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Abstract: The logarithmic correction to Bekenshtein–Hawking entropy in the framework of 4D
Einstein–Gauss–Bonnet gravity coupled with nonlinear electrodynamics is obtained. We explore
the black hole solution with the spherically symmetric metric. The logarithmic term in the entropy
has a structure similar to the entropy correction in the semi-classical Einstein equations. The energy
emission rate of black holes and energy conditions are studied. The quasinormal modes of a test
scalar field are investigated. The gravitational lensing of light around BHs was studied. We calculated
the deflection angle for some model parameters.
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1. Introduction

A valuable fundamental quantum theory of gravity should be renormalizable and
unitary but general relativity (GR) is perturbatively nonrenormalizable, but unitary. The
renormalizaton of the theory requires higher derivatives in the action and the presence
of quadratic terms in curvature can give a renormalizeable theory of quantum gravity.
Therefore, a modification of Einstein GR by including higher order curvature terms in
action is of interest. It was shown in [1] that quantum corrections in quadratic gravity lead
to unstable resonance which does not appear in the asymptotic spectrum. This proves that
such theories also are unitary and stable to all orders. The inclusion of terms with four
derivatives in the action makes the theory renormalizable, but leads to the presence of
ghosts making the perturbative unitarity of the theory questionable. The authors of [2]
showed that such spin-2 ghosts do not indicate a violation of unitarity. Higher-derivative
corrections in string theory were discussed in [3]. Other applications of models, with
higher-order derivatives, in astrophysics and cosmology, were studied in [4].

Another way to take into account higher order curvature terms is to add the Gauss–
Bonnet (GB) Lagrangian to Einstein–Hilbert action. Such theory, 4D Einstein–Gauss–Bonnet
(4D EGB) gravity in four dimension, recently attracted much attention [5–21]). It was shown
by Glavan and Lin [5] that in 4D EGB theory the GB term, which is a topological invariant
before regularization, after regularization it is no longer a topological invariant and it
contributes to the equation of motion. In [22,23], the authors obtained a solution of the
semi-classical Einstein equations with conformal anomaly that also is a solution in the 4D
EGB gravity. Recently, the scheme of Glavan and Lin was debated in [24–30]. In particular,
it was shown in [27,28] that solutions in the 4D EGB theory differ from GR because they are
due to extra infinitely strongly coupled scalar. It is worth noting that the theory of [31–33]
gives the solution, in the spherically-symmetric metrics, that is a solution in the framework
of rescaling procedure of [5] (see [34]). We explore a BH solution in the 4D EGB gravity
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theory coupled to nonlinear electrodynamics (NED) proposed in [35] making use of the
theory of [31–33].

Here, we investigate the optical properties of BH by using the solution obtained in
4D EGB gravity coupled to NED. This paper is the continuation of the work [36]. NED
considered here possesses the attractive features such as the absence of singularities and
simplicity (the solution contains only elementary functions). In addition, at the weak
field limit our NED is converted into Maxwell electrodynamics. It worth noting that
the solution of well-known Born–Infeld electrodynamics in 4D EGB gravity contains
special hypergeometric function [37]. The specific NED can give different astrophysical
characteristics: the shadow radius of a charged BH, the BH energy emission rate, and the
deflection angle of light from the BH. Therefore it is of interest to test solutions of BHs
in 4D EGB gravity coupled to different NED which effect on astrophysical characteristics.
Thus, several BH solutions in 4D EGB gravity coupled to NED were studied [11–40].
The quasinormal modes, deflection angle, shadows of BHs and the Hawking radiation
were studied in [41–47]. In this paper we analyse the shadow, the energy emission rate,
quasinormal modes and the light deflection angle of the magnetically charged BH by using
NED proposed in [35].

The paper is organized as follows. In Section 2, we consider the BH spherically
symmetric solution in the framework of the 4D EGB gravity. It is shown that at infinity
we have the Reissner–Nordström behavior of the charged BH. We obtain the logarithmic
correction to Bekenstein–Hawking entropy in Section 3. In Section 4, we study the BH
energy emission rate. The energy conditions are investigated in Section 5. It is shown that
WEC, DEC and SEC are satisfied. In Section 6, we investigate the BH quasinormal modes
and obtain the corresponding frequencies. We study the light defection angle by the BH
solution in Section 7. Section 8 is a conclusion.

