,26]:

f w
hw
(x) =

(
mw

γw

)mw Nw xmw Nw−1

Γ(mwNw)
exp
(
−mw

γw
x
)

, (9)

where γw with w ε { P, I} represents the average SNR of the PB and i-th interferers links.

3. System Statistical Characteristics

In this section, the probability density function of the end-to-end SIR for the concerned
system is presented. Thus, there is a need to obtain the PDF of the ratio of two random
variables such that Y = ‖hR‖2/‖hI‖2 as it is defined as:

fY(y) =
∞∫

0

x fhR(yx) f I
hI
(x)dx, (10)

By putting (8) and (9) into (10), then (10) can then be expressed as:

fY(y) =
Ψkq+mq y((kq+mq)/2−1)

Γ
(
kq
)
Γ
(
mq
)
Γ(mI NI)(γR/DR)

(kq+mq)/2

(
mI
γI

)mI NI

×
∞∫
0

x(kq+mq)/2+mI NI−1exp
(
−mI

γI
x
)

G2,0
0,2

(
Ψ2DRy

γR
x

∣∣∣∣∣ − , −(
kq + mq

)
/2 ,

(
mq − kq

)
/2

)
dx ,

(11)

By applying the integral identity defined in ([27], Equation (7.813(1))), (11) can be
solved as:

fY(y) =
Ψkq+mq y((kq+mq)/2−1)

Γ
(
kq
)
Γ
(
mq
)
Γ(mI NI)(γR/DR)

(kq+mq)/2

(
mI
γI

)−(kq+mq)/2
G2,1

1,2

(
Ψ2γI DR

mIγR
y

∣∣∣∣∣ 1−
(
kq + mq

)
/2−mI NI(

kq + mq
)
/2 ,

(
mq − kq

)
/2

)
, (12)

Thereafter, the PDF of the product of two random variables such that Z = Y.‖hp‖2

can be obtained as:

fZ(z) =
∞∫

0

1
x

fY

( z
x

)
f P
hp
(x)dx (13)

Also, by invoking (11) and (9) into (13), (13) can be expressed as:

fZ(z) =
Ψkq+mq z

(
(kq + mq)

2
−1)

Γ
(
kq
)
Γ
(
mq
)
Γ(mI NI)Γ(mPNP)

(
γR
DR

) (kq + mq)

2

(
mI
γI

)− (kq + mq)

2
(

mP
γP

)mP NP

×
∞∫
0

xmP NP−((kq+mq)/2)−1exp

(
−

mp

γp
x

)
G2,1

1,2

(
Ψ2γI DRZ

mIγRx

∣∣∣∣∣ 1−
(
kq + mq

)
/2−mI NI(

kq + mq
)
/2 ,

(
mq − kq

)
/2

)
dx

(14)

By inverting the Meijer-function in (14) using the identity in ([27], Equation (7.813(1))),
then (14) can be further expressed as:
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fZ(z) =
Ψkq+mq z((kq+mq)/2−1)

Γ
(
kq
)
Γ
(
mq
)
Γ(mI NI)Γ(mPNP)(γR/DR)

(kq+mq)/2

(
mI
γI

)−(kq+mq)/2(mP
γP

)mP NP

×
∞∫
0

xmP NP−((kq+mq)/2)−1exp

(
−

mp

γp
x

)
G1,2

2,1

(
mIγRx

Ψ2γI DRZ

∣∣∣∣ 1−
(
kq + mq

)
/2 , 1−

(
mq − kq

)
/2(

kq + mq
)
/2 + mI NI

)
dx ,

(15)

By utilizing the integral identity detailed in ([27], Equation (7.813(1))), (15) can be
solved as:

fZ(z) =
Ψkq+mq

Γ
(
kq
)
Γ
(
mq
)
Γ(mI NI)Γ(mPNP)(γR/DR)

(kq+mq)/2

(
mPγI
mIγP

)(kq+mq)/2
z((kq+mq)/2−1)

