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Abstract: The goal of clustering is to identify common structures in a data set by forming groups
of homogeneous objects. The observed characteristics of many economic time series motivated the
development of classes of distributions that can accommodate properties, such as heavy tails and
skewness. Thanks to its flexibility, the skewed exponential power distribution (also called skewed
generalized error distribution) ensures a unified and general framework for clustering possibly
skewed and heavy tailed time series. This paper develops a clustering procedure of model-based
type, assuming that the time series are generated by the same underlying probability distribution but
with different parameters. Moreover, we propose to optimally combine the estimated parameters
to form the clusters with an entropy weighing k-means approach. The usefulness of the proposal is
shown by means of application to financial time series, demonstrating also how the obtained clusters
can be used to form portfolio of stocks.

Keywords: classification; generalized error distribution; skewness; skewed exponential power
distribution; financial time series; portfolio selection

1. Introduction

The goal of clustering is to identify common structures in a data set by forming groups
of homogeneous data. This objective can be achieved by minimizing the within-group
similarity and by maximizing the between-group dissimilarity.

Clustering of time series data is an important tool for data analysis in different areas
ranging from engineering to finance and economics. For example, through clustering
methods it is possible to build portfolios of similar stocks for financial applications (for
example [1–3]). The main clustering approaches for time series can be summarized into
three main groups [4]: observation-based, feature-based, and model-based.

In the observation-based clustering the raw data are clustered according to a specified
distance measure. Several authors proposed fuzzy extensions of common clustering
algorithms for raw data (for example [5–9]). The time series involved could have either the
same length or not. In the second case, it is common to take advantage of the dynamic time
warping (DTW) technique that is used to find an optimal alignment between two series
with different lengths. (for example [9,10]).

In the feature-based clustering, the objects are clustered according to some of the
data’s features. The main advantage of this class of clustering approaches lies in the
fact that the time series length is not an issue because objects with different length can
be clustered together. Common time series features considered for clustering are the
autocorrelation function (ACF) [11,12], the partial autocorrelation function (PACF) [13], the
features of wavelet decomposition of the time series (for example [14,15]) or the cepstral
(for example [16,17]).
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The model-based clustering approaches assume, instead, that the time series are
generated by the same statistical model (for example [18–21]) or that they have the same
probability distribution (for example [22,23]). The spirit of most of the model-based
clustering procedures is to group objects according to the estimated parameters. Im-
portant examples are the clustering methods based on ARMA process distances (for
example [18,19,24]), GARCH-based distances for heteroskedastic time series [19,20,25],
estimates of the probability distributions’ parameters (for example [22,23]) or, more re-
cently, conditional higher moments (for example see [26]).

This paper develops a clustering procedure of the model-based type, assuming that
the time series are generated by the same underlying probability distribution but with
different parameters. Clearly, with this aim the specification of a very general distribution
is required in order to account for a wide range of possible special cases.

The observed characteristics of many financial and economic time series motivated
the development of a family of distributions that are enough flexible to accommodate
skewness and heavy-tails, while nesting symmetric and bell-shaped distributions (e.g., the
Normal) as special cases.

An important desired property of these classes is that the maximum likelihood esti-
mation of the parameters is possible. A class of asymmetric distributions with the desired
properties of accommodating heavy tails and skewness is represented by the skewed
exponential power distribution (SEPD) [27–30]. It generalizes the exponential power
distribution (also called generalized error distribution, GED) for skewness.

Many financial applications of the GED, as well as its skewed extensions, have been
considered (for example [29–38]). For example, [30] explored moments (also see [29]) as
well as measures, such as value at risk and expected shortfall that are useful in financial
applications. Similarly, [37] proposed a GED-based value at risk model, while [38,39]
studied the role of the Skewed GED in forecasting volatility.

In general, the exponential power distribution, either symmetric or not, encompasses
a very wide variety of special cases. Examples are the Gaussian, the skewed normal, the
Laplace, the skewed Laplace distribution, and many others [37,40–42].

Therefore, in what follows, we consider the skewed exponential power distribution
family as the underlying assumption for all the considered time series. Thanks to its
flexibility it ensures a unified and general framework for clustering possibly skewed
time series.

The paper is structured as follows. In the next section, the entropy weighted clustering
algorithm based on the skewed exponential power distribution is discussed. To show the
usefulness of the proposed approach we provide two applications to different financial
datasets in the Section 4. Then, in the Section 5 we propose to use the clusters obtained in
the Section 4 to build a portfolio of stocks. At the end some conclusions are offered.

2. The SEPD-Based Clustering Approach

A very general and flexible family of distribution is represented by the exponential
power distribution (also called generalized error distribution or exponential power func-
tion). The EPD random variable Z has the following probability density function [42,43]:

f (z) =
exp(−| z−µ

σ |p/p)

2σp
1
p Γ
(

1 + 1
p

) (1)

where z ∈ R, µ ∈ R is called location parameter, σ > 0 is called scale parameter, p > 0 is a
measure of fatness of tails and is called shape parameter (see [40]) and Γ(·) is the Gamma
function. By construction, this distribution is symmetric and does not allow for skewness
(Figure 1).
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Figure 1. Exponential power distribution for different values of shape.

It is possible to write the EPD probability density (1) in more compact form by means
of [40]:

f (z) =
1
σ

C exp
(
− 1

p

∣∣∣∣ z− µ

σ

∣∣∣∣p); C−1 = 2p1/pΓ(1 + 1/p) (2)

where C is a normalizing constant. The shape parameter p defines the heavy-tailedness
of the distribution. Hence, with a small value of p we obtain more flat distribution and
vice-versa with a large p.

A very important feature of the EPD is that it includes many common distributions as
special cases, depending by the value of shape parameter p (Figure 1).

In particular, the Gaussian distribution is a special case when p = 2, and when p < 2
the distribution has fatter tails than a Gaussian distribution [37]. Moreover, when p = 1 we
have a Laplace distribution, and for p = +∞ we have the uniform distribution [42].

Important contributions that extended the exponential power distribution for skew-
ness are represented by [27,28], where an additional skewness parameter, denoted λ in this
paper, is introduced. (see Figure 2).

Figure 2. Skewed exponential power distribution for different values of shape and skewness.

Some papers (for example [29,30,34,40]) constructed seemingly different classes of
SEPD distributions. However, as suggested by [40], all of them are actually reparametriza-
tions of the SEPD proposed by [27,28].
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In this paper, following [34], we say that a random variable Z has a skewed exponential
power distribution if its probability density function is the following:

f (z) =
p

σΓ
(

1 + 1
p

) λ

1 + λ2 exp
(
−λp

σp [(z− µ)+]p − 1
σpλp [(z− µ)−]p

)
(3)

where:
(z− µ)+ = max(z− µ; 0) and (z− µ)− = max(µ− z; 0)

The parameters µ and σ correspond to location and scale, respectively, while λ controls
skewness, and p is the shape parameter. For λ = 1, the distribution is symmetric about µ
so we obtain the symmetric exponential power distribution. In the case λ 6= 1, by letting
p = 1 we obtain the skewed Laplace distribution with density [34]:

f (z) =
1
σ

λ

1 + λ2

{
exp(− λ

σ |z− µ|) for z ≥ µ,

exp(− 1
σλ |z− µ|) for z < µ

(4)

For p = 2 and λ 6= 1, instead, we obtain the skewed normal distribution as defined
in [44]. More details about the SEPD and the skewed Laplace distribution can be found
in [34].

The great flexibility of the SEPD can be successfully exploited in the clustering process
if the aim is to form distribution-based clusters. Distribution-based clustering could be of
interest for a variety of applications (for example [22,23]).

In what follows, following in the spirit the contribution of [23], we propose a clus-
tering algorithm that uses the estimated moments from the skewed exponential power
distribution here introduced to form clusters. In other words, time series with similar
estimated parameters are be placed in the same cluster. Moreover, since the underlying
distribution has more than one parameter, following [7,45], we propose to optimally weight
each parameter that represents a different feature of the data distribution.

The clustering model can be presented as follows. Let’s assume to have
N(n = 1, . . . , N) time series that are generated by a skewed exponential power distri-
bution of parameters µn, σn, pn, and λn. We can store the estimated parameters in the
following matrix:

X =



µ1 σ1 p1 λ1
µ2 σ2 p2 λ2
...

