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Abstract: In this paper, a ratio test based on bootstrap approximation is proposed to detect the persis-
tence change in heavy-tailed observations. This paper focuses on the symmetry testing problems
of I(1)-to-I(0) and I(0)-to-I(1). On the basis of residual CUSUM, the test statistic is constructed
in a ratio form. I prove the null distribution of the test statistic. The consistency under alternative
hypothesis is also discussed. However, the null distribution of the test statistic contains an unknown
tail index. To address this challenge, I present a bootstrap approximation method for determining
the rejection region of this test. Simulation studies of artificial data are conducted to assess the finite
sample performance, which shows that our method is better than the kernel method in all listed
cases. The analysis of real data also demonstrates the excellent performance of this method.

Keywords: bootstrap test; heavy-tailed sequence; change in persistence

1. Introduction

Change point analysis is used in a wide range of fields such as biology, medicine,
finance, etc. The hot research topics in change point analysis are how to test structural
changes of the statistical model and how to estimate the change points. The detection
of a change point is very meaningful, which can help in building a more reasonable
model. Over the past few decades, many economic and financial data have displayed
changes in persistence. This type of change causes substantial practical problems, especially
concerning inflation rates, short-term interest rates, and government budget deficits. There
is a rich literature on the detection of such change points. Kim [1] and Kim et al. [2]
proposed the ratio test for a change in persistence. Leybourne et al. [3] discussed the ADF
test method. The LBI test was also considered, such as by Busetti and Taylor [4] and by
Leybourne and Taylor [5]. More recently, Leybourne et al. [6] proposed a CUSUM test.
Sibbertsen and Kruse [7] studied the change point problem of long-range dependence series.
Belaire-Franch and Contreras [8] presented a nonparametric unit root test. Halunga and
Osborn [9] summarized the ratio-based estimators of persistence change points. Kejriwal
et al. [10] considered the Wald tests for detecting multiple persistence changes. Perron
et al. [11] proposed a test for the presence of a nonlinear deterministic trend to determine
whether the noise component is stationary or contains an autoregressive unit root. In [12],
the unit root test on the panel AR(1) model was discussed. Kejriwal et al. [13] presented
bootstrap procedures for detecting multiple persistence shifts. The abovementioned work
has a common limitation: they are for a time series with finite variance.

It is also important to studying the sequences of infinite variance. This type of se-
quence has many interesting mathematical properties. In this paper, we present a new
approach to test persistence change in heavy-tailed sequences. We assume that the in-
novation follows a heavy-tailed distribution. This distribution regularly varies with tail
index κ satisfying 1 < κ < 2, so that the mean exists but the variance is infinite for the
sequence. There are a lot of heavy-tailed models in economics and finance; see, for example,
Davis and Mikosch [14], Kokoszka and Wolf [15], Soohan et al. [16], etc. Such data sets
are well explained by a heavy-tailed model rather than a Gaussian model. Therefore,
testing for change within this sequence has also attracted significant research interests.
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Horváth and Kokoszka [17] tested unit root in such an innovation case. Wang et al. [18]
presented a detection and estimation method of structural change in heavy-tailed sequence.

This paper focuses on symmetric I(1)-to-I(0) and I(0)-to-I(1) persistence change
detection problems for observations in heavy-tailed distribution. A bootstrap method is
proposed to test changes in persistence. First, we construct the test statistic into a ratio form
with residual CUSUM. The proposed statistic is a completely new attempt. It is different
from the traditional ratio statistic of Kim [1]. Then, we prove the null distribution of the test
statistic. We present its consistency under an alternative hypothesis. Moreover, a bootstrap
procedure is proposed for determining the rejection region of this test because the null
distribution contains an unknown tail index. Finally, the simulation results of artificial and
real data sets demonstrate the good performance of our method.

The remainder of this paper is organized as follows. Section 2 first introduces the
statistical model. Then, Section 3 presents the test method and theoretical results. Section 4
contains the simulation studies. The simulation shows the performance of our method is
excellent. Sections 5 and 6 present the discussion and the conclusions, respectively.