×G1,3
3,1

(
mIγRγP

Ψ2γImPDRZ

∣∣∣∣ 1 +
((

kq + mq
)
/2
)
−mPNP, 1−

(
kq + mq

)
/2, 1−

(
mq − kq

)
/2(

kq + mq
)
/2 + mI NI

)
,

(16)

By inverting the Meijer-G function in (16) using the identity detailed in ([27],
Equation (9.31(5))), (16) can be further expressed as:

fZ(z) =
Ψkq+mq

Γ
(
kq
)
Γ
(
mq
)
Γ(mI NI)Γ(mPNP)(γR/DR)

(kq+mq)/2

(
mPγI
mIγP

)(kq+mq)/2
z((kq+mq)/2−1)

×G3,1
1,3

(
Ψ2γImPDRZ

mIγRγP

∣∣∣∣∣
(
kq + mq

)
/2 + mI NI

mPNP −
((

kq + mq
)
/2
)
,
(
kq + mq

)
/2,
(
mq − kq

)
/2

)
,

(17)

Through (6) and transformation of random variable, (17) can be expressed as:

fγ(γ) =
Ψkq+mqξ−(kq+mq)/2

Γ
(
kq
)
Γ
(
mq
)
Γ(mI NI)Γ(mPNP)(γR/DR)

(kq+mq)/2

(
mPγI
mIγP

)(kq+mq)/2
γ((kq+mq)/2−1)

×G3,1
1,3

(
Ψ2γImPDRγ

mIγRγPξ

∣∣∣∣∣
(
kq + mq

)
/2 + mI NI

mPNP −
((

kq + mq
)
/2
)
,
(
kq + mq

)
/2,
(
mq − kq

)
/2

)
.

(18)

4. System Performance Analysis

To analyse the performance of the concerned system, the closed-form expressions of
the outage probability, average throughput under the delay-tolerant transmission mode
and the average BER for binary and coherent modulation are derived in this section.

4.1. Outage Probability Analysis

Outage probability is one of the key performance metrics for quantifying the perfor-
mance of a wireless communication system under the effect of fading. It is defined as the
probability that the system’s instantaneous SNR falls below the preset threshold value γth.
It can thus be obtained as [28]:

Pout(γth) =

γth∫
0

fγ(γth)dγ, (19)

where γth = 2R − 1 and R denotes the fixed rate.
Substituting (18) into (19) and applying the integral identity detailed in [24], Equation (26),

the outage probability of the system can be expressed as:

Pout(γth) =
Ψkq+mqξ−(kq+mq)/2

Γ
(
kq
)
Γ
(
mq
)
Γ(mI NI)Γ(mPNP)(γR/DR)

(kq+mq)/2

(
mPγI
mIγP

)(kq+mq)/2
γ
(kq+mq)/2
th

×G3,2
2,4

(
Ψ2γImPDRγth

mIγRγPξ

∣∣∣∣∣
(
kq + mq

)
/2 + mI NI , 1−

(
kq + mq

)
/2

mPNP −
((

kq + mq
)
/2
)
,
(
kq + mq

)
/2,
(
mq − kq

)
/2,−

(
kq + mq

)
/2

)
.

(20)
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4.2. Average Throughput Analysis

The average throughput under the delay-tolerant transmission mode can be obtained
by determining the ergodic capacity at any fixed target rate as follows [7]:

τ = (1− ρ)C , (21)

where C is the ergodic capacity of the system which can be defined as [15,29]:

C =
1

ln(2)

∞∫
0

ln(1 + γ) fγ(γ)dγ , (22)

By substituting (18) into (22), (22) can be expressed as:

C =

Ψkq+mqξ−(kq+mq)/2
(

mPγI
mIγP

)(kq+mq)/2

ln(2)Γ
(
kq
)
Γ
(
mq
)
Γ(mI NI)Γ(mPNP)(γR/DR)

(kq+mq)/2

∞∫
0

γ((kq+mq)/2−1)