...
...

...
µn σn pn λn
...

...
...

...
µN σN pN λN


(5)

that we can be used to compute the time series’ dissimilarities.
As briefly stated before, since the SEPD has more than one parameter, a natural

question is how would we use this information. Indeed, it is surely possible to cluster the
time series only according to the location estimates or with respect to the scale parameter.
Similarly, we can be interested in clustering time series with similar skewness or shape.

In this paper, we do not cluster the time series according to a single parameter but,
instead, we aim to optimally combine them.

A useful approach for optimally weighting different features is represented by the
weighted k-means (WKM) algorithm of [46]. The WKM algorithm proposes to incorporate
a weighted distance function within the usual k-means algorithm. The main idea is that
the weights are a measure of the relative importance of each feature with respect to the
membership of the observations to a given cluster.
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Formally, the weighted k-means algorithm (WKM) can be formalized as follows:

min :
C

∑
c=1

N

∑
n=1

M

∑
m=1

un,cwβ
m,cD2

m,c (6)

under the constraints:
C

∑
c=1

un,c = 1, un,c ≥ 0, (7)

M

∑
m=1

wm,c = 1, 0 ≤ wm,c ≤ 1 (8)

where un,c ∈ {0, 1} is binary and takes value of 1 if the n-th object belongs to the c-th
cluster, wm,c represents the weight of the m-th feature in determining the c-th cluster and
Dm,c = d(xn,m, xc,m), represents the (euclidean) distance between the m-th feature of the
n-th time series and the one of the c-th centroid.

Applied to the context of the distribution-based clustering, the weights wm,c are
suitable values associated to each parameter m in the matrix X shown in (5) of the specified
distribution within the c-th cluster.

Note that the weight wm,c is intrinsically associated with the squared distance D2
n,c for

the specified distribution parameters. This makes possible to optimally weighting each
distribution’s feature in calculating the dissimilarities. Moreover, another appealing feature
is that each c-th group has its own optimal weight vector.

Then, the exponent β has to be analyzed. With β = 0 we obtain the usual k-means
clustering algorithm, while with a value of β = 1, we have that the weights associated to
the feature with the smallest value of the weighted dissimilarity is equal to 1 and all the
others wm,c are equal to zero.

When β > 1, the larger the Dm, the smaller the weight wm. With a β < 0, we
have that the larger Dm the larger the weight wm. Then, if 0 < β < 1 the larger the
features’ dissimilarity, the larger is the weight wm and this is against the variable weighting
principal [46].

Therefore, we cannot choose 0 < β < 1, β = 0 or β = 1 but in the WKM algorithm
suitable values are β < 0 or β > 1.

However, the exponent β is an artificial device, lacking a strong theoretical justification [7].
Note that the value of β in the Formula (6) is similar to the fuzziness parameter in the fuzzy
c-means algorithm. To overcome this problem, the usage of a regularization term has been
proposed [7,45]. In this case, the burden represented by β is shifted to the regularization
term obtaining, in such a way, a factor that multiplies the regularization contribution to the
clusters formation.

With this respect, [45] proposed a clustering algorithm where the weight of a given
feature in a cluster represents the relevance of each feature in determining the clusters.

Therefore, [45] modified the objective function (6) by adding the weight entropy term
such that, at the same time, we minimize the within cluster dispersion and maximize the
negative weight entropy. Hence, we force more features to contribute in the formation of
the groups [47].

The new objective function can be written as follows:

min :
C

∑
c=1

[
N

∑
n=1

M

∑
m=1

un,cwn,mD2
m,c + γ

M

∑
m=1

wn,m log(wn,m)

]
(9)

subject to the constraints:
C

∑
c=1

un,c = 1, un,c ≥ 0, (10)
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M

∑
m=1

wm,c = 1, 0 ≤ wm,c ≤ 1 (11)

where un,c ∈ {0, 1} is binary, if a hard clustering procedure is developed, and takes value
of 1 if the n-th object belongs to the c-th cluster, wm,c represents the weight of the m-th
feature in determining the c-th cluster and Dm,c = d(xn,m, xc,m), represents the (euclidean)
distance between the m-th feature in the matrix X shown in (5) of the n-th time series and
the one of the c-th centroid.

The first term in (9) is the sum of the within cluster dispersion, while the other one is
the negative weight entropy. The positive parameter γ controls for the size of the weights,
meaning that with γ we decide the degree of discrimination between the features [45].

The algorithm works as follows. An initial set of k means are identified as the starting
centroids. An initial cluster is defined considering that the observations are clustered to the
nearest centroid according to the euclidean distance measure among distribution parameter
estimates (5). The centroids are identified based on these clusters, while the weights are
computed for each time series in any given cluster. Then, we compute the new centroids
and, by using an updated weighted distance, each time series is clustered to its nearest new
centroid. These steps are repeated until the algorithm converges.

In the case of skewed exponential power distribution, the optimal weights of the
SEPD-DWEKM model, obtained by the solution of the optimization problem (9), are
equal to:

wm′ ,c =
exp(

−Dm′ ,c
γ )

∑M
m=1 exp(−Dm,c

γ )
(12)

The proof of (12) can easily be derived by following [46]. Similarly to the standard
k-means algorithm un,c is updated as follows:{

un,c = 1 if ∑M
m=1 wm,cD2

m,c ≤ ∑M
m=1 wm,c′D2

m,c′

un,c = 0 otherwise

where un,c = 1 means that the n-th object is assigned to the c-th cluster, so we have an hard,
not fuzzy, final assignment. If a time series is equidistant from two clusters, we assign it to
the one with the smallest index.

From (12) we understand the role played by the parameter γ, that is used to control
for the size of the weights. Indeed, if γ > 0, the weights wm,c are inversely proportional to
squared distance D2

m,c. Therefore, the smaller D2
m,c, the larger the weights wm,c and, hence,

the more important the corresponding dimension m. Instead, if γ < 0, the weights wm,c
is proportional to the distance D2

m,c. Therefore, the larger the distance is the larger is the
associated weight. This is a contradictory result and, hence, γ cannot be smaller than zero.
In the end, γ can be set equal to zero. In this case, the dimension m′ with the smallest
distance has a weight equal to 1, wm′ ,c = 1, while all the others are zero wm,c = 0. Therefore,
each cluster contains only one important dimension.

A final crucial aspect of the any clustering procedure is the selection of the num-
ber of clusters (C). With this respect we compute the silhouette width criterion (SWC)
of [48]. Clearly, the best partition is expected to be pointed out when the SWC are maxi-
mized, which implies the minimization of the intra-group distance the maximization of the
inter-group distance.

3. Application to Financial Time Series

To show the effectiveness of the proposed clustering approach, in what follows we
provide an application to stock market data. The role of skewness and kurtosis in modeling
financial data is well documented (for a review see [49]).

Therefore, financial market data represent a clear example of the possible application
since the empirical densities of the financial time series are proven to be non-Gaussian,
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asymmetric, and heavy tailed [50] (We have to highlight that this statement is not always
true. For example, it is known that most of monthly stock indices, with low frequencies,
show a behavior according to a Gaussian distribution. However, it is similarly accepted
that daily stock returns are not normally heavy-tailed and asymmetrically distributed.
Therefore, in this paper we deal with daily returns data).

In what follows we provide empirical applications of the proposed clustering approach
to two different financial datasets. In the first experiment, we consider the FTSE100’s
stocks, while in the second we consider the industrial sector’s stocks belonging to the
S&P500 index.

3.1. FTSE100 Stocks

The first application with real data aims to cluster the stocks belonging to the FTSE100
index. With this aim we consider the daily stock returns over the last 10 years, from the
1 January 2011 to the 1 January 2021 (Figure 3).

Figure 3. Sample of stock returns time series included in the dastaset under consideration
(FTSE100 data).

In particular, over the 100 stocks we selected those without missing values within the
considered sampling period, hence getting as result N = 25 stocks. The list of the stocks
included in the sample is shown in Table A1 in the Appendix A.

To empirically motivate the peculiar distributional characteristics of the stock returns
included in the sample, we show some estimated empirical densities (Figure 4).