2. Statistical Model

The model discussed in this paper is as follows:

yt = µt + εt, (1)

εt = ρtεt−1 + et, t = 1, · · · , T, (2)

where µt = E(yt) = δTdt is a linear combination for a vector of nonrandom regressors
dt. We assume three different typical scenarios: dt = 0, dt = 1, and dt = (1, t)T . {et} is a
heavy-tailed sequence satisfying the following assumption.

Assumption 1. The sequence {et} is strictly stationary with symmetric univariate marginal
distributions, which satisfy

T × P(e1/aT ∈ ·) =⇒ µ(·), (3)

where aT is defined by T × P(|e1| > aT)→ 1, the notation ¡°=⇒¡± means weak convergence, and
the measure µ(·) is given by

2µ(dx) = κ|x|−κ−1 I{x < 0}dx + κx−κ−1 I{x > 0}dx, (4)

where 1 < κ < 2.

Lemma 1. If Assumption 1 holds, then

(
a−1

T

[Tτ]

∑
t=1

et, a−2
T

[Tτ]

∑
t=1

e2
t

)
d−→
(
U1(τ), U2(τ)

)
, (5)

where {U1(τ)} is a κ-stable and {U2(τ)} is a κ/2-stable Lévy process in [0, 1]. The nota-

tion ¡° d−→¡± stands for convergence in distribution.

Remark 1. This result was obtained by Resnick [19] and by Kokoszka and Wolf [15]. The quantities
aT can be denoted as aT = T1/κ L(T) for some slowly varying function L.

Consider the following null hypothesis:

H0 : yt ∼ I(1), t = 1, · · · , T, (6)

against the alternative hypothesis

H1 : yt ∼ I(1), t = 1, · · · , [Tτ0], (7)
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yt ∼ I(0), t = [Tτ0] + 1, · · · , T, (8)

where τ0 ∈ (0, 1), T is the sample size and [·] is the rounding function.
We also deal with the following test problem:

H
′
0 : yt ∼ I(0), t = 1, · · · , T, (9)

against the alternative hypothesis

H
′
1 : yt ∼ I(0), t = 1, · · · , [Tτ

′
0], (10)

yt ∼ I(1), t = [Tτ
′
0] + 1, · · · , T, (11)

where τ
′
0 ∈ (0, 1).

The goal of our paper is to detect H0 against H1 or to test H
′
0 against H

′
1. These are

two symmetry test problems. In model (1), the process {yt} is I(0) if |ρt| < 1, the process
{yt} is I(1) if |ρt| = 1. In this paper, we detect whether the process {yt} is I(1) throughout
the sample period or a change occurs from I(1) to I(0). We also test whether the process
{yt} is I(0) throughout the sample period or a change occurs from I(0) to I(1).

3. Monitoring Change in Persistence

In this section, we establish the ratio and bootstrap tests for persistence change prob-
lems. We demonstrate the construction of statistics and their good theoretical properties.

3.1. Detecting I(1) to I(0)

Let {ε̂0,t} be the OLS residuals from the regression of yt on dt, t = 1, · · · , [Tτ], and let
{ε̂1,t} be the OLS residuals from the regression of yt on dt , t = [Tτ] + 1, · · · , T. Under H0,
the average information of the sequence {ε̂0,t, t = 1, · · · , [Tτ]} should no be very different
from the average information of the sequence {ε̂1,t, t = [Tτ] + 1, · · · , T}. Take the average
of these two parts. The numerator and the denominator of the ratio should be close to
each other if there is no persistence change. On the other hand, the numerator and the
denominator are very different under H1. The ratio-form statistic is constructed as follows:

RT(τ) =

[τT]−2
[Tτ]

∑
t=1

ε̂2
0,t

[(1− τ)T]−2
T
∑

t=[Tτ]+1
ε̂2

1,t

. (12)

Based on (12), we can obtain three test statistics: maximum-chow statistic in An-
drews [20]:

max
τ∈Θ

RT(τ), (13)

mean-score statistic in Hansen [21]: ∫
τ∈Θ

RT(τ)dτ, (14)

mean-exponential statistic in Andrews and Ploberger [22]:

log{
∫

τ∈Θ
exp(RT(τ))dτ}, (15)

where τ ∈ Θ, Θ is a compact subset in [0, 1].



