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Abstract: Some Kurchatov-type accelerating parameters are used to construct some derivative-free
iterative methods with memory for solving nonlinear systems. New iterative methods are developed
from an initial scheme without memory with order of convergence three. New methods have the
convergence order 2 +

√
5 ≈ 4.236 and 5, respectively. The application of new methods can solve

standard nonlinear systems and nonlinear ordinary differential equations (ODEs) in numerical
experiments. Numerical results support the theoretical results.
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1. Introduction

Many real-world problems that arise in various scientific fields are modeled by math-
ematically interesting nonlinear systems F(x) = 0. Symmetries and conservation laws
are powerful tools for studying explicit solutions of nonlinear systems. Finding the so-
lution of nonlinear systems is an important problem in the area of mathematics, where
F : D ⊆ Rn → Rn. Iterative method is a kind of efficient method for solving nonlinear
systems. Optimization and acceleration of iterative methods can be achieved by applying
symmetries. Newton’s method [1] is the oldest method for solving nonlinear systems,
which is quadratically convergent assuming that initial approximation is close enough
to the root. Based on Newton’s method, some high-order iterative method have been
proposed in the literature. For example, Torres-Hernandez et al. [2], Gdawiec et al. [3],
Akgül et al. [4] and Cordero et al. [5] developed some variants of Newton’s method by
using fractional derivatives. Behl et al. [6] and Geum et al. [7] proposed some high-order
iterative methods and their dynamics are investigated. Schwandt [8] proposed a symmetric
iterative method for solving nonlinear systems. Barco et al. [9] obtained the local solutions
of partial differential equations by symmetry approach. Derivative-free method is a kind of
variant of Newton’s method, which can solve the solution of non-differentiable nonlinear
systems. One of the celebrated derivative-free iterative methods is Traub’s method [10],
which is given by

z(j+1) = z(j) − [s(j), z(j); F]−1F(z(j)), (1)

where s(j) = z(j) + B F(z(j)), B is a nonzero arbitrary parameter and [s(j), z(j); F]−1 is the
inverse of the first-order divided difference operator [s(j), z(j); F]. The first-order divided
difference operator [., .; F] : D×D ⊂ Rn×Rn → L(Rn) is an n× n matrix, which is defined
by [11]:

[z + h, z; F] =
∫ 1

0
F′(z + th)dt, ∀(z, h) ∈ Rn ×Rn, (2)
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where h = s− z. Developing the Taylor’s expansion of F′(z + th) on the point z, we obtain∫ 1

0
F′(z + th)dt = F′(z) +

1
2

F′′(z)h +
1
6

F′′′(z)h2 + O[h3]. (3)

In the process of computation, the first-order divided difference operator [s(j), z(j); F] is
calculated by [11]

[s(j), z(j); F]ik =
Fi(s

(j)
1 · · · , s(j)

k−1, s(j)
k , z(j)

k+1, · · · , z(j)
m )− Fi(s

(j)
1 · · · , s(j)

k−1, z(j)
k , z(j)

k+1, · · · , z(j)
m )

(s(j)
k − z(j)

k )
, (4)

where 1 ≤ i, k ≤ m.
Based on Traub’s method, many derivative-free methods have been studied in the lit-

erature [12–19]. Derivative-free methods can be divided into two groups: iterative method
with memory and iterative method without memory. Iterative method with memory is
superior to iterative method without memory in terms of computational efficiency and
stability. To date, very few derivative-free methods with memory for solving nonlinear
systems have been proposed in the literature. Recently, Petković and Sharma [12] designed
the following derivative-free method with memory for solving nonlinear systems by using
the variable parameter method

s(j) = z(j) − B(j)F(z(j)),
t(j) = z(j) − [s(j), z(j); F]−1F(z(j)),

z(j+1) = t(j) − (aI + G(j)((3− 2a)I + (a− 2)G(j)))[s(j), z(j); F]−1F(t(j)),
(5)

where B(j) = −[s(j−1), z(j−1); F]−1 is calledvariableparameter, G(j) = [s(j), z(j); F]−1[w(j), t(j); F],
w(j) = t(j) + cF(t(j)) and c ∈ R− 0. Method (5) has the convergence order 2 +