Moreover, in Table 1 we report the sample estimators for mean, standard deviation,
skewness, and kurtosis, as well as the Jarque-Bera [51] normality test. The results of the
conducted normality tests suggest to reject the null hypothesis of normal distribution for
all the stocks (see JB test column of Table 1). Accordingly, it can be highlighted that any
stock shows a symmetric distribution and the majority of them are negatively skewed.
Furthermore, the stocks show very high leptokurtic distributions with fatter tails than the
Gaussian. Indeed, within the sample only one stock shows a kurtosis lower than 3 (i.e.,
IAG) while all the others have much higher values.

Therefore, for clustering time series with similar distributions we use the approach
based on the skewed exponential power distribution presented in the previous Section.
The first step of the clustering procedure requires the estimation of the SEPD’s parameters.
Then, the number of clusters has to be chosen.

At this aim, we consider the average silhouette width criterion (SWC). In Figure 5 is
reported the final result.
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Figure 4. Empirical densities of the stocks shown in Figure 3.

Figure 5. Silhouette width criterion for different number of clusters C (distribution-based clustering)—
experiment with FTSE100 stocks.
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Table 1. Descriptive statistics and normality test of Jarque-Bera [51] for the FTSE100 stocks.

Mean St. Dev. Skewness Kurtosis JB Test Length

AAL 0.0002 0.0326 0.4403 13.4706 19,141.2841 ∗∗∗ 2516
ADM 0.0003 0.0161 −0.5162 5.4498 3233.0866 ∗∗∗ 2516
AHT −0.0010 0.0508 6.8974 177.1057 3,313,541.0732 ∗∗∗ 2516

AUTO −0.0002 0.0488 −0.7128 20.1631 42,911.4151 ∗∗∗ 2516
AZN 0.0005 0.0151 −0.4973 13.6616 19,707.8758 ∗∗∗ 2516
BHP 0.0000 0.0208 −0.3470 5.9551 3777.1783 ∗∗∗ 2516
BME 0.0006 0.0143 0.1503 10.5756 11,758.3256 ∗∗∗ 2516
CPG −0.0011 0.0344 −1.7316 41.2409 179,865.2429 ∗∗∗ 2516
CRH 0.0004 0.0204 −0.7531 9.0937 8925.6488 ∗∗∗ 2516
DGE 0.0003 0.0117 −0.7707 8.7590 8309.3523 ∗∗∗ 2516
EVR 0.0005 0.0229 −0.1605 10.2988 11,152.9051 ∗∗∗ 2516

FERG 0.0006 0.0189 0.0795 64.6506 438,904.5890 ∗∗∗ 2516
GSK 0.0002 0.0122 −0.6519 8.6100 7966.7005 ∗∗∗ 2516
IAG −0.0006 0.0383 −0.0550 2.7651 805.4615 ∗∗∗ 2516
IHG 0.0005 0.0192 −0.6035 15.9591 26,903.8564 ∗∗∗ 2516

III 0.0002 0.0314 −0.9284 20.7329 45,506.6850 ∗∗∗ 2516
MNG −0.0003 0.0195 −0.3442 9.4997 9530.2226 ∗∗∗ 2516
MRO −0.0004 0.0319 −2.7604 64.0144 433,505.1309 ∗∗∗ 2516
NWG −0.0003 0.0272 −0.9661 11.1644 13,485.1878 ∗∗∗ 2516

PRU 0.0002 0.0213 −0.8713 16.1174 27,602.6225 ∗∗∗ 2516
RIO 0.0002 0.0218 0.0577 3.8344 1547.1291 ∗∗∗ 2516
SVT 0.0001 0.0261 0.7359 15.7558 26,301.1559 ∗∗∗ 2516

TSCO 0.0007 0.0185 −0.1470 11.6275 14,210.8902 ∗∗∗ 2516
VOD 0.0000 0.0160 −0.4344 11.4206 13,780.2067 ∗∗∗ 2516
WPP 0.0001 0.0194 −1.7115 16.9938 31,561.2513 ∗∗∗ 2516

Note: *** means significance at 1% confidence level.

Accordingly, the parameters estimated by maximum likelihood (MLE) (We use the
R environment to obtain the parameter estimates. More in details, the function nlminb is
used in order to maximize the log-likelihood function of the SEPD. As starting values for
the function we use the sample estimates for location and scale parameters, while we set
p = 2 and λ = 1 (symmetric distribution) for shape and skewness, respectively, such that
the starting values correspond to the normal distribution, as well as the final clustering
results are reported in Table 2.

From Table 2 is evident that the second cluster contains the majority of the stocks.
Moreover, the two groups mainly differentiate each other in terms of their shapes. Indeed,
in the second cluster we have the stocks characterized by the lowest shape parameters p
and by a skewness parameter λ always greater than 1. In general, sorting by shape is, in this
case, more informative than sorting by the degree of skewness that, however, still reveals
important information about the distribution of the stocks placed within each group.

Moreover, some additional comments about data heterogeneity within each cluster
can be provided by looking at Table 2. Indeed, the second cluster seems to be the one with
the highest degree of heterogeneity. To see why, we can look at the column of the estimated
skewness in Table 2. Although in the first cluster we have all values of λ close to 1, in
the case of cluster 2 the values range from λ = 0.88 to λ = 1.03. A similar discussion can
be provided for the shape values p, since in the cluster 1 all the stocks have low shape’s
parameters p.

In general, the weights obtained by means of the entropy weighted k-means algorithm
(EKWM) reflect, as discussed in the previous Section, this heterogeneity. Indeed, the
weights are inversely proportional to squared distances such that to small distances are
associated larger weights.
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Table 2. MLE parameters estimation from a SEPD and assigned clusters according to the Entropy
Weighting K-means–FTSE100 data.

Location Scale Shape Skewness Cluster

AHT 0.000938 0.038008 0.634380 1.020410 1
FERG 0.000396 0.003676 0.737628 1.087450 1

III 0.000215 0.030700 0.802500 1.005290 1
SVT 0.005273 0.024976 0.571017 1.206776 1

AAL 0.000173 0.031175 0.970264 0.978047 2
ADM 0.000326 0.015780 0.980135 0.923800 2

AUTO −0.007066 0.043761 0.840452 0.885689 2
AZN 0.000486 0.014322 1.005312 0.994350 2
BHP 0.000069 0.020380 1.131097 0.928945 2
BME 0.000587 0.013721 0.980685 1.002382 2
CPG −0.001029 0.032234 0.879535 0.976905 2
CRH 0.000370 0.019841 1.089496 0.981539 2
DGE 0.000287 0.011343 1.076945 0.925662 2
EVR 0.000544 0.022103 1.022613 0.964463 2
GSK 0.000174 0.011886 1.067266 0.966571 2
IAG −0.000660 0.038030 1.171752 1.034922 2
IHG 0.000484 0.018176 0.883195 0.953825 2

MNG −0.000304 0.018965 1.066270 0.969299 2
MRO −0.000229 0.029521 0.937861 0.975776 2
NWG −0.000333 0.026422 1.009514 0.946825 2

PRU 0.000284 0.020122 0.912030 0.975315 2
RIO 0.000231 0.021566 1.139757 0.987474 2

TSCO 0.000734 0.017782 1.042405 0.981452 2
VOD 0.000242 0.015358 0.999362 1.011196 2
WPP 0.000128 0.018252 0.952139 0.951217 2

Table 3 shows the optimal weights computed with respect to the selected C = 2
clusters. According to the arguments presented so far, the weights effectively reflect the
degree of heterogeneity of the features. Indeed, in the cluster 2 the shape’s weight wp is
the lowest one since the distances in terms of shape parameters in the second cluster are
higher than the same shape-based distances in the first cluster.

In the case of other parameters (i.e., location, scale, and skewness) the weights assigned
in the two groups are very similar. In other words, the Table 3 highlights that the two
clusters mainly differentiate each other because of the distribution’s shape.

Table 3. Distribution-based Entropy Weighting K-means for FTSE100 stocks: resulting weights.

Location Scale Shape Skewness

Cluster 1 0.253624 0.253463 0.245611 0.247302
Cluster 2 0.261146 0.260772 0.222667 0.255415

However, one can ask whether a distribution-based clustering approach for time series
is more convenient than other common approaches available. Clearly there is not an easy
answer to this question since the usefulness of a clustering approach depends by its aim
and by the researcher’s goal.