Symmetry 2021, 13, 936 4 of 22

Theorem 1. If Assumption 1 and the null hypothesis H0 hold,

RT(τ) =⇒
τ−2Vj,0(τ)

(1− τ)−2Vj,1(τ)
≡ R∞(τ) (16)

and
H(RT) =⇒ H(R∞), (17)

where H(·) denotes the statistics (13)–(15). The notation j = 1 signifies the model with dt = 0,
j = 2, and j = 3 denote dt = 1 and dt = (1, t)T respectively.

V1,1(τ) =
∫ 1

τ
U1(r)2dr, V1,0(τ) =

∫ τ

0
U1(r)2dr; (18)

V2,1(τ) = V1,1(τ)−
1

1− τ
G1(τ)

2, V2,0(τ) = V1,0(τ)−
1
τ

K1(τ)
2; (19)

V3,1(τ) = V1,1(τ) + 4(1− τ)−1
(

3(1− τ)−1G1(τ)G2(τ)− G1(τ)
2 − 3(1− τ)−2G2(τ)

2
)

; (20)

V3,0(τ) = V1,0(τ) + 4τ−1(3τ−1K1(τ)K2(τ)− K1(τ)
2 − 3τ−2K2(τ)

2); (21)

K1(τ) =
∫ τ

0
U1(r)dr, K2(τ) =

∫ τ

0
rU1(r)dr; (22)

G1(τ) = K1(1)− K1(τ), G2(τ) = K2(1)− K2(τ). (23)

The following Theorem 2 shows the consistency of the test.

Theorem 2. If Assumption 1 and the alternative hypothesis H1 hold, then RT(τ) = OP(1) when
0 < τ < τ0, RT(τ) = OP(T) when τ0 ≤ τ < 1. Thus, if [τ0, 1] ∩Θ 6= , H(RT) = OP(T).

3.2. Detecting I(0) to I(1)

The notations ε̂0,t and ε̂1,t have similar meanings as before. The statistic is constructed
symmetrically as follows:

MT(τ) =

[(1− τ)T]−2
T
∑

t=[Tτ]+1
ε̂2

1,t

[τT]−2
[Tτ]

∑
t=1

ε̂2
0,t

. (24)

Based on (24), we can obtain three analogous test statistics:

max
τ∈Θ

MT(τ), (25)

∫
τ∈Θ

MT(τ)dτ, (26)

log{
∫

τ∈Θ
exp(MT(τ))dτ}, (27)

where τ ∈ Θ, Θ is a compact subset in [0, 1].

Theorem 3. If Assumption 1 and the null hypothesis H
′
0 hold (assuming that |ρt| = |ρ| < 1),

we have

MT(τ) =⇒
(1− τ)−2Wj,1(τ)

τ−2Wj,0(τ)
≡ M∞(τ) (28)
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and
H(MT) =⇒ H(M∞), (29)

where H(·) denotes the statistics (25)–(27). The notation j = 1 signifies the model with dt = 0,
j = 2, and j = 3 denote dt = 1 and dt = (1, t)T respectively.

W1,0(τ) = W2,0(τ) = W3,0(τ) = Ψ2
2U2(τ), (30)

W1,1(τ) = W2,1(τ) = W3,1(τ) = Ψ2
2U2(1− τ), (31)

where Ψ2 denotes l2 norm of sequence {ϕj} and ϕj = ρj.

The following Theorem 4 shows the consistency of the test.

Theorem 4. If Assumption 1 and the alternative hypothesis H
′
1 hold, then MT(τ) = OP(T) when

0 < τ < τ
′
0 and MT(τ) = OP(1) when τ

′
0 ≤ τ < 1. Thus, if [0, τ

′
0] ∩Θ 6= , H(MT) = OP(T).