×ln(1 + γ)G3,1
1,3

(
Ψ2γImPDRγ

mIγRγPξ

∣∣∣∣∣
(
kq + mq

)
/2 + mI NI

mPNP −
((

kq + mq
)
/2
)
,
(
kq + mq

)
/2,
(
mq − kq

)
/2

)
dγ ,

(23)

By converting ln(1 + γ) to the Meijer-G function through the identity stated in [30],
Equation (8.4.6(5)), then (23) can be further expressed as:

C =

Ψkq+mqξ−(kq+mq)/2
(

mPγI
mIγP

)(kq+mq)/2

ln(2)Γ
(
kq
)
Γ
(
mq
)
Γ(mI NI)Γ(mPNP)(γR/DR)

(kq+mq)/2

∞∫
0

γ((kq+mq)/2−1)

×G3,1
1,3

(
γ

∣∣∣∣ 1, 1
1, 0

)
G3,1

1,3

(
Ψ2γImPDRγ

mIγRγPξ

∣∣∣∣∣
(
kq + mq

)
/2 + mI NI

mPNP −
((

kq + mq
)
/2
)
,
(
kq + mq

)
/2,
(
mq − kq

)
/2

)
dγ ,

(24)

By applying the integral identity detailed in [24], Equations (21) and (24) can be
expressed as:

C =
Ψkq+mqξ−(kq+mq)/2

ln(2)Γ
(
kq
)
Γ
(
mq
)
Γ(mI NI)Γ(mPNP)(γR/DR)

(kq+mq)/2

(
mPγI
mIγP

)(kq+mq)/2

×G5,2
3,5

Ψ2γImPDRγ

mIγRγPξ

∣∣∣∣∣∣
(kq+mq)

2 + mI NI ,−
(kq+mq)

2 , 1− (kq+mq)
2

mPNP −
(kq+mq)

2 , (
kq+mq)

2 , (
mq−kq)

2 ,− (kq+mq)
2 ,− (kq+mq)

2

 .

(25)

Thus, the average throughput can then be obtained by putting (25) into (21).

4.3. Average Bit Error Rate Analysis
4.3.1. For Binary Modulation

The average BER for several binary modulation schemes can be expressed as [7]:

Pb =
1

2Γ(ψ)

∞∫
0

fγ(γ)Γ(ψ, µx)dγ , (26)

where ψ and µ are the constant values for different modulation schemes detailed in [31]
and Γ(., .) denotes the incomplete Gamma function.

Substituting (18) into (26), the ABER for the concerned system under binary modula-
tion can be expressed as:
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Pb =

Ψkq+mqξ−(kq+mq)/2
(

mPγI
mIγP

)(kq+mq)/2

2Γ(ψ)Γ
(
kq
)
Γ
(
mq
)
Γ(mI NI)Γ(mPNP)(γR/DR)

(kq+mq)/2

∞∫
0

γ((kq+mq)/2−1)Γ(ψ, µx)

×G3,1
1,3

(
Ψ2γImPDRγ

mIγRγPξ

∣∣∣∣∣
(
kq + mq

)
/2 + mI NI

mPNP −
((

kq + mq
)
/2
)
,
(
kq + mq

)
/2,
(
mq − kq

)
/2

)
dγ,

(27)

By converting the Γ(ψ, µx) to the Meijer-G function using the identity detailed in ([30],
Equation (8.4.16(2))), then (27) can be expressed as:

Pb =

Ψkq+mqξ−(kq+mq)/2
(

mPγI
mIγP

)(kq+mq)/2

2Γ(ψ)Γ
(
kq
)
Γ
(
mq
)
Γ(mI NI)Γ(mPNP)(γR/DR)

(kq+mq)/2

∞∫
0

γ((kq+mq)/2−1)G2,0
1,2

(
µx
∣∣∣∣ 1

0, ψ

)

×G3,1
1,3

(
Ψ2γImPDRγ

mIγRγPξ

∣∣∣∣∣
(
kq + mq

)
/2 + mI NI

mPNP −
((

kq + mq
)
/2
)
,
(
kq + mq

)
/2,
(
mq − kq

)
/2

)
dγ ,

(28)