However, in what follows we provide an in-sample comparison of a well-established
clustering approach for financial time series based on the stock returns correlations (e.g.,
see [1]). In particular, assuming a k-medoids approach, we cluster the time series according
to the following correlation-based distance:

dn,j =
√

2(1− ρn,j) (13)

that depends by the correlation ρn,j between the n-th stock returns rn,t and the j-th returns
rj,t. In Figure 6 is reported the SWC criterion for different clusters C. The number of clusters
with highest validity are C = 7.
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Figure 6. Silhouette width criterion for different number of clusters (correlation based clustering)—
experiment with the FTSE100 stocks.

However the highest SWC is equal to 0.08 and is dramatically lower than the SWC
value in Figure 5 that is equal to 0.6. The differences between the two classifications are
shown in Table 4.

Table 4. Differences in the classification between the entropy weighted distribution-based and the
correlation-based clustering approaches—FTSE100 data.

SEPD-Based Clustering Correlation-Based Clustering

AAL 2 1
ADM 2 1
AHT 1 1

AUTO 2 2
AZN 2 3
BHP 2 4
BME 2 3
CPG 2 5
CRH 2 1
DGE 2 3
EVR 2 1

FERG 1 6
GSK 2 3
IAG 2 4
IHG 2 1

III 1 1
MNG 2 5
MRO 2 5
NWG 2 1

PRU 2 1
RIO 2 4
SVT 1 7

TSCO 2 3
VOD 2 3
WPP 2 1

In general, according to the SWC criterion, we can argue that the clusters obtained
by means of the distribution-based approach are much more accurate than those obtained
with a correlation-based approach, that is well established in finance.

3.2. S&P500 Stocks: Industrial Sector

As additional experiment we also select the stock prices of the companies belonging to
the industrial sector that are included in the S&P500 Index. In more detail, we downloaded
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the last 10 years of daily observations for all the 74 stocks quoted, specifically from the
1 January 2011 to 1 January 2021.

The considered stocks have different lengths because some of them have been quoted
later. Differently from the previous experiment, we now decide to consider in the sample
also the stocks with different lengths, thus containing missing values.

Indeed, as the proposed approach is of model-based type, we are able to cluster two
time series with different length as far they share a similar distribution. Indeed, in the
sample there are also stocks with a length T = 200 as in the case of CARR and OTIS.

The entire list of the stocks considered in the sample, with their length, is shown in the
Table A2. Particularly, for each time series we consider the logarithmic returns (Figure 7).

Figure 7. Sample of stock returns time series included in the dataset under consideration
(S&P500 data).

As in the previous experiment, in order to empirically show the aforementioned stock
returns characteristics (i.e., heavy tails and skewness) in Figure 8 are reported the empirical
densities for the sample of stock returns also shown in Figure 7.

From Figure 8 it is possible to note that the considered time series show very different
distributions, as well as a strong deviation from Gaussianity. Moreover, we also report in
Table 5 the main descriptive statistics, as well as the [51] test of normality. In general, from
these simple considerations appear clearly the need for the specification of a very flexible
distribution able to accurately capture these differences.

As previously described, the first step of the proposed clustering procedure involves
the estimation of the skewed exponential power distribution parameters (i.e., location,
scale, skewness and shape) by means of maximum likelihood method. Then, as usual, the
second step of the procedure involves the decision about the number of clusters C.
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Figure 8. Empirical densities of the stocks shown in Figure 7.

Table 5. Descriptive statistics and normality test of Jarque-Bera [51] for the S&P500 stocks.

Stock Mean St. Dev. Skewness Kurtosis JB Test Length

MMM 0.0002 0.0326 0.4403 13.4706 19,141.2841 ∗∗∗ 2517
AOS 0.0006 0.0242 −0.8093 17.4330 32,194.0594 ∗∗∗ 2517
ALK 0.0005 0.0164 −0.5533 9.9428 7494.6041 ∗∗∗ 1793

ALLE 0.0006 0.0163 −0.7401 16.1544 27,639.5014 ∗∗∗ 2517
AAL 0.0008 0.0169 −0.0805 3.4418 1248.2562 ∗∗∗ 2517
AME 0.0006 0.0227 −0.6764 27.5441 79,867.2387 ∗∗∗ 2517

BA 0.0058 0.0393 0.9665 7.8917 562.3908 ∗∗∗ 200
CHRW 0.0004 0.0183 −0.4986 5.0412 2775.3550 ∗∗∗ 2517
CARR 0.0001 0.0154 −1.3744 11.4410 14,543.0106 ∗∗∗ 2517

CAT 0.0004 0.0186 −0.0322 8.3402 7308.2827 ∗∗∗ 2517
CTAS 0.0010 0.0159 −0.3440 14.9755 23,605.0368 ∗∗∗ 2517
CPRT 0.0006 0.0183 0.1817 14.9407 23,459.7916 ∗∗∗ 2517

CSX 0.0011 0.0162 −0.5401 19.4430 39,825.4771 ∗∗∗ 2517
CMI 0.0005 0.0260 −0.7426 14.9902 23,833.2396 ∗∗∗ 2517

DE 0.0006 0.0172 −0.1867 8.2728 7204.9810 ∗∗∗ 2517
DAL 0.0005 0.0173 −0.6308 10.5860 11,939.0318 ∗∗∗ 2517
DOV 0.0007 0.0159 −1.2111 15.0746 24,484.0007 ∗∗∗ 2517
ETN 0.0003 0.0173 −0.9108 17.9497 34,187.4551 ∗∗∗ 2517
EMR 0.0004 0.0181 0.0802 12.4383 16,253.7474 ∗∗∗ 2517
EFX 0.0003 0.0150 −0.3772 6.7968 4913.7515 ∗∗∗ 2517

EXPD 0.0006 0.0173 0.1549 7.6491 6157.3116 ∗∗∗ 2517
FAST 0.0009 0.0203 −0.4309 8.8030 7638.9534 ∗∗∗ 2339
FDX 0.0004 0.0182 −0.6436 10.6534 12,096.2927 ∗∗∗ 2517
FTV 0.0005 0.0178 −0.3642 17.6651 14,804.7770 ∗∗∗ 1133

FBHS 0.0004 0.0144 −0.4477 6.3062 4262.9559 ∗∗∗ 2517
GNRC −0.0001 0.0202 −0.0884 8.9715 8458.9914 ∗∗∗ 2517

GD 0.0012 0.0241 0.5907 10.1009 10,864.4486 ∗∗∗ 2517
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Table 5. Cont.

Stock Mean St. Dev. Skewness Kurtosis JB Test Length

GE 0.0005 0.0173 0.0860 13.3704 18,780.3863 ∗∗∗ 2517
GWW 0.0007 0.0175 −0.4450 6.4335 4337.4524 ∗∗∗ 2463
HON 0.0006 0.0148 −0.1974 11.3107 13,454.9980 ∗∗∗ 2517

HWM −0.0001 0.0264 −0.4662 11.5068 13,999.6075 ∗∗∗ 2517
HII 0.0007 0.0150 −0.5132 6.5607 4633.3047 ∗∗∗ 2517
IEX 0.0007 0.0160 1.9067 46.0650 146,908.9322 ∗∗∗ 1647

INFO 0.0008 0.0251 −0.3388 6.9870 1892.4783 ∗∗∗ 917
ITW 0.0006 0.0150 −0.1942 11.5515 14,032.6104 ∗∗∗ 2517

IR 0.0003 0.0180 −0.2123 5.1921 2852.1589 ∗∗∗ 2517
JBHT 0.0005 0.0158 −0.2285 8.1095 6931.2264 ∗∗∗ 2517

J 0.0004 0.0158 −0.4979 7.3329 5753.7195 ∗∗∗ 2517
JCI 0.0006 0.0196 −0.5279 12.0699 15,419.7615 ∗∗∗ 2517

KSU 0.0006 0.0179 −1.2609 19.1160 39,046.5207 ∗∗∗ 2517
LHX 0.0007 0.0161 −0.3588 10.6848 12,046.8015 ∗∗∗ 2517

LDOS 0.0008 0.0134 −0.6141 14.4475 22,082.3240 ∗∗∗ 2517
LMT 0.0005 0.0208 −0.4192 7.3590 5763.8034 ∗∗∗ 2517
MAS 0.0007 0.0207 −0.2718 5.2009 2873.8198 ∗∗∗ 2517