2. The Model

The EGB gravity action in D-dimensions coupled to NED is

I =
∫

dDx
√
−g
[

1
16πG

(R + αLGB) + LNED

]
, (1)

with α possessing the dimension of (length)2 and the NED Lagrangian, proposed in [35] is
given by

LNED = − F
1 + 4

√
2βF

, (2)

where the parameter β (β ≥ 0) has the dimension of (length)4, F = (1/4)FµνFµν =
(B2 − E2)/2, Fµν is the strength tensor and the GB Lagrangian is

LGB = RµναβRµναβ − 4RµνRµν + R2. (3)

The field equation corresponding to action (1) reads

Rµν −
1
2

gµνR + αHµν = −8πGTµν, (4)

where Tµν is the energy-momentum tensor and

Hµν = 2
(

RRµν − 2RµαRα
ν − 2RµανβRαβ − RµαβγRαβγ

ν

)
− 1

2
LGBgµν. (5)

The spherically symmetric D-dimensional line element is given by

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2dΩ2

D−2, (6)
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where dΩ2
D−2 is the line element of the unit (D − 2)-dimensional sphere.

The Equations (1), (3)–(5) are defined in D dimensions. In the following, we consider
rescaling α→ α/(D− 4) and the limit D → 4. Following [48] we consider a magnetically
charged BH. The magnetic BH represents a magnetic monopole with the magnetic field
B = qm/r2 (qm is a magnetic charge) and F = q2

m/(2r4). The magnetic energy density is
given by

ρ = −T t
t = −LNED =

q2
m

2r3(r +
√

qmβ1/4)
. (7)

The static and spherically symmetric spacetime metric will be used. At the limit
D → 4 by exploring the scheme of [5], the tt component of Equation (4) reads

r(2α f (r)− r2 − 2α) f ′(r)− (r2 + α f (r)− 2α) f (r) + r2 − α = 2r4Gρ. (8)

The Equation (8) holds for any 4D EGB gravity model with the static and spherically
symmetric metric. The general solution to Equation (8) is given by

f (r) = 1 +
r2

2α

(
1±

√
1 +

8αG
r3

(
M +

∫
r2ρdr

))
, (9)

where M is the integration constant. For Maxwell electrodynamics the energy density is
ρ = q2/(2r4) and Equation (9) leads to the metric function obtained in [6]. But at the limit
r → 0 that solution leads to the non-physical complex value of the metric function. To
have the stable BH [49] we will use the sign minus (the negative branch) before square root
in Equation (9). For 4D EGB gravity coupled to NED (2) with the energy density (7), the
solution (9) for the negative branch, gives the metric function [36]

f (r) = 1 +
r2

2α

1−

√√√√1 +
8MαG

r3 +
4αq3/2

m G
β1/4r3 ln

(
r

r + 4
√

βq2
m

). (10)

It should be noted that the limit β→ 0 for the last term in the square root, by using
the L’Hôpital rule, becomes zero. The Weyl tensor for the D-dimensional spatial part of the
spherically symmetric D-dimensional line element (6) vanishes. Therefore, the new solution
(10) found in the context of [5] is also a new solution for the consistent theory [31–33]. Here
we consider pure classical theory and the logarithmic correction in Equation (10) is due to
the GB term in the action. With the dimensionless variable x = r/ 4

√
βq2

m, Equation (10) is
rewritten as

f (x) = 1 + cx2 − c

√
x4 + x

(
a + b ln

(
x

x + 1

))
, (11)

where we use the dimensionless parameters

a =
8MαG

β3/4q3/2
m

, b =
4αG

β
, c =

√
βqm

2α
. (12)

The asymptotic of the metric function f (r) (10), for the negative branch, at r � 1 is
given by

f (r) = 1− 2MG
r

+
Gq2

m
r2 +O(r−3) r � 1. (13)

It follows from Equation (13) that M is a magnetic mass of the BH. This equation
shows the Reissner–Nordström behavior of the charged BH at large r, and the metric
becomes flat at infinity (r → ∞). The asymptotic of the metric function f (r), for the positive
branch, does not correspond to the BH with the Reissner–Nordström behavior at infinity. It
is worth noting that the condition x4 + x(a + b ln(x/(x + 1))) > 0 should be satisfied to
have the real metric function f (x). This requirement gives the restriction on the radius.
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The nontrivial solution x0 to the equation x4 + x(a + b ln(x/(x + 1))) = 0 leads to the
limitation x > x0. One can verify that curvature invariants, Ricci and Kretschmann scalars,
have singularities at x = x0. Thus, the spacetime developed a spacetime singularity at
x = x0.