√
5 ≈ 4.236,

when the parameter a 6= 3. Using the same variable parameter B(j) as method (5), Ah-
mad et al. [13] and Kansal et al. [14] proposed some high order iterative methods with
memory for solving nonlinear systems. Using the Kurchatov’s divided difference oper-
ator [15], Chicharro et al. [16] designed two derivative-free methods with memory for
solving nonlinear systems. Firstly, they constructed the following third-order iterative
method without memory

s(j) = z(j) + BF(z(j)),
t(j) = z(j) − [s(j), z(j); F]−1F(z(j)),

z(j+1) = t(j) − [s(j), t(j); F]−1F(t(j)),
(6)

which satisfies the following error equation

ε(j+1) = A2
2(I + BF′(ζ))2(ε(j))3 + O((ε(j))4), (7)

where ε(j) = z(j) − ζ, ζ is the zero of nonlinear function F and Aj = 1
j! F′(ζ)−1F(j)(ζ),

(j = 1, 2, · · · , n). Replacing the constant parameter B with B(j) = −[2z(j)− z(j−1), z(j−1); F]−1

in method (6), they obtained the following fourth-order method with memory
s(j) = z(j) − [2z(j) − z(j−1), z(j−1); F]−1F(z(j)),

t(j) = z(j) − [s(j), z(j); F]−1F(z(j)),
z(j+1) = t(j) − [s(j), t(j); F]−1F(t(j)),

(8)

where the first-order divided difference operator [2z(j) − z(j−1), z(j−1); F] is called Kurcha-
tov’s divided difference operator. Using the Kurchatov’s divided difference operator to
design the variable parameter, Cordero et al. [17], Argyros et al. [18] and Candela et al. [19]
proposed some efficient Kurchatov-type methods. Variable parameters can be designed
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by different schemes, which usually uses iterative sequences from the current and previ-
ous steps.

In this paper, we design some new variable parameters by using some new Kurchatov-
type divided difference operators. This paper is organized as follows. Some new Kurchatov-
type divided difference operators are used to construct iterative schemes with memory for
the numerical solution of nonlinear systems in Section 2. The main advantage of the new
Kurchatov-type divided difference operators is that it has less errors than the Kurchatov’s
first-order operator [2z(j) − z(j−1), z(j−1); F]. The order of the basic method (6) is increased
from 3 to (2+

√
5) ≈ 4.236 and 5, respectively. The application of new methods to solve

standard nonlinear systems and nonlinear ordinary differential equations (ODEs) is made
in numerical experiments. Numerical experiments are made in Section 3. A short summary
is given in Section 4.

2. Some New Iterative Schemes with Memory

If I + BF′(ζ) 6= 0 in (7), the convergence order of method (6) is three. Letting
B = −F′(ζ)−1, the order of convergence of method (6) can be improved. However, F′(ζ) is
unknown in practice. In order to improve the order of convergence of method (6), we could
choose a variable parameter B(j) to replace constant parameter B. The variable parameter
B(j) should satisfy limj→∞B(j) = −F′(ζ)−1. Using the Kurchatov’s divided difference oper-
ator [2z(j) − z(j−1), z(j−1); F] to approach F′(ζ), Chicharro et al. [16] designed the iterative
method (8) with a variable parameter B(j) = −[2z(j) − z(j−1), z(j−1); F]−1. The Kurchatov’s
divided difference operator [2z(j) − z(j−1), z(j−1); F] satisfies

lim
j→∞

[2z(j) − z(j−1), z(j−1); F] = F′(ζ), (9)

where iterative sequence {z(j)} → ζ as j→ ∞.
To obtain some more effective iterative methods, we design some new Kurchatov-type

first-order divided difference operators to construct the accelerating parameter B(j). If
j → ∞, then iterative sequences generated by iterative method (7) satisfy {t(j)} → ζ,
{z(j)} → ζ and {s(j)} → ζ. Using t(j), z(j) and s(j), we can design some first-order divided
difference operators to approach F′(ζ).