NLSN 0.0004 0.0137 −0.8574 11.6144 14,478.3288 ∗∗∗ 2517
NSC 0.0001 0.0198 −1.6786 27.7429 81,459.1085 ∗∗∗ 2500

NOC 0.0007 0.0143 −0.1255 8.0477 6811.0182 ∗∗∗ 2517
ODFL 0.0006 0.0175 −0.1828 10.7789 12,218.9127 ∗∗∗ 2517
OTIS 0.0010 0.0181 −0.0697 4.9432 2570.1778 ∗∗∗ 2517

PCAR 0.0021 0.0255 0.3171 5.3143 245.0319 ∗∗∗ 200
PH 0.0003 0.0167 −0.1098 5.1097 2749.0581 ∗∗∗ 2517

PNR 0.0005 0.0195 −0.5206 12.0102 15,265.5206 ∗∗∗ 2517
PWR 0.0004 0.0181 −0.5505 13.2218 18,489.7124 ∗∗∗ 2517
RTX 0.0005 0.0207 −1.9917 34.1081 123,835.8960 ∗∗∗ 2517
RSG 0.0004 0.0196 −0.1265 9.3393 9169.7468 ∗∗∗ 2517
RHI 0.0006 0.0189 −0.2785 11.0507 12,860.5887 ∗∗∗ 2517

ROK 0.0008 0.0153 −0.4364 8.5542 7767.5581 ∗∗∗ 2517
ROL 0.0007 0.0148 −0.5568 8.8381 8336.3830 ∗∗∗ 2517
ROP 0.0006 0.0121 −1.7053 22.4745 54,267.9783 ∗∗∗ 2517
SNA 0.0002 0.0164 −0.4683 16.5103 28,722.5064 ∗∗∗ 2517
LUV 0.0005 0.0167 −0.1462 7.3703 5716.4328 ∗∗∗ 2517
SWK 0.0005 0.0198 −0.8209 22.7150 54,471.1200 ∗∗∗ 2517
TDY 0.0011 0.0205 −0.6358 26.5648 74,280.1975 ∗∗∗ 2517
TXT 0.0009 0.0173 −1.4434 25.9249 71,458.1550 ∗∗∗ 2517

TT 0.0007 0.0175 −0.4868 6.2835 4248.3077 ∗∗∗ 2517
TDG 0.0003 0.0223 −0.3101 10.5591 11,752.7020 ∗∗∗ 2517
UNP 0.0002 0.0307 −0.7200 16.6715 29,409.5251 ∗∗∗ 2517
UAL 0.0007 0.0161 −0.4693 8.5580 7786.9958 ∗∗∗ 2517
UPS 0.0005 0.0137 0.0987 12.3985 16,151.3421 ∗∗∗ 2517
URI 0.0009 0.0296 −0.5009 6.2084 4155.5368 ∗∗∗ 2517

VRSK 0.0007 0.0137 −0.1206 13.4321 18,957.1646 ∗∗∗ 2517
WM 0.0004 0.0200 −0.5989 9.3161 9268.1082 ∗∗∗ 2517

WAB 0.0006 0.0120 −0.6692 14.2371 21,478.1235 ∗∗∗ 2517
XYL 0.0007 0.0166 −0.1198 8.1649 6462.2884 ∗∗∗ 2320

Note: *** means significance at 1% confidence level.

As previously specified, we take advantage of the silhouette width criterion (SWC),
whose results are shown in the Figure 9.

Figure 9. Silhouette width criterion for different number of clusters C (distribution-based clustering)—
S&P500 stocks.



Symmetry 2021, 13, 959 15 of 27

The highest value of the silhouette is obtained with C = 2 clusters. Then, from the
distribution (SEPD)-based entropy weighting k-Means (SEPD-EWKM) algorithm we obtain
the hard partition shown in Table 6.

As in the previous experiment, the two resulting clusters are not balanced since the
second cluster contains most of the stocks in the sample. Moreover, it appears clearly that
the two clusters differentiate each other in terms of shape. Indeed, the first cluster contains
all the stocks with shape parameter p lower than p = 0.9, while on the other side in the
second one we have all the stocks with higher shape’s parameters.

However, additionally, the skewness λ allows a remarkable distinction among the two
clusters since in the first group we find most of the stocks with λ ≥ 1 while in the second
one the stocks with a lower degree of skewness. Nevertheless, the heterogeneity in terms
of skewness in the first cluster appear considerable.

Table 6. MLE estimates of a skewed exponential power distribution and the entropy weighting
clustering results—S&P500 data.

Location µ Scale σ Shape p Skewness λ Cluster

BA 0.000529 0.020121 0.809235 0.961483 1
CARR 0.005634 0.037575 0.869097 1.022203 1
CTAS 0.001057 0.014841 0.828099 0.972663 1

EFX 0.000743 0.015000 0.910557 0.976399 1
FTV 0.000516 0.016727 0.880068 1.010577 1

GE −0.000323 0.019545 0.819186 0.987702 1
GNRC 0.001210 0.023105 0.909975 1.013188 1

HON 0.000665 0.014166 0.898461 0.999329 1
INFO 0.000744 0.014293 0.862185 1.000896 1
LDOS 0.000719 0.016602 0.907270 0.955210 1
MMM 0.000428 0.013126 0.894845 0.965327 1
NLSN 0.000161 0.018310 0.886294 1.006444 1

OTIS 0.003455 0.024927 0.768527 1.186048 1
RTX 0.000246 0.015165 0.830205 0.979384 1

SWK −0.000646 0.018981 0.798267 0.880760 1
TDG 0.001156 0.018331 0.820059 0.992412 1
TXT 0.000295 0.021221 0.865774 1.001103 1

UAL 0.000242 0.028890 0.904769 1.006104 1
VRSK 0.000705 0.012904 0.881891 0.973572 1

WM 0.000407 0.011229 0.862004 0.943475 1
AAL 0.000173 0.031175 0.970261 0.978034 2
ALK 0.000561 0.022819 0.941247 0.978997 2

ALLE 0.000522 0.015682 0.980738 0.931036 2
AME 0.000644 0.015499 0.929582 0.973628 2
AOS 0.000757 0.016787 1.040460 0.949007 2
CAT 0.000356 0.018032 1.043622 0.999351 2

CHRW 0.000153 0.014709 0.959506 0.930355 2
CMI 0.000387 0.018176 0.977557 0.988523 2

CPRT 0.001047 0.014979 0.927105 0.992372 2
CSX 0.000646 0.017462 1.043010 0.955829 2

DAL 0.000517 0.024814 0.952124 0.980727 2
DE 0.000556 0.016703 0.951225 0.983644 2

DOV 0.000546 0.016845 0.988254 0.968131 2
EMR 0.000267 0.016463 0.930394 0.967078 2
ETN 0.000450 0.017423 0.995600 0.974408 2

EXPD 0.000267 0.014679 1.011972 0.957943 2
FAST 0.000560 0.016874 1.017518 0.999670 2
FBHS 0.000868 0.019631 0.965633 0.978979 2

FDX 0.000456 0.017386 0.963798 0.981288 2
GD 0.000396 0.014028 1.047922 0.940179 2

GWW 0.000490 0.016469 0.960258 0.995514 2
HII 0.000664 0.017031 1.015763 0.935556 2

HWM −0.000064 0.025139 0.909516 0.939999 2
IEX 0.000699 0.014599 1.031668 0.962203 2

IR 0.000843 0.024407 1.015252 0.942748 2
ITW 0.000639 0.014417 0.922543 0.969491 2

J 0.000343 0.017644 1.045491 0.976824 2
JBHT 0.000498 0.015420 1.081486 1.014217 2

JCI 0.000431 0.015401 1.046638 0.968509 2
KSU 0.000603 0.018785 1.023660 0.994975 2
LHX 0.000620 0.015306 0.974821 0.932664 2
LMT 0.000783 0.012718 0.962104 0.975880 2
LUV 0.000532 0.020178 0.986733 0.964936 2
MAS 0.000680 0.020248 1.019500 0.984060 2
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Table 6. Cont.