3.3. Bootstrap Approximation

The drawback of statistics RT(τ) and MT(τ) is that the asymptotic distributions
depend on the tail index κ. Mandelbrot [23] proposed a method for estimating the tail
index. However, the accuracy of this method was not good enough. In order to solve
this problem, we present the bootstrap method. The goal of this section is to discuss an
approximation rejection region of this test based on the statistic RT(τ), even if κ is unknown.
Take the case with I(1) changing into I(0) as an example.

The algorithm is as follows:
Step 1: Compute the centered residuals

ẽi = êi −
1
T

T

∑
i=1

êi, 1 ≤ i ≤ T, (32)

where êi = ε̂i − ρ̂ε̂i−1. ρ̂ is the OLS estimator of ρ on residuals ε̂1, ε̂2, ..., ε̂T .
Step 2: For a fixed N ≤ T, select with replacement a bootstrap sample {e∗i , i = 1, ..., N}

from {ẽi, i = 1, ..., T}.
Step 3: Calculate the bootstrap process

ε̂∗i = ρ̂ε̂∗i−1 + e∗i , i = 1, ..., N (33)

ỹi = δ̂Tdi + ε̂∗i , i = 1, ..., N (34)

and the statistic

R̃N(τ) =

[τN]−2
[Nτ]

∑
t=1

η̂2
0,t

[(1− τ)N]−2
N
∑

t=[Nτ]+1
η̂2

1,t

, (35)

where {η̂0,t} is the OLS residuals from the regression of ỹt on dt, t = 1, · · · , [Nτ] and {η̂1,t}
is the OLS residuals from the regression of ỹt on dt , t = [Nτ] + 1, · · · , N.

Step 4: Repeat Step 2 and Step 3 B times. The asymptotic critical value H(R) of
statistic H(RT) can be approximated by the empirical quantile of H(R̃). We reject the null
hypothesis if H(RT) > H(R).

In order to prove the convergence of R̃N(τ), we consider the following assumption:

Assumption 2. As T → ∞, then N → ∞ and N/T → 0.
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Theorem 5. If Assumption 1 and 2 hold, then for every real x,

Pε(R̃N(τ) ≤ x) P−→ P(R∞(τ) ≤ x), (36)

where ε = σ(ε j, j ≥ 1), Pε is the conditional probability with respect to ε and ¡° P−→¡± stands for
convergence in probability.

Remark 2. Theorem 5 implies that the bootstrap test has an asymptotically correct size. Addition-
ally, it also shows that the test with bootstrap add-on is consistent.

We can finish the bootstrap algorithm of detecting H
′
0 against H

′
1 similarly. We con-

struct the statistic

M̃N(τ) =

[(1− τ)N]−2
N
∑

t=[Nτ]+1
η̂2

1,t

[τN]−2
[Nτ]

∑
t=1

η̂2
0,t

. (37)

We can also obtain the corresponding conclusion of Theorem 5.

Theorem 6. If Assumptions 1 and 2 hold, then for every real x,

Pε(M̃N(τ) ≤ x) P−→ P(M∞(τ) ≤ x), (38)

where ε = σ(ε j, j ≥ 1), Pε is the conditional probability with respect to ε and ¡° P−→¡± stands for
convergence in probability.

Appendix A presents the mathematical proofs.

4. Simulation and Real-Data Analysis

In this section, simulation studies of artificial data are conducted to assess the finite
sample performance. The empirical sizes and powers perform well. Simulation results
show that our method is better than the kernel method in all listed cases. The analysis of
real data also demonstrates that this method is effective.

4.1. Simulation

We use R software to complete the simulation. To save computational time, we simply
show the results for dt = 1. The results for the dt = 0 and dt = (1, t)T cases are quite
similar.