Scheme 1. Using t(j−1) and z(j), we design the first-order divided difference operator
[2t(j−1) − z(j), z(j); F] and obtain the following variable parameter

B(j) = −[2t(j−1) − z(j), z(j); F]−1. (10)

Using (2) and (3), we have

[2t(j−1) − z(j), z(j); F] =
∫ 1

0
F′(z(j) + xh)dx = F′(z(j)) + F′′(z(j))h +

2
3

F′′′(z(j))h2 + O(h3), (11)

where h = 2(t(j−1) − z(j)).

Using Taylor’s expansion around ζ and taking into account F(ζ) = 0, we have

F(z(j)) = F′(ζ)[ε(j) + A2(ε
(j))2 + A3(ε

(j))3] + O((ε(j))4), (12)

F′(z(j)) = F′(ζ)[I + 2A2(ε
(j)) + 3A3(ε

(j))2] + O((ε(j))3), (13)

F′′(z(j)) = F′(ζ)[2A2 + 6A3(ε
(j))] + O((ε(j))2), (14)

and
F′′′(z(j)) = F′(ζ)[6A3] + O(ε(j)), (15)

where ε(j) = z(j) − ζ.
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From (12)–(15), we have

[2t(j−1) − z(j), z(j); F] = F′(ζ)[I + 2A2ε
(j−1)
t + A3(ε

(j))2

+ 4A3(ε
(j−1)
t )2 − 2A3(ε

(j−1)
t )(ε(j))] + O3(ε

(j−1)
t , ε(j)), (16)

where ε
(j−1)
t = t(j−1) − ζ, ε

(j−1)
t → 0 and ε(j) → 0 as j→ ∞.

From (16), we obtain

lim
j→∞

[2t(j−1) − z(j), z(j); F] = F′(ζ). (17)

This means that the first order divided difference operator [2t(j−1) − z(j), z(j); F] can be used
to construct the variable parameter B(j).

Using XX−1 = I and (17), we obtain

B(j) = −[2t(j−1) − z(j), z(j); F]−1 = −[I − 2A2ε
(j−1)
t − A3(ε

(j))2 + (2A2
2 − 4A3)(ε

(j−1)
t )2

+ 2A3(ε
(j−1)
t )(ε(j))]F′(ζ)−1 + O3(ε

(j−1)
t , ε(j)) (18)

and
I + B(j)F′(ζ) ∼ 2A2ε

(j−1)
t + A3(ε

(j)
z )2 − (2A2

2 − 4A3)(ε
(j−1)
t )2 − 2A3(ε

(j−1)
t )(ε

(j)
z ) ∼ 2A2ε

(j−1)
t

∼ 2A2
2(I + B(j−1)F′(ζ))(ε(j−1))2. (19)

In this manuscript, the symbols ∼ and O are used in the following way: if
limn→∞(xn/yn) = C and C 6= 0, then we have xn = O(yn) or xn ∼ yn.

Scheme 2. Using t(j−1) and z(j), we design another first-order divided difference operator
[2t(j−1) − z(j), t(j−1); F] and obtain the following variable parameter

B(j) = −[2t(j−1) − z(j), t(j−1); F]−1. (20)

Using (2) and (3), we get

[2t(j−1) − z(j), t(j−1); F] = F′(t(j−1)) +
F′′(t(j−1))

2
h +

F′′′(t(j−1))

6
h2 + O(h3)

= F′(ζ)[I + 3A2ε
(j−1)
t − 7A3(ε

(j−1)
t )2 − 3A3(ε

(j))− 5A3(ε
(j−1)
t )(ε(j))] + O3(ε

(j−1)
t , ε(j)), (21)

where h = ε
(j−1)
t − ε(j).