3. Thermodynamics and BH Entropy

By using the expression for Hawking temperature TH(r+) = f ′(r+)/(4π), where r+
is the event horizon radius, f (r+) = 0, and the prime means the derivative with respect to
the argument, we obtain [36]

TH(x+) =
(2cx2

+ − 1)(1 + x+)− bc2x+
8π 4
√

βq2
mx+(1 + x+)(1 + cx2

+)
, (14)

where x+ = r+/ 4
√

βq2
m. The BH gravitational mass, found from equation f (x+) = 0, reads

M(x+) =
β3/4q3/2

m
8αG

(
1 + 2cx2

+

c2x+
− b ln

(
x+

x+ + 1

))
. (15)

According to the first law of BH thermodynamics dM(x+) = TH(x+)dS + φdq (φ is
an electromagnetic potential) the entropy S at the constant charge q is given by

S =
∫ dM(x+)

TH(x+)
=
∫ 1

TH(x+)
∂M(x+)

∂x+
dx+. (16)

With the help of Equations (14)–(16) we find the entropy

S =
4πα

G

∫ 1 + cx2
+

x+
dx+ =

πr2
+

G
+

4πα

G
ln

(
r+

4
√

βq2
m

)
+ C, (17)

were C is the integration constant. It is worth noting that there is uncertainty in the choice
of C [50]. It is convenient to use the integration constant C in the form

C =
2πα

G
ln

(
πqm

√
β

G

)
. (18)

With Equations (17) and (18) one obtains the entropy

S = S0 +
2πα

G
ln(S0), (19)

where S0 = πr2
+/G is the Bekenstein–Hawking entropy. In accordance with

Equation (19) the entropy includes the Bekenstein–Hawking entropy and the logarith-
mic correction. The attractive feature of entropy (19) is that it does not depend on the NED
parameter β. Thus, there is not singularity of the entropy in the case β = 0. It should
be noted that the entropy, similar to Equation (19) with the logarithmic term, appears in
GR containing a conformal anomaly, and also in loop quantum gravity and in the theory
of strings [22,23,50,51]. When α → 0 the entropy (19) becomes the Bekenstein–Hawking
entropy. For the big event horizon radiuses the leading term of the entropy is the area
law and for small x+ the logarithmic correction is dominant. It has to be noted that at
some parameters α, β, qm and r+ the entropy vanishes. The entropy (17) (with C = 0)
is zero when the event horizon radius obeys the equation r4

+ exp(r2
+/α) = βq2

m which is

r0 =
√

2αW0(
√

βqm/(2α)), where W0(x) is the Lambert function. The similar solution r0

to Equation (19) for S = 0 is given by r0 =
√

2αW0(G/(2πα)). At r+ < r0 the entropy is
negative and such a situation takes place in the model of [52].
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4. The Energy Emission Rate

The shadow of BHs is linked with the high energy absorption cross section σ seen for
the observer at infinity [53–55] (see also [56]). The absorption cross-section, at very high
energies, oscillates about an approximate value of the photon sphere σ ≈ πr2

s , where xs
defines the BH shadow radius rs = xs

4
√

βq2
m (the impact parameter). The shadow radius

can be expressed through the radius of the photon sphere rp by the relation rs = rp/ f (rp)
for a distant observer, and rp is the solution of the equation f ′(rp)rp − 2 f (rp) = 0 [36]. The
energy emission rate in the high energy is given by

d2E(ω)

dtdω
=

2π3ω3r2
s

exp(ω/TH(r+))− 1
. (20)

Here, ω is the emission frequency and TH is the Hawking temperature. With the help
of the dimensionless variables x = r/ 4

√
βq2

m, T̄H(x+) = 4
√

βq2
mTH(x+), and Equation (20),

we obtain

β1/4√qm
d2E(ω)

dtdω
=

2π3v3x2
s

exp(v/T̄H(x+))− 1
, (21)

and the Hawking temperature is given by Equation (14) and v = β1/4√qmω. For some
parameters b at a = 5, c = 1 we obtain the event horizon radius, the photon sphere radius
and the shadow radius (expressed via the dimensionless variables) presented in Table 1
(see also [36]). It is worth noting that the parameters a, b and c are connected with M, α, β
and qm by Equation (12). Because there are many parameters in the model, we use in Table 1
some set as an example.