Location µ Scale σ Shape p Skewness λ Cluster

NOC 0.000740 0.013834 1.019146 0.947251 2
NSC 0.000618 0.016801 1.014521 0.964525 2

ODFL 0.001056 0.017740 1.116417 0.950527 2
PCAR 0.000295 0.016396 1.074364 0.986350 2

PH 0.000523 0.018614 0.968202 0.976833 2
PNR 0.000388 0.017448 1.044595 0.924451 2
PWR 0.000523 0.019236 0.945752 0.953866 2
RHI 0.000365 0.018797 0.971600 0.962834 2

ROK 0.000568 0.018245 0.959031 0.993951 2
ROL 0.000815 0.014646 0.979196 0.991513 2
ROP 0.000716 0.014215 0.935390 0.964640 2
RSG 0.000593 0.011185 0.925639 0.977828 2
SNA 0.000507 0.016137 0.944876 0.962180 2
TDY 0.000861 0.016373 1.002064 0.966281 2

TT 0.000704 0.017061 0.988580 0.965844 2
UNP 0.000661 0.015663 1.073618 0.996020 2
UPS 0.000453 0.012969 0.923857 0.967459 2
URI 0.000914 0.028867 1.027572 0.951293 2

WAB 0.000425 0.019372 0.976249 0.969278 2
XYL 0.000673 0.016063 1.013724 0.981268 2

Heterogeneity can also be analyzed by means of the features’ weights that show at the
same time the relative importance of each estimated parameter in determining the cluster’s
composition. The optimal weights for this experiment are reported in Table 7.

Table 7. Distribution-based Distribution-based Entropy Weighting K-means for S&P500 stocks:
resulting weights.

Location (w1) Scale (w2) Shape (w3) Skewness (w4)

Cluster 1 0.255808 0.255629 0.247364 0.241199
Cluster 2 0.258694 0.258503 0.229691 0.253112

The weights in Table 7 highlight that the important information in determining clusters’
differences are the distribution’s shapes. Indeed, while the other parameters have almost
the same weights, very close to an equal weighting scheme, in cluster 2 the shape is less
weighted. According to the weights interpretation we have seen so far, the lower weight
assigned to wp depends on the greater distances among the stocks within the second cluster
in terms of shape.

Although, in the previous experiment we compared the clusters obtained with the
proposed distribution-based approach with those obtained by a correlation-based one, in
this case this is not possible. Indeed, not all the clustering procedures can handle time
series with different lengths.

In the next Section, we propose a possible use of this clustering approach in the real
world. An immediate example is, once it is applied to financial data, represented by the
portfolio selection. Therefore, in Section 4, we provide the results about the financial
performance of the portfolios built by means of the proposed clustering model.

In this context, since we will work only with time series of equal length, we will be
able to compare the proposed clustering approach with a correlation-based one for the
S&P500 Industrial data.

4. Portfolio Analysis

The clusters obtained in the previous Section by the proposed approach can be seen
as possible portfolios from an asset allocation perspective.

Financial literature provided various approaches to portfolio selection. In what fol-
lows, we consider the global minimum variance (GMV) strategy [52]. Assuming to have N
time series of stock returns collected into a matrix Rt, the portfolio problem can be written
as [53,54]:

min
w

w′Σw (14)
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under the constraint:
N

∑
n=1

wm = 1 (15)

The optimal global minimum variance weights w, as solution of the minimization
problem (14), are:

w =
Σ−11N

1′NΣ−11N
(16)

Note that the elements of the vector w can be negative, so we allow for short sales.
Then, by replacing Σ−1 with Σ̂−1 we get the optimal estimated GMV portfolio weights
that we call ŵ. In this paper, since we do not have the problem of dimensionality (In the
large dimensional setting, where N > T, the sample covariance estimator results in an ill-
conditioned covariance matrix that cannot be inverted (for example see [55–58]). However
in both the considered applications presented in this paper we have that T > N (actually
M, the estimation window, is always greater than the number of assets N), we estimate the
covariance matrix Σ by means of the sample covariance estimator:

Σ̂ =
1

T − 1

T

∑
t=1

(Rt − µ̂)′(Rt − µ̂) (17)

with µ̂ is the vector containing the sample averages over the time of the stocks in Rt.
Nevertheless, [59] showed that empirically the naive or Talmudic (The Talmud is the central
text of Rabbinic Judaism that provides the following investment advice: “let every man
divide his money into three parts, and invest a third in land, a third in business, and a
third let him keep by him in reserve”) diversification rule returns the highest performances
in out-of-sample analysis with respect to most alternatives. This result highlights the
relevance of the estimation error in portfolio selection, coming from the fact that the
investors estimate unknown quantities. Indeed, the equally weighted strategy (1/N) is the
only diversification strategy with zero estimation error, since nothing is estimated.

In what follows, we consider each cluster as a possible set of stock and we use
both the naive 1/N and the global minimum variance (GMV) approaches to build C-th
different portfolios.

First of all, we use the first 5 years of observations to generate the clusters according
to the distribution-based procedure discussed above. Then, the proposed clustering ap-
proach is compared from the point of view of asset allocation also with a correlation-based
clustering, commonly used in finance to form portfolio of stocks.

In order to evaluate the out-of-sample performances of each portfolio, we follow the
empirical procedure of [59], based on a “rolling-sample” approach.

Specifically, given a T daily observation of the securities returns, we choose an esti-
mation widow of one year, M = 252, to estimate the covariance structure across the asset
needed for the implementation of the GMV strategy.

Then, in order to avoid a costly daily portfolio rebalancing, we suppose a monthly
rebalance, such that with a window of M = 252 observations the investor update the
portfolio structure each m = 20 trading days.

This process is recursively repeated by adding the return for the next period in the
dataset and dropping the earliest one until the end of the dataset is reached. The result
is, therefore, a time series of length (T −M)/m of returns (Supposing a daily portfolio
rebalancing the final length would be T − M. In the presence of trading costs, a daily
rebalance is intuitively more expensive than a monthly one).

Given the time series of monthly out-of-sample returns, we compute the out-of-sample
Sharpe ratio of the portfolio c, SRc, defined as the sample mean of out-of-sample portfolio
returns divided by its standard deviation:

SRc =
µ̂c

σ̂c
(18)
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where µ̂c is the average of the (T − M)/m out of sample returns for the c-th portfolio
and σ̂c its standard deviation. Moreover, to account for the amount of trading required to
implement the GMV strategy, we compute the portfolio turnover, defined as follows:

TOVc =
1
T̃

T̃

∑
t=1

N

∑
n=1

(|ŵn,t+1 − ŵn,t|) (19)

with T̃ = (T −M)/m and ŵn,t be the portfolio GMV weight assigned to the n-th asset at
time t with the covariance matrix across the assets estimated with the last M observations.

4.1. FTSE100

We consider first how the clustering approaches can be used to form portfolios of
stocks (e.g., [1,3]) in the case of the first analyzed dataset containing the N = 25 stocks
without missing values included in the FTSE100 Index.

First of all, in order to backtest the profitability of the trading strategies based on the
clustering approaches, we consider only the first 5 years of daily observation as a dataset
to perform cluster analysis. Clearly, since we are using half of the sample of the analysis
conducted in the previous Section, we could expect different stocks’ classification.

As in the previous Section, we compare the proposed distribution-based clustering
approach with another common clustering model used in finance to build a portfolio of
stocks. The alternative clustering approach uses the assets’ correlations instead of their
distribution to build the clusters (e.g., [1,2]).

As shown by Figure 10, according to the SEPD-based EWKM algorithm we select
C = 2 clusters with an high average silhouette, that is equal to 0.8.

Figure 10. SWC for the first 5-year observations (distribution-based clustering)—FTSE100 data.

On the other hand, following the same approach, the correlation-based clustering
approach suggests the presence of C = 6 clusters (see Figure 11) and an average silhouette
equal to 0.08, 10 times lower than the one shown in Figure 10.
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Figure 11. SWC for the first 5-year observations (correlation-based clustering)—FTSE100 data.

In other words, on the basis of some in-sample arguments we can argue that the
clustering resulting from the application of a distribution-based approach is much more ac-
curate than another one based on correlation. The clusters composition for both approaches
is shown in Table 8.

Table 8. Final group assignment of the two alternative clustering approaches. The first column
shows the results of the distribution-based approach, while the second column shows those of the
correlation-based clustering (FTSE100 data).