From (21), we get

B(j) = −[I − 3A2ε
(j−1)
t + (9A2

2 − 7A3)(ε
(j−1)
t )2 + 3A3(ε

(j))

− (5A3 + 9A2 A3)(ε
(j−1)
t )(ε(j))]F′(ζ)−1 + O3(ε

(j−1)
t , ε(j)) (22)

and
I + B(j)F′(ζ) ∼ 3A2ε

(j−1)
t ∼ 3A2

2(I + B(j−1)F′(ε))(ε(j−1))2. (23)

Scheme 3. Using t(j−1) and z(j), we design another first-order divided difference operator
[2z(j) − t(j−1), z(j); F] and obtain the following variable parameter

B(j) = −[2z(j) − t(j−1), z(j); F]−1. (24)



Symmetry 2021, 13, 943 5 of 12

Using (2) and (3), we get

[2z(j) − t(j−1), z(j); F] = F′(z(j)) +
1
2

F′′(z(j))h +
1
6

F′′′(z(j))h2 + O(h3)

= F′(ζ)[I + 3A2ε(j) − A2(ε
(j−1)
t )− 5A3(ε

(j))(ε
(j−1)
t ) + A3(ε

(j−1)
t )2 + 4A3(ε

(j))2 + O3(ε
(j−1)
t , ε(j)), (25)

where h = ε(j) − ε
(j−1)
t .

From (25), we obtain

B(j) = −[I + A2ε
(j−1)
t − 3A2ε(j) + (9A2

2 − 5A3)(ε
(j−1)
t )ε(j) + (9A2

2 − 4A3)(ε
(j))2

− (3A2
2 + A3)(ε

(j−1)
t )2]F′(ζ)−1 + O3(ε

(j−1)
t , ε(j)), (26)

and
I + B(j)F′(ζ) ∼ A2ε

(j−1)
t ∼ −A2

2(I + B(j−1)F′(ζ))(ε(j−1))2. (27)

Scheme 4. The first-order divided difference operator [3z(j) − 2t(j−1), z(j); F] can be constructed
by using t(j−1) and z(j), then we obtain the following variable parameter

B(j) = −[3z(j) − 2t(j−1), z(j); F]−1. (28)

Using (2) and (3), we have

[3z(j) − 2t(j−1), z(j); F] = F′(z(j)) + F′′(z(j))h +
2
3

F′′′(z(j))h2 + O(h3)

= F′(ζ)[I + 4A2ε(j) − 2A2(ε
(j−1)
t )− 14A3(ε

(j))(ε
(j−1)
t )

+ 4A3(ε
(j−1)
t )2 + 13A3(ε

(j))2] + O3(ε
(j−1)
t , ε(j)), (29)

where h = 2(ε(j) − ε
(j−1)
t ).

From (29), we get

B(j) = −[I + 2A2ε
(j−1)
t − 4A2ε(j) + (16A2

2 − 14A3)(ε
(j−1)
t )(ε(j))

+ (16A2
2 − 13A3)(ε

(j))2 + (4A2
2 − 4A3)(ε

(j−1)
t )2]F′(ζ)−1 + O3(ε

(j−1)
t , ε(j)), (30)

and
I + B(j)F′(ζ) ∼ −2A2ε

(j−1)
t ∼ −2A2

2(I + B(j−1)F′(ζ))(ε(j−1))2. (31)

Scheme 5. Using (11) and (29), we obtain

[3z(j) − 2t(j−1), z(j); F] + [2t(j−1) − z(j), z(j); F]
2

= F′(ζ)[I + 2A2ε(j) + 7A3(ε
(j))2

+ 4A3(ε
(j−1)
t )2 − 8A3(ε

(j−1)
t )(ε(j))] + O3(ε

(j−1)
t , ε(j)). (32)