Table 1. The event horizon, photon sphere and shadow dimensionless radii for a = 5, c = 1.

b 0.5 0.9 1.5 1.7 1.8 2 2.2 2.3 2.4 2.5 2.6

x+ 2.18 2.08 1.93 1.87 1.84 1.77 1.69 1.65 1.61 1.56 1.51

xp 3.42 3.31 3.12 3.05 3.01 2.94 2.86 2.82 2.77 2.73 2.68

xs 6.16 6.02 5.78 5.70 5.65 5.56 5.47 5.42 5.37 5.32 5.26

Making use of the data given in Table 1 we depicted the plot of the emission rate in
Figure 1 for c = 1, a = 5 and b = 1.5, 2, 2.5. According to Figure 1 there is a peak of the
energy emission rate for the BH depending on model parameters. When the parameter b
increases, the maximum of the peak decreases and possesses the low frequency. Thus, the
BH has a bigger lifetime at a bigger parameter b. One can investigate the dependence of
the energy emission rate on parameters α, β, qm and M, putting some numerical values
for them.
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Figure 1. The plot of the function β1/4√qm
d2E(ω)

dtdω vs. v for b = 1.5, 2, 2.5, a = 5, c = 1.

5. The Energy Conditions

The symmetrical energy-momentum tensor with the spherically symmetry leads to
T t

t = T r
r and the radial pressure is given by pr = −T r

r = −ρ. The tangential pressure is
defined as p⊥ = −T ϑ

ϑ = −T φ
φ so that [57]

p⊥ = −ρ− r
2

ρ′(r), (22)

where the prime means the derivative with respect to the argument. The weak energy
condition (WEC) is satisfied when ρ ≥ 0 and ρ + pk ≥ 0 (k = 1,2,3) [58]. This guarantees
that the energy density is non-negative as measured by any local observer. In accordance
with Equation (7) ρ ≥ 0. Making use of Equation (7) one finds

ρ′(r) = −
q2

m(4r + 3β1/4√qm)

2r4(r + β1/4√qm)2 ≤ 0. (23)

As a result, we have ρ ≥ 0, ρ + pr = 0, ρ + p⊥ ≥ 0 and WEC holds. The dominant
energy condition (DEC) takes place when [58] ρ ≥ 0, ρ + pk ≥ 0, ρ− pk ≥ 0. These condi-
tions include WEC and we have to verify the condition ρ− p⊥ ≥ 0. From Equations (7),
(22) and (23) we obtain

ρ− p⊥ =
q5/2

m β1/4

4r3(r +
√

qmβ1/4)2 ≥ 0. (24)

Thus, DEC is satisfied. As a result, the sound speed cannot exceed the speed of light.
The strong energy condition (SEC) requires the condition ρ + ∑3

k=1 pk ≥ 0 [58]. With the
help of Equations (7), (22) and (23) we obtain

ρ +
3

∑
k=1

pk = 2p⊥ =
q2

m(2r +
√

qmβ1/4)

2r3(r +
√

qmβ1/4)2 ≥ 0, (25)

and SEC is satisfied.

6. Quasinormal Modes

Quasinormal modes (QNMs) are characterised by complex frequencies ω which give
an information about the stability of BHs under small perturbations and they do not
depend on the initial conditions. The outgoing boundary condition is imposed at infinity
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and the ingoing boundary condition at the event horizon. If Im ω > 0 the mode is unstable,
otherwise it is stable. It was shown that Re ω in the eikonal limit is linked with the radius
of the BH shadow [59,60]. In addition, the real and imaginary parts of QNMs frequencies
are connected with the angular velocity and Lyapunov exponent of unstable circular null
geodesics [61]. The perturbations by a scalar massless field around BHs are characterized
by the effective potential barrier

V(r) = f (r)
(

f ′(r)
r

+
l(l + 1)

r2

)
, (26)

where l being the multipole number 0, 1, 2.... Equation (26) can be represented in the terms
of dimensionless variable x = r/ 4

√
βq2

m as

V(x)
√

βqm = f (x)
(

f ′(x)
x

+
l(l + 1)

x2

)
. (27)

The effective potential is plotted in Figure 2 for a = 5, b = 2, c = 1 and l = 1, 2, 3
and for a = 5, c = 1, l = 1 and b = 1, 2, 3. According to Figure 2, Subplot l, shows that
the effective potentials represent a potential barrier with a maximum. The height of the
potential increases when the l increases. In accordance with Figure 2, Subplot 2, the height
of the potential increases if the parameter b increases. The real and imaginary parts of
quasinormal frequencies are given by [59,60]

Re ω =
l
rs

=
l
√

f (rp)

rp
, Im ω = −2n + 1

2
√

2rs

√
2 f (rp)− r2

p f ′′(rp), (28)

where rs is the BH shadow radius (the impact parameter), rp is the radius of the BH
photon sphere, n = 0, 1, 2, ... is the overtone number. The real and imaginary parts of the
frequencies versus the parameter b at a = 5, c = 1, n = 1, l = 5 are given in Table 2.