To investigate the size and power property of the test, we consider the following data
generating process:

yt = r0 + εt, εt = ρεt−1 + et, t = 1, · · · , T. (39)

Null hypothesis:
H0 : ρ = 1, t = 1, · · · , T, (40)

against the alternative hypothesis:

H1 : ρ = 1, t = 1, · · · , [Tτ0], (41)

ρ = ρ0, t = [Tτ0] + 1, · · · , T, (42)

another null hypothesis:

H
′
0 : ρ = ρ0, t = 1, · · · , T, (43)
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against the corresponding alternative hypothesis:

H
′
1 : ρ = ρ0, t = 1, · · · , [Tτ

′
0], (44)

ρ = 1, t = [Tτ
′
0] + 1, · · · , T, (45)

where r0 = 0.1, ρ0 = 0.2, 0.5, 0.8, τ0 = 0.25, 0.35, and τ
′
0 = 0.3, 0.5. The innovation {et}

satisfies Assumption 1. We set the tail index κ = 1.14, 1.43, 1.97. This heavy-tailed sequence
is generated by a small program that can be downloaded from Professor Nolan’s website:
https://edspace.american.edu/jpnolan/, accessed on 20 May 2021.

The simulation study is based on different sample sizes T = 200, 500, 800 at nominal
levels α = 0.1 or α = 0.05. We consider the test statistic (13) and (25). We choose the appro-
priate bootstrap sample sizes N, which is not given in detail. Let N = {20, 25, 35}, {30, 35, 40},
{70, 100, 120}, respectively, and the bootstrap frequency B = 500 in this section.

In the case of detecting H0 against H1, the algorithm to calculate empirical sizes is
as follows (Algorithm 1):

Algorithm 1. Calculate empirical sizes detecting H0 against H1.

initialize count variable k = 0
repeat

Step A: Generate the data yt, t = 1, ..., T under H0 and calculate the statistics RT(τ)
and H(RT) = max

0.2≤τ≤0.8
RT(τ).

Step B: Repeat the Step 1, 2 and 3 in the bootstrap algorithm for B = 500 times in
Section 3.3. Calculate the empirical quantile of H(R̃N) = max

0.2≤τ≤0.8
R̃N(τ), which can be

denoted as RT,N .
Step C: If H(RT) > RT,N , we reject H0 and let k = k + 1.

until for 5000 times
return k/5000

The empirical sizes can be approximated by the frequency, which the null hypothesis
rejects with 5000 replications. Calculating the empirical powers is similar to the above
algorithm. Only change the data generating process under H1. The method to obtain the
empirical sizes and powers is also similar in the case of testing H

′
0 against H

′
1.

The empirical sizes and powers of the I(1) to I(0) test are provided in Tables 1–4.
The data in parentheses are the corresponding standard errors. We analyze the main
conclusions that can be drawn from Tables 1–4.

(1) The empirical sizes are almost close to the nominal level α in Table 1.
(2) From Tables 2–4, we can find the powers increase when the value of T is larger for

the same ρ0 and τ0. For fixed numbers T and τ0, the powers raise gradually with the
decrease in ρ0. The earlier change gives higher empirical power for the same T and
ρ0. This is a famous result in the detection of change points. Some powers are equal
to 1 in Table 4.

(3) The larger tail index κ, the higher empirical powers. This is due to the special
properties of heavy-tailed sequences. The smaller tail index κ, the more likely the
sequence is to contain ‘outliers’. The test statistics behave differently before and after
such points, which could seriously affect the performance of this test.

https://edspace.american.edu/jpnolan/
https://edspace.american.edu/jpnolan/
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Table 1. Empirical sizes (ρ0 = 0.5).