Using (32), we design the following variable parameter

B(j) = −( [3z(j) − 2t(j−1), z(j); F] + [2t(j−1) − z(j), z(j); F]
2

)−1

= −[I − 2A2ε(j) + (4A2
2 − 7A3)(ε

(j))2 − 4A3(ε
(j−1)
t )2 + 8A3(ε

(j−1)
t )(ε(j))]F′(ζ)−1 + O3(ε

(j−1)
t , ε(j)), (33)

and
I + B(j)F′(ζ) ∼ 2A2ε(j). (34)
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Scheme 6. Using (11) and (25), we get

B(j) = −( [2t(j−1) − z(j), z(j); F] + 2[2z(j) − t(j−1), z(j); F]
3

)−1 (35)

and
I + B(j)F′(ζ) ∼ 2A2ε(j). (36)

Scheme 7. Using (20) and (25), we design

B(j) = −( [2t(j−1) − z(j), t(j−1); F] + 3[2z(j) − t(j−1), z(j); F]
4

)−1 (37)

and
I + B(j)F′(ζ) ∼ 2A2ε(j). (38)

The first-order divided difference operators (11), (21), (25) and (29) are called Kurchatov-type
divided difference operator. Replacing parameter B of method (6) with Schemes 1–7, respectively,
we get seven new iterative methods with memory as follows:

s(j) = z(j) − [2t(j−1) − z(j), z(j); F]−1F(z(j)),
t(j) = z(j) − [s(j), z(j); F]−1F(z(j)),

z(j+1) = t(j) − [s(j), t(j); F]−1F(t(j)).
(39)


s(j) = z(j) − [2t(j−1) − z(j), t(j−1); F]−1F(z(j)),

t(j) = z(j) − [s(j), z(j); F]−1F(z(j)),
z(j+1) = t(j) − [s(j), t(j); F]−1F(t(j)).

(40)


s(j) = z(j) − [2z(j) − t(j−1), z(j); F]−1F(z(j)),

t(j) = z(j) − [s(j), z(j); F]−1F(z(j)),
z(j+1) = t(j) − [s(j), t(j); F]−1F(t(j)).

(41)


s(j) = z(j) − [3z(j) − 2t(j−1), z(j); F]−1F(z(j)),

t(j) = z(j) − [s(j), z(j); F]−1F(z(j)),
z(j+1) = t(j) − [s(j), t(j); F]−1F(t(j)).

(42)


s(j) = z(j) − ( [3z(j)−2t(j−1),z(j);F]+[2t(j−1)−z(j),z(j);F]

2 )−1F(z(j)),
t(j) = z(j) − [s(j), z(j); F]−1F(z(j)),

z(j+1) = t(j) − [s(j), t(j); F]−1F(t(j)).
(43)


s(j) = z(j) − ( [2t(j−1)−z(j),z(j);F]+2[2z(j)−t(j−1),z(j);F]

3 )−1F(z(j)),
t(j) = z(j) − [s(j), z(j); F]−1F(z(j)),

z(j+1) = t(j) − [s(j), t(j); F]−1F(t(j)).
(44)


s(j) = z(j) − ( [2t(j−1)−z(j),t(j−1);F]+3[2z(j)−t(j−1),z(j);F]

4 )−1F(z(j)),
t(j) = z(j) − [s(j), z(j); F]−1F(z(j)),

z(j+1) = t(j) − [s(j), t(j); F]−1F(t(j)).
(45)

The iterative process of the new methods (39)–(45) can be converted to solve linear
systems. For example, method (39) can be written by


[2t(j−1) − z(j), z(j); F]γ1 = −F(z(j)), s(j) = γ1 + z(j),

[s(j), z(j); F]γ2 = −F(z(j)), t(j) = z(j) + γ2,
[s(j), t(j); F]γ3 = −F(t(j)), z(j+1) = t(j) + γ3.

(46)
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Remark 1. Schemes 1–4 have the same error relations. So, methods (39)–(42) have the same
convergence order. Schemes 5–7 have different schemes with the same error relations, methods
(43)–(45) have the same convergence order.