The imaginary parts of the frequencies in Table 2 are negative, and therefore, the
modes are stable and the real part represents the frequency of oscillations. According to
Table 2 when the parameter b increases the real part of the reduced frequency 4

√
βq2

mRe ω
increases, but absolute value of the imaginary part of the reduced frequency | 4

√
βq2

mIm ω |
decreases. In other words, increasing the parameter b the scalar perturbations oscillate with
greater frequency and decay slowly. To study the dependence of frequencies on parameters
α, β, M, qm one has to put numerical numbers for these parameters in Equation (28).
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Subplot 1: l = 1, 2, 3; a=5; b=2; c = 1
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Figure 2. The plot of the function V(x)
√

βqm for a = 5, c = 1.
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Table 2. The real and the imaginary parts of the frequencies vs the parameter b at n = 1, l = 5, a = 5,
c = 1.

b 1.5 1.7 2 2.2 2.4 2.5 2.6

4
√

βq2
mRe ω 0.865 0.877 0.899 0.914 0.931 0.940 0.951

− 4
√

βq2
mIm ω 0.2212 0.2208 0.2202 0.2191 0.2170 0.2163 0.2149

7. Deflection Angle

Let us study the light deflection angle by the BH solution (10). We can determine the
total deflection angle ∆ϕ by the formula [62] (see also [63])

∆ϕ = 2
∫ ∞

rp

dr

r
√

r2 f (rp)

r2
p
− f (r)

− π, (29)

where rp is the photon sphere radius. Taking into account that rp/
√

f (rp) = rs is the
shadow sphere radius (rs = ξ is the impact parameter) one can represent Equation (29) in
terms of the dimensionless variable as

∆ϕ = 2
∫ ∞

xp

dx

x
√

x2

x2
s
− f (x)

− π. (30)

Making use of data in Table 1 we obtain the deflection angles from Equation (30)
represented in Table 3.

Table 3. The deflection angles for a = 5, c = 1.

b 0.5 0.9 1.5 1.7 1.8 2 2.2 2.3 2.4 2.5 2.6

∆ϕ 4.12 3.58 3.1 3.02 2.96 2.86 2.81 2.77 2.76 2.73 2.69

According to Table 3 when the parameter b increasing, with fixed a and c, the deflection
angle is decreased. One can also study the dependence of the deflection angle on parameters
β, α, qm and M by taking the numerical values for these parameters and putting them in

Equation (10), finding the solution for rp: 2 f (rp)− rp f ′(rp) = 0 (rs = rp/
√

f (rp)), and
calculating the integral (29).

8. Conclusions

We use the exact spherically symmetric and magnetically charged BH solution in 4D
EGB gravity coupled to NED obtained in [36] for further investigations. It is shown that
we have the Reissner–Nordström behavior of the charged BH at infinity. The logarithmic
correction to the Bekenstein–Hawking entropy is obtained from first law of BH thermody-
namics. Similar corrections to the area law are appeared in quantum gravity. We obtain the
solution for the event horizon radius when the entropy becomes zero. For the light BHs the
logarithmic correction is important while for massive BHs (for a big event horizon radius)
such correction is small. Then, the energy emission rate of BHs has been studied. We
showed that the BH energy emission rate decreases with increasing the model parameter b
and the BH has a bigger lifetime. To verify that the energy density is positive as measured
by any local observer and the sound speed does not exceed the light speed, we investigate
the energy conditions. It has been demonstrated that WEC, DEC and SEC are satisfied.
The quasinormal modes that describe small perturbations around BHs are investigated.
We have been studied the dependence of the hight of the effective potential barrier on the
multipole number l and model parameter b. The height of the potential increases when



Symmetry 2021, 13, 944 9 of 11

the l or b increases. Complex frequencies, where the real part represents the frequency
of oscillations and imaginary part characterises the oscillation decay, are calculated. We
demonstrate that increasing the parameter b the scalar perturbations oscillate with greater
frequency and decay slowly. Then, the gravitational lensing of light around BHs is studied
by calculating the deflection angle ∆ϕ for some parameters. The deflection angle depends
on the photon sphere radius rp, shadow radius rs and model parameters. It is shown that
∆ϕ is decreased if the parameter b increasing at fixed a and c.
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