Using the integral identity given in [24], Equations (21) and (28) can be solved as:

Pb =

Ψkq+mqξ−(kq+mq)/2
(

mPγI
mIγP

)(kq+mq)/2

2Γ(ψ)Γ
(
kq
)
Γ
(
mq
)
Γ(mI NI)Γ(mPNP)(γR/DR)

(kq+mq)/2

×G3,3
3,4

Ψ2γImPDRγ

µmIγRγPξ

∣∣∣∣∣∣
(
kq + mq

)
/2 + mI NI , 1−

((
kq + mq

)
/2
)
,−
((

kq + mq
)
/2
)
− ψ

mPNP −
(
(kq+mq)

2

)
,
(
kq + mq

)
/2,
(
mq − kq

)
/2,−

((
kq + mq

)
/2
)
 .

(29)

4.3.2. For M-Ary Coherent Modulation

The average BER for the concerned system under the M-ary coherent modulation can
be defined as [32,33]:

Pb = ϕ
t

∑
i=1

∞∫
0

fγ(γ)Q
(√

Ξiγ
)

dγ, (30)

where ϕ, t and Ξi are the parameters that determine the type of M-ary coherent modulation,
and they are defined in [7,33] for M-PSK and M-QAM.

Invoking (18) into (30), the ABER under this modulation can be expressed as:

Pb =

Ψkq+mqξ−(kq+mq)/2
(

mPγI
mIγP

)(kq+mq)/2

Γ
(
kq
)
Γ
(
mq
)
Γ(mI NI)Γ(mPNP)(γR/DR)

(kq+mq)/2

t
∑

i=1

∞∫
0

γ((kq+mq)/2−1)Q
(√

ξiγ
)

×G3,1
1,3

(
Ψ2γImPDRγ

mIγRγPξ

∣∣∣∣∣
(
kq + mq

)
/2 + mI NI

mPNP −
((

kq + mq
)
/2
)
,
(
kq + mq

)
/2,
(
mq − kq

)
/2

)
dγ ,

(31)

If Q
(√

Ξiγ
)
= 1

2 er f c
(√

Ξi
2 γ

)
and is further converted to the Meijer-G function using

the identity given in ([30], Equation (8.4.14(2))), then (31) can be expressed as:
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Pb =

Ψkq+mqξ−(kq+mq)/2
(

mPγI
mIγP

)(kq+mq)/2

2
√

πΓ
(
kq
)
Γ
(
mq
)
Γ(mI NI)Γ(mPNP)(γR/DR)

(kq+mq)/2

t
∑

i=1

∞∫
0

γ((kq+mq)/2−1)

×G2,0
1,2

(
Ξi
2 x
∣∣∣∣ 1

0, 1/2

)
G3,1

1,3

(
Ψ2γImPDRγ

mIγRγPξ

∣∣∣∣∣
(
kq + mq

)
/2 + mI NI

mPNP −
((

kq + mq
)
/2
)
,
(
kq + mq

)
/2,
(
mq − kq

)
/2

)
dγ ,

(32)

By applying the integral identity detailed in [24], Equations (21) and (32) can be
solved as:

Pb =
Ψkq+mqξ−(kq+mq)/2

2
√

πΓ
(
kq
)
Γ
(
mq
)
Γ(mI NI)Γ(mPNP)(γR/DR)

(kq+mq)/2

t
∑

i=1

(
2mPγI
ΞimIγP

)(kq+mq)/2

×G3,3
3,4

(
2Ψ2γImPDRγ

Ξi mIγRγPξ

∣∣∣∣∣
(
kq + mq

)
/2 + mI NI

mPNP −
((

kq + mq
)
/2
)
,
(
kq + mq

)
/2,
(
mq − kq

)
/2,−

((
kq + mq

)
/2
) ) .