The convergence orders of new schemes (39)–(42) are analyzed in the following result.

Theorem 1. Let ζ ∈ Rn be a zero of F : D ⊂ Rn → Rn that is sufficiently differentiable function
in an open neighborhood D of ζ. Suppose that initial guess z(0) is close enough to ζ. Then, iterative
methods (39)–(42) have the convergence order 2 +

√
5 ≈ 4.236 and the order of convergence of

methods (43)–(45) is 5.

Proof. Let h(j) = I + B(j)F′(ζ) in (19), then

h(j) ∼ 2A2
2(I + B(j−1)F′(ζ))(ε(j−1))2 ∼ 2A2

2h(j−1)(ε(j−1))2

∼ 4A4
2(h

(j−2))(ε(j−2))2(ε(j−1))2

∼ 2j A2j
2 (h(0))(ε(0))2(ε(1))2(ε(2))2 · · · (ε(j−2))2(ε(j−1))2. (47)

Suppose that the iterative sequence
{

z(j)
}

has the following error relation

ε(j+1) ∼ Dj+1(ε
(0))rj+1 , 0 ≤ j ≤ n, (48)

where ε(0) = z(0) − ζ , ε(k+1) = z(k+1) − ζ and Dj+1 is an asymptotic error constant.
From (7), (47) and (48), we get

ε(j+1) ∼ A2
2(I + B(j)F′(ζ))2(ε(j))3

∼ A2
2(h

(j))2(ε(j))3

∼ 22j A4j+2
2 h2

0(ε
(0))4(D1(ε

(0))r1 )4(D2(ε
(0))r2 )4 · · · (Dj−2(ε

(0))rj−2 )4(Dj−1(ε
(0))rj−1 )4(Dj(ε

(0))rj )3. (49)

Comparing the error ε(0) in (48) and (49), we get

rj+1 = 4 + 4r1 + 4r2 + · · ·+ 4rj−2 + 4rj−1 + 3rj. (50)

From (50), we have
rj+1 = 4rj + rj−1. (51)

Letting lim
j→∞

(rj+1/rj) = lim
j→∞

(rj/rj−1) = R and dividing (51) by rj, we get

R = 4 +
1
R

. (52)

The solution of Equation (52) is 2+
√

5. Therefore, method (39) with memory has order
R = 2 +

√
5 ≈ 4.236. The variable parameters (10), (20), (24) and (28) have the same error

relation, so methods (39)–(42) have the same convergence order.
From (7) and (34), we get

ε(j+1) ∼ A2
2(I + B(j)F′(ζ))2(ε(j))3 ∼ 4A4

2(ε
(j))5. (53)

Therefore, method (43) with memory has convergence order five. The variable pa-
rameters Schemes 5–7 have the same error relation, so methods (43)–(45) have the same
convergence order.
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3. Numerical Results

Our methods (39)–(45) are compared with Petković’s method (5) and Chicharro’s
method (8) for solving nonlinear systems and ODEs. For numerical experiments, Maple
14 with 2048 digits is used. The stopping criterion ||z(j) − z(j−1)|| < 10−100 is used in
numerical algorithms. The initial parameter B(0) is the identity matrix.

Tables 1–4 give the numerical results and the following information: NI means the
number of iterations, EF means function values at the last step, EV represents the error
values of ||z(j) − z(j−1)||, e− Time represents the CPU time (in second) and ACOC [20]
is the approximated computational order of convergence. Figures 1–4 show the iterative
processes of different methods for solving nonlinear systems.

Example 1.

1− 2

(
15

∑
j=1,j 6=i

z2
j

)
+ arctan zi = 0, i = 1, 2, · · · 15.

The solution ζ ≈ {0.2074, · · · ,0.2074}T is obtained by the initial guess
z(0) = {0.038, · · · 0.038}T .

Table 1. Convergence behavior of iterative methods for Example 1.