SEPD-Based Clustering Correlation-Based Clustering

AAL 2 1
ADM 2 1
AHT 2 1

AUTO 2 2
AZN 2 1
BHP 2 3
BME 2 1
CPG 2 3
CRH 2 1
DGE 1 1
EVR 2 1

FERG 2 4
GSK 1 1
IAG 2 3
IHG 2 1

III 2 5
MNG 2 3
MRO 2 3
NWG 2 3

PRU 2 1
RIO 2 3
SVT 2 6

TSCO 2 1
VOD 1 1
WPP 1 1

Nevertheless, in this Section we are interested in the out-of-sample performances in
terms of portfolio selection. In the case of the distribution-based clustering, following [3],
we consider the two clusters as two possible different portfolios. As stated before, we
consider two alternative diversification rules, the naive (1/N) and the global minimum
variance (GMV). Therefore, we have four possible trading strategies.

In the case of the correlation-based clustering, from Table 8 it clearly appears that the
stocks AUTO, SVT, III, and FERG from single clusters. Therefore, we exclude these stocks
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and consider the clusters 1 and 3 as alternative portfolios, constructed with both naive and
GMV diversification rules.

We compare the resulting portfolio in terms of return-risk trade-off represented by the
Sharpe ratio, the amount of risk in worst scenarios computed by means of the value at risk
(VaR) and the expected shortfall (ES) and the trading expenses through the turnover. The
results are shown in Table 9.

Table 9. Portfolio performance measures—experiment with FTSE100 data.

Sharpe Ratio VaR ES Turnover

Naive (SEPD)—Cluster 1 0.262155 −0.014396 −0.018755
GMV (SEPD)—Cluster 1 0.278905 −0.012489 −0.016318 0.022555
Naive (SEPD)—Cluster 2 0.129284 −0.018028 −0.023003
GMV (SEPD)—Cluster 2 0.123989 −0.009490 −0.012100 0.013587
Naive (corr)—Cluster 1 0.216579 −0.016056 −0.020760
GMV (corr)—Cluster 1 0.290720 −0.010547 −0.013808 0.018170
Naive (corr)—Cluster 3 0.020610 −0.026068 −0.032775
GMV (corr)—Cluster 3 0.054591 −0.016854 −0.021284 0.026502

In general, following a naive diversification approach, all the portfolios built with
the distribution-based clustering approach show much superior performances than those
constructed with the alternative approach. Indeed, the two SEPD-based portfolios have a
Sharpe ratio equal to 26.2% and 12.9%, respectively, while the alternative portfolios have
lower Sharpe ratios equal to 21.6% and 2%.

In terms of VaR and expected shortfall the two SEPD-based portfolios built under
naive diversification rule show similar risk profiles, with respect, the cluster 1 portfolio
built through the correlation-based clustering, while the cluster 2 portfolio (correlation-
based) has very high values compared to the others. Therefore, the SEPD-based clustered
portfolios show a better return-risk profile, also in adverse scenarios.

In the end, since the weights’ structure do not change over time, the turnover of any
naive portfolio is set to be zero.

On the side of the GMV diversification rules, the benefit of the distribution-based
clustered portfolios are still evident. Indeed, although the best portfolio in terms of Sharpe
ratio is the first cluster obtained by the correlation-based approach (SR equal to 29%),
the portfolio built with the cluster 3 (correlation-based) shows a very poor Sharpe ratio
performance equal to 5%.

The GMV portfolio built on the cluster 1 (SEPD-based) has a Sharpe ratio equal to
27.8%, while the one built on the cluster 2 has a Sharpe ratio of 12.3%. Clearly, once the
cluster analysis is conducted, the investors do not know which portfolio will perform
better in an out-of-sample. Therefore, let us suppose that ex ante we invest equally across
the two clustered portfolios. The overall return of this investment strategy is higher if
the investor chooses to invest in the SEPD-based clustered portfolios than in the case of
correlation-based.

In terms of VaR and expected shortfall the results are even better. Indeed, in both the
cases the two portfolios with the lowest VaR and ES are the SEPD-based clustered portfolios.

In terms of turnover, the SEPD-based cluster 2 shows the lowest value among the alter-
native and in general the SEPD-based trading rules have a much lower cost in aggregate.

Therefore, we can conclude that the SEPD-based entropy weighted algorithm pro-
posed in Section 2, that aims to cluster stocks according to their distribution, shows good
performances from a portfolio selection perspective. The correlation-based algorithm, that
discard data distribution instead of correlations, performs poorer.

4.2. S&P500 Industrials

In this sub-section we provide the portfolio analysis for the second experiment with
S&P500 Industrial real data. Nevertheless, in this case an important preliminary step
to facilitate the analysis under consideration is to exclude from the sample the S&P500
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industrial stocks showing missing values. Hence. from an initial sample of N = 74, we
obtain a thinner sample of N = 65 stocks.

As previously, we compare the distribution-based clustering approach presented in
Section 2 with the correlation-based clustering, commonly used to form a portfolio of
stocks. Figure 12 shows the SWC criterion according to different number of clusters C.

Figure 12. SWC for the first 5-year observations (distribution-based clustering)—S&P500 data.

With a SWC greater than 0.8 we select C = 2. In Figure 13 is reported the same
criterion in the case of the correlation-based clustering algorithm.

Figure 13. SWC for the first 5-year observations (correlation-based clustering)—S&P500 data.

In this second experiment, the correlation-based clustering model suggests the same
groups as the distribution-based one. However, the silhouette is again very low compared
to the one shown in Figure 12, meaning that the quality of the resulting classification is
much lower. The different clustering results are reported in Table 10.

The portfolio performances of the proposed approaches, assuming both naive and
GMV diversification rules, are reported in the Table 11.

In the case of naive diversification rule, Table 11 shows that the best portfolio in terms
of out-of-sample Sharpe ratio is the one based on cluster 1 resulting from the distribution-
based clustering approach, with a value of 20%. Moreover, in terms of VaR and ES the two
distribution-based clustered portfolios share similar risk than the correlation-based cluster
2 portfolio, while the correlation-based cluster 1 portfolio shows much higher values being,
therefore, much more risky in adverse scenarios.
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Table 10. Final group assignment of the two alternative clustering approaches. The first column
shows the results of the distribution-based approach, while the second column shows those of the
correlation-based clustering (S&P500 data).

SEPD-Based Clustering Correlation-Based Clustering

AAL 2 1
ALK 1 1
AME 2 2
AOS 2 2

BA 1 2
CAT 2 2

CHRW 2 2
CMI 2 2

CPRT 2 2
CSX 2 2

CTAS 2 2
DAL 1 1

DE 2 2
DOV 2 2
EFX 2 2

EMR 2 2
ETN 2 2

EXPD 2 2
FAST 2 2
FDX 2 2
GD 1 2
GE 2 2

GNRC 2 2
GWW 2 2
HON 2 2

HWM 2 2
IEX 2 2

ITW 2 2
J 2 2

JBHT 2 2
JCI 2 2

KSU 2 2
LDOS 2 2

LHX 2 2
LMT 1 2
LUV 1 1
MAS 2 2

MMM 2 2
NOC 1 2
NSC 2 2

ODFL 2 2
PCAR 2 2

PH 2 2
PNR 2 2
PWR 2 2
RHI 2 2

ROK 2 2
ROL 2 2
ROP 2 2
RSG 2 2
RTX 2 2
SNA 2 2
SWK 2 2
TDG 2 2
TDY 2 2

TT 2 2
TXT 2 2

UAL 1 1
UNP 1 2
UPS 2 2
URI 2 2

VRSK 2 2
WAB 2 2
WM 2 2
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Table 11. Portfolio performance measures—experiment with S&P500 data.