(33)

5. Numerical Results and Discussions

In this section, the numerical results are presented to evaluate the impact of various
system and channel parameters on the performance of RIS in an interference-limited
wireless powered communication network. It can be observed that the Monte-Carlo
simulation results are perfectly matched with the analytical results, which indicate the
correctness of the derived closed-form expressions. Unless otherwise stated, the system and
channel parameters are set to be as follows: R = 2, PI = 15 dB, Np = NI = 2, mp = mI = 2,
γp = γI = γR = 5 dB, ζ = 2.5, ρ = 0.6, β = 0.8, A = 1, dp = 2 m, dI = 10 m and
dAR = dRD = 2 m.

In Figure 2, the impact of the number of reflecting elements in the RIS on the system
outage probability is demonstrated. It can be observed from the results that the increase
in number of reflecting elements in the RIS significantly improves the system outage
performance with large values of N offering better performance. Further, it is determined
from the results that the proposed system with RIS outperforms the conventional system
without RIS.

The effect of number of interferers NI and the number of antennas Np on the system
outage probability is presented in Figure 3. The results show that the system performance
significantly deteriorates with an increase in NI . However, the system offers better perfor-
mance as the number of antennas Np at the PB increases. This is because the increase in Np
increases the received power at the system destination.

Moreover, the performance of the system under the variation of interferers trans-
mission power PI and the fading parameters mp and mI on the PB and interferer links,
respectively, is depicted in Figure 4. It can be deduced that the increase in the transmit
power PI of interferers leads to degradation of the system outage performance. However,
the results indicate that the increment in the fading parameters on the PB and interferer
links enhances the system outage performance.

The throughput performance of the system under the variation of NI is presented
in Figure 5. The results show that the system performance drastically degrades with an
increase in the number of interferers at the system destination.
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The impact of number of antennas Np at the PB on the system throughput is demon-
strated in Figure 6. The results illustrate that the system average throughput increases
with an increase in Np. Further, it can be observed from the results that the system
throughput improves with an increase in energy harvesting time ρ. However, maximum
throughput is achieved when ρ reaches its optimum value. This is due to the fact that
more time is allocated to harvesting energy from the PB, which leads to an increase in the
system throughput.

Similarly, the impact of number of reflecting elements in RIS on the system throughput
is depicted in Figure 7. The results show that the proposed system with an RIS achieves
higher throughput compared to a conventional system without RIS as the N increases.

In Figure 8, the impact of the number of reflecting elements in an RIS and the fading
parameter on the PB and interferer links on the system ABER of the system under the BPSK
binary modulation scheme is presented. It can be seen that the increase in the number of N
significantly improved the ABER, with higher value offering the system better performance.
The results also indicate that the increase in the system fading parameters on both the PB
and interferer links leads to better system performance. Additionally, it can be seen that
the conventional system without RIS offers poor performance when compared with the
proposed system with RIS.

The effects of the number of interferers on the system ABER under the M-QAM
coherent modulation system is presented in Figure 9. It can be observed that the system
ABER degraded as the number of interferers increased at the destination. However, as the
number modulation order M decreased, the better the system ABER performance.
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6. Conclusions

In this paper, the performance of the RIS in a wireless powered limited interference
communication network is analysed. The exact closed-form expressions of the system
outage probability, average throughput and average bit error rate are derived. The results
depicted that the simulation results perfectly agreed with the analytical results. The results
also show that the system performance significantly improves with an increase in the
number of RIS reflecting elements, number of antennas at the PB and fading parameter on
the PB and interferer links. Moreover, the system performance deteriorates as the number
of interferes and PI increase. Further, the system average throughput increases with the
increase in energy harvesting time. The results also demonstrated that the proposed system
with the RIS offers better performance compared with the conventional dual-hop system
without the RIS. The furture research interest of this work can be directed towards the
impact of RIS surafcae area on the performance of system. This is owing to the fact that
the smaller RIS reflecting elements offer better robustness, but at higher design complexity.
However, RIS with large element structures aid better reflection, but at the expense of
higher power consumption. Moreover, the system can be made multi-user and the effect of
hardware impairment with co-channel interference can be studied.
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