Methods NI EV EF ACOC e-Time

(5) 7 4.577 × 10−103 1.648 × 10−461 4.22419 15.537
(8) 6 6.536 × 10−182 5.328 × 10−726 3.97864 15.428

(39) 6 5.041 × 10−102 6.013 × 10−427 4.23649 15.943
(40) 7 1.645 × 10−313 1.562 × 10−1322 4.23601 18.111
(41) 6 9.817 × 10−191 3.228 × 10−803 4.23669 14.180
(42) 6 1.114 × 10−214 3.614 × 10−904 4.23381 15.319
(43) 6 5.202 × 10−262 1.988 × 10−1304 5.00000 20.280
(44) 6 6.070 × 10−262 4.302 × 10−1304 5.00000 20.623
(45) 6 5.833 × 10−262 3.526 × 10−1304 5.00000 19.000

The iterative processes of different methods for solving Example 1 are shown by
Figure 1. Figure 1 shows that our method (44) has higher computational accuracy than
other methods.

1 2 3 4 5 6
10

−300

10
−250

10
−200

10
−150

10
−100

10
−50

10
0

Nonlinear iterations

A
bs

ol
ut

e 
er

ro
r

Method(5)

Method(8)
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Figure 1. Iterative processes of different methods for Example 1.

Example 2.

zi − cos(2zi −
15

∑
j=1

zj) = 0, i = 1, 2, · · · 15,
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The solution ζ ≈ {0.939822, 0.939822 · · · , 0.939822}T is obtained by initial guess
z(0) = {0.5, 0.5, · · · , 0.5}T.

Table 2. Convergence behavior of iterative methods for Example 2.

Methods NI EV EF ACOC e-Time

(5) 12 5.059 × 10−417 3.088 × 10−1759 4.23598 39.998
(8) 7 3.408 × 10−299 3.497 × 10−1191 3.99832 12.776

(39) 7 2.323 × 10−288 9.941 × 10−1214 4.23562 14.242
(40) 7 2.484 × 10−298 1.108 × 10−1255 4.23561 14.851
(41) 6 8.864 × 10−134 2.159 × 10−559 4.24093 10.966
(42) 6 1.014 × 10−130 5.896 × 10−546 4.23542 10.764
(43) 7 7.681 × 10−176 2.609 × 10−870 4.99965 25.256
(44) 6 3.898 × 10−472 1.470 × 10−2046 5.00000 14.492
(45) 6 1.791 × 10−386 1.796 × 10−1923 5.00000 13.135

The iterative processes of different methods for solving Example 2 are shown by
Figure 2. Figure 2 shows that our method (44) has higher computational accuracy than
other methods. Methods (41) and (42) have the similar convergence behavior.
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Figure 2. Iterative processes of different methods for Example 2.

Example 3. Boundary-value problem [21]:

u′′(z) + eu(z) = 0, z ∈ [0, 1],
u(0) = 0, u(1) = 1.

Using difference method, the second derivative of this problem is discretized by

u′′j =
uj+1−2uj+uj−1

h2 , j = 1, 2, 3, · · · , n− 1,

The interval [0, 1] is divided into n smaller intervals with end points
0 = z0 < z1 < · · · < zn−1 < zn = 1. The partition is regular, this is 4zj = 1/n for all
j. We obtain the nonlinear systems as follows:

uj−1 − 2uj + uj+1 + h2euj = 0, j = 1, 2, 3, . . . , n− 1.

For n = 6, the solution {0.07748, 0.12494, 0.14093, . . . , 0.07748}T is founded by the initial
value is z(0) = (0.3, · · · 0.3)T . The numerical results are displayed in Table 3.
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Table 3. Convergence behavior of iterative methods for Example 3.