Sharpe Ratio VaR ES Turnover

Naive (SEPD)—Cluster 1 0.201330 −0.018444 −0.023791
GMV (SEPD)—Cluster 1 0.300182 −0.014314 −0.018771 0.027739
Naive (SEPD)—Cluster 2 0.147101 −0.019142 −0.024487
GMV (SEPD)—Cluster 2 0.098290 −0.009808 −0.012460 0.020254
Naive (corr)—Cluster 1 0.131469 −0.029350 −0.037461
GMV (corr)—Cluster 1 0.196732 −0.023842 −0.030730 0.037102
Naive (corr)—Cluster 2 0.155000 −0.018541 −0.023746
GMV (corr)—Cluster 2 0.097379 −0.009428 −0.011975 0.026502

The construction of GMV portfolios, starting from the identified clusters, shows
similarly interesting results. In particular, the distribution-based cluster 1 portfolio is still
the highest performing, with a Sharpe ratio of 30%, while the correlation-based GMV
cluster 1 portfolio has a performance lower than 20%. On the other side, both portfolios
constructed on cluster 2 show similar Shape ratio but still the distribution-based allows a
little over-performance of 10 basis points.

In terms of risk, looking at the VaR and ES, the distribution-based cluster 1 portfolio
has a much lower amount of risk compared to the correlation-based cluster 1 portfolio and,
at the same time, has a much higher Sharpe ratio. The other two portfolios constructed
according to the the cluster 2 are again very similar.

In the end, we compare the portfolio performances with respect the turnover. The
distribution-based cluster 2 portfolio has the lower turnover, while the correlation-based
cluster 1 the highest. Moreover, the distribution-based cluster 1 portfolio has a more similar
turnover than the correlation-based cluster 2, but with a Sharpe ratio higher than 11%.

Therefore, in this case we can conclude that the SEPD-based entropy weighted K-
means approach developed in Section 2 allows the construction of high performance
clustered portfolios, regardless the diversification rule used for their construction.

5. Conclusions

In this paper, we propose a new model-based clustering approach for classifying skewed
and heavy tailed time series, by means of an entropy weighting clustering algorithm.

Clustering techniques are useful tools for exploratory data analysis in the way they
identify common structures in an unlabeled dataset.

For example, a possible application of financial time series clustering concerns the
asset allocation, where groups of similar stocks could be seen as portfolios of asset that
shares similar characteristics.

Many recent papers aim to improve the existing clustering techniques for time series
data. This article proposes a model clustering model that refers to data based on a very
important family of asymmetric functions: the skewed exponential power distribution
(SEPD), also known in literature as the skewed generalized error distribution (SGED).
This distribution is very useful for classifying time series in the presence of fat-tailed and
asymmetric time series.

The clustering algorithm, which represents the innovative aspect of this paper, applies
the idea of entropy weighting clustering of [7,45] to the parameters estimated by a flexible
probability distribution as in [23].

The criterion is that time series with similar parameter estimates are placed in the
same group. Therefore, with a k-means clustering algorithm, the measure of dissimilarity is
determined on the basis of these estimates. In this paper we, therefore, propose to combine
all the information in an optimal way to form clusters.

Finally, to demonstrate the effectiveness of the proposed clustering approach, in this
paper we propose two different applications to stock market data. Financial market data
lend themselves well to adhering to our methodological proposal. In fact, the empirical
densities of daily stock returns time series are proved to be non-Gaussian, asymmetric,
and heavy.
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Ours wants to be a fairly innovative research address and certainly many can be there
financial applications that benefit from modeling equity returns via exponential power
distribution and its extensions for skewness.

Indeed a final important result allows us to conclude that the new clustering algorithm
we described in the paper can be used to form equity portfolios. Indeed, we compared
the performances of the distribution-based clustering model proposed in this paper with a
correlation-based clustering algorithm that is commonly used by financial practitioners to
form portfolio of stocks. According to several measures, such as the Sharpe ratio, the value
at risk, the expected shortfall, and the turnover we demonstrated the superior performances
of the proposed clustering approach also from an asset allocation perspective.

A first possible future research can be devoted to the application of the proposed
underlying idea to different probability distributions. For example, the asymmetric power
distribution of [40] represents an interesting possibility for modeling situations where we
suppose two different behaviors in the distribution’s tails.

Moreover, another interesting research direction can be devoted to the developments
of a new distribution-based clustering approach where also the time varying parameters
estimated from the skewed exponential power distribution (or others) are considered.
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Appendix A. List of Stocks

Table A1. List of stocks (FTSE100) considered in the application with real data.

ID Name Symbol Sector

1 3i III Financial Services
2 Admiral Group ADM Nonlife Insurance
3 Anglo American plc AAL Mining
5 Ashtead Group AHT Support Services
7 AstraZeneca AZN Pharmaceuticals and Biotechnology
8 Auto Trader Group AUTO Media

12 B&M BME Retailers
13 BAE Systems BA. Aerospace and Defence
17 BHP BHP Mining
25 Compass Group CPG Support Services
26 CRH plc CRH Construction and Materials
29 Diageo DGE Beverages
31 Evraz EVR Industrial Metals and Mining
33 Ferguson plc FERG Support Services
36 GlaxoSmithKline GSK Pharmaceuticals and Biotechnology
42 IHG Hotels & Resorts IHG Travel and Leisure
46 International Airlines Group IAG Travel and Leisure
56 M&G MNG Asset Managers
57 Melrose Industries MRO Automobiles and Parts

https://www.sites.google.com/view/raffaele-mattera/research
https://www.sites.google.com/view/raffaele-mattera/research
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Table A1. Cont.

ID Name Symbol Sector

60 NatWest Group NWG Banks
68 Prudential plc PRU Life Insurance
74 Rio Tinto RIO Mining
83 Severn Trent SVT Gas, Water, and Multi-utilities
94 Tesco TSCO Food & Drug Retailers
97 Vodafone Group VOD Mobile Telecommunications

100 WPP plc WPP Media

Table A2. List of stocks (FTSE100) considered in the application with real data.

ID Symbol Name

1 MMM 3M Company
2 AOS A.O. Smith Corp

16 ALK Alaska Air Group
21 ALLE Allegion
30 AAL American Airlines Group
38 AME Ametek
70 BA Boeing Company
79 CHRW C. H. Robinson Worldwide
88 CARR Carrier Global
90 CAT Caterpillar Inc.

107 CTAS Cintas Corporation
123 CPRT Copart Inc
128 CSX CSX Corp.
129 CMI Cummins Inc.
135 DE Deere and Co.
136 DAL Delta Air Lines Inc.
150 DOV Dover Corporation
158 ETN Eaton Corporation
164 EMR Emerson Electric Company
168 EFX Equifax Inc.
179 EXPD Expeditors
184 FAST Fastenal Co
186 FDX FedEx Corporation
197 FTV Fortive Corp
198 FBHS Fortune Brands Home & Security
206 GNRC Generac Holdings
207 GD General Dynamics
208 GE General Electric
216 GWW Grainger (W.W.) Inc.
230 HON Honeywell Int’l Inc.
233 HWM Howmet Aerospace
237 HII Huntington Ingalls Industries
238 IEX IDEX Corporation
240 INFO IHS Markit
241 ITW Illinois Tool Works
244 IR Ingersoll-Rand
257 JBHT J. B. Hunt Transport Services
259 J Jacobs Engineering Group
262 JCI Johnson Controls International
265 KSU Kansas City Southern
276 LHX L3Harris Technologies
282 LDOS Leidos Holdings
289 LMT Lockheed Martin Corp.
301 MAS Masco Corp.
333 NLSN Nielsen Holdings
336 NSC Norfolk Southern Corp.
338 NOC Northrop Grumman
349 ODFL Old Dominion Freight Line
353 OTIS Otis Worldwide
354 PCAR Paccar
356 PH Parker-Hannifin
361 PNR Pentair plc
387 PWR Quanta Services Inc.
391 RTX Raytheon Technologies
396 RSG Republic Services Inc.
398 RHI Robert Half International
399 ROK Rockwell Automation Inc.
400 ROL Rollins Inc.
401 ROP Roper Technologies
415 SNA Snap-on
417 LUV Southwest Airlines
418 SWK Stanley Black and Decker
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Table A2. Cont.

ID Symbol Name

433 TDY Teledyne Technologies
438 TXT Textron Inc.
449 TT Trane Technologies plc
450 TDG TransDigm Group
461 UNP Union Pacific Corp.
462 UAL United Airlines Holdings
463 UPS United Parcel Service
464 URI United Rentals Inc.
471 VRSK Verisk Analytics
483 WM Waste Management Inc.
491 WAB Westinghouse Air Brake Technologies Corp.
500 XYL Xylem Inc.
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