Methods NI EV EF ACOC e-Time

(5) 4 9.478 × 10−125 1.079 × 10−530 4.23909 1.154
(8) 5 6.828 × 10−371 1.072 × 10−1483 4.03695 1.669

(39) 4 1.172 × 10−102 1.181 × 10−436 4.20358 1.294
(40) 4 6.850 × 10−101 7.002 × 10−429 4.20758 1.372
(41) 4 1.353 × 10−105 1.369 × 10−449 4.19837 1.372
(42) 4 1.329 × 10−102 2.014 × 10−436 4.20446 1.357
(43) 4 3.818 × 10−143 2.243 × 10−718 5.00784 1.700
(44) 4 1.427 × 10−143 1.637 × 10−720 5.00409 1.794
(45) 4 1.841 × 10−143 5.854 × 10−720 5.00505 1.762

The iterative processes of different methods for solving Example 3 are shown by
Figure 3. Figure 3 show that our method (44) has higher computational accuracy than other
methods. Methods (39), (40) and (41) have the similar convergence behavior for Example 3.
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Figure 3. Iterative processes of different methods for Example 3.

Example 4. Boundary-value problem [22]:

u′′(z)− u(z)3 − sin(u′(z)2) = 0, z ∈ [0, 1],
u(0) = 0, u(1) = 1.

The first derivative is discretized by

u′j =
uj+1−uj−1

2h , j = 1, 2, 3, · · · , n− 1.

We get the following nonlinear systems by using the same discretization method as Example 3

uj−1 − 2uj + uj+1 − h2u3
j − h2sin((

uj−1−uj+1
2h )2) = 0, j = 1, 2, 3, . . . , n− 1.

For n = 8, the solution {0.0846, 0.1767, 0.2776, . . . , 0.8159}T is founded by the initial guess
z(0) = (0.97, · · · 0.97)T . Table 4 shows the numerical results.

Tables 1–4 show that our iterative methods (43)–(45) with memory are superior to
Petković’s method (5) and Chicharro’s method (8) with memory in terms of convergence
order and iterative methods (40)–(41) cost less computing time than other methods. Meth-
ods (43)–(45) have the similar computational accuracy, so we omit methods (43) and (45) in
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Figures 1–4. Figures 1–4 show that our methods (44) have higher computational accuracy
than other methods.

Table 4. Convergence behavior of iterative methods for Example 4.

Methods NI EV EF ACOC e-Time

(5) 8 1.932 × 10−132 3.291 × 10−559 4.26779 9.750
(8) 6 6.690 × 10−282 1.315 × 10−1002 3.54607 9.094

(39) 5 4.488 × 10−111 4.446 × 10−468 4.32150 7.410
(40) 5 4.697 × 10−102 1.137 × 10−429 4.23216 7.488
(41) 5 5.905 × 10−128 4.505 × 10−540 4.24952 7.534
(42) 5 5.803 × 10−102 2.515 × 10−429 4.27379 7.566
(43) 5 1.956 × 10−146 6.081 × 10−730 5.04097 9.687
(44) 5 3.845 × 10−167 1.974 × 10−833 5.05028 9.672
(45) 5 1.104 × 10−121 7.583 × 10−517 4.29476 9.703

The iterative processes of different methods for solving Example 4 are shown by
Figure 4. Figure 4 shows that our method (44) has higher computational accuracy than
other methods.
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Figure 4. Iterative processes of different methods for Example 4 .

4. Conclusions

In this paper, we proposed four new Kurchatov-type first-order divided operators.
Using these new Kurchatov-type first-order divided operators, we designed some new
accelerating parameters and constructed seven derivative-free iterative methods with
memory for solving nonlinear systems. The local convergence order of Chicharro’s method
without memory (6) was improved from 3 to 2+

√
5 ≈ 4.236 and 5, respectively. Numerical

results support the theoretical results. We should note that the main objective of this paper
was to develop a high-order method and prove the local convergence order of new methods.
The initial approximation must be close enough to zero of the nonlinear function. If the
initial approximation is far from the zero of nonlinear function, then the iterative sequence
generated by iterative method converges slowly or diverges. Therefore, the choice of good
initial approximations is very important to iterative methods. Some strategies for finding
sufficiently good initial approximation have been proposed [23–25]. Finding good initial
approximation for multipoint iterative method needs further research.
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