T N
κ = 1.14 κ = 1.43 κ = 1.97

α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

20 0.132 (0.024) 0.045 (0.014) 0.087 (0.019) 0.057 (0.016) 0.088 (0.020) 0.045 (0.014)
200 25 0.096 (0.020) 0.062 (0.017) 0.114 (0.022) 0.055 (0.016) 0.095 (0.020) 0.060 (0.017)

35 0.115 (0.022) 0.041 (0.014) 0.110 (0.022) 0.053 (0.016) 0.106 (0.022) 0.057 (0.016)

30 0.096 (0.013) 0.043 (0.009) 0.110 (0.014) 0.049 (0.009) 0.103 (0.013) 0.053 (0.010)
500 35 0.106 (0.014) 0.052 (0.010) 0.114 (0.014) 0.053 (0.010) 0.091 (0.013) 0.047 (0.009)

40 0.105 (0.014) 0.047 (0.009) 0.090 (0.013) 0.052 (0.010) 0.098 (0.013) 0.052 (0.010)

70 0.097 (0.010) 0.053 (0.008) 0.105 (0.011) 0.048 (0.008) 0.102 (0.010) 0.049 (0.008)
800 100 0.102 (0.010) 0.048 (0.008) 0.097 (0.010) 0.049 (0.008) 0.099 (0.010) 0.050 (0.008)

120 0.101 (0.010) 0.051 (0.008) 0.099 (0.010) 0.050 (0.008) 0.100 (0.010) 0.050 (0.008)

Table 2. Empirical powers κ = 1.14, α = 0.05.

τ0 T N ρ0 = 0.8 ρ0 = 0.5 ρ0 = 0.2

20 0.588 (0.035) 0.697 (0.033) 0.735 (0.031)
τ0 = 0.35 200 25 0.591 (0.035) 0.703 (0.032) 0.700 (0.033)

35 0.612 (0.035) 0.706 (0.032) 0.717 (0.032)

20 0.712 (0.032) 0.823 (0.026) 0.847 (0.025)
τ0 = 0.25 200 25 0.724 (0.032) 0.828 (0.026) 0.839 (0.026)

35 0.725 (0.032) 0.822 (0.026) 0.846 (0.025)

30 0.743 (0.019) 0.780 (0.018) 0.807 (0.018)
τ0 = 0.35 500 35 0.744 (0.019) 0.800 (0.018) 0.792 (0.018)

40 0.746 (0.019) 0.794 (0.018) 0.805 (0.018)

30 0.879 (0.014) 0.937 (0.011) 0.953 (0.009)
τ0 = 0.25 500 35 0.888 (0.014) 0.937 (0.011) 0.954 (0.009)

40 0.881 (0.014) 0.942 (0.010) 0.949 (0.010)

70 0.756 (0.015) 0.808 (0.014) 0.810 (0.014)
τ0 = 0.35 800 100 0.772 (0.015) 0.806 (0.014) 0.815 (0.014)

120 0.760 (0.015) 0.804 (0.014) 0.813 (0.014)

70 0.925 (0.009) 0.952 (0.008) 0.964 (0.007)
τ0 = 0.25 800 100 0.921 (0.010) 0.954 (0.007) 0.965 (0.006)

120 0.924 (0.009) 0.952 (0.008) 0.963 (0.007)

The empirical sizes and powers of the I(0) to I(1) test are provided in Tables 5–8.
The data in parentheses is the corresponding standard errors.We now present the main
conclusions of the simulation.

(1) The empirical sizes are almost the same as the nominal level α in Table 5.
(2) From Tables 6–8, we find that the powers increase when the value of T is larger

for the same ρ0 and τ0. For fixed numbers T and τ0, the powers raise gradually with the
decrease in ρ0. An earlier location of the change point results in a higher empirical power.
This is a famous result in the detection of change points.

(3) The larger tail index κ, the higher empirical powers. This is due to the special
properties of heavy-tailed sequences. The smaller tail index κ, the more likely the sequence
is to contain ‘outliers’. The test statistics behave differently before and after such points,
which could seriously affect the performance of this test.
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Table 3. Empirical powers κ = 1.43, α = 0.05.

τ0 T N ρ0 = 0.8 ρ0 = 0.5 ρ0 = 0.2

20 0.619 (0.035) 0.731 (0.031) 0.754 (0.030)
τ0 = 0.35 200 25 0.613 (0.035) 0.737 (0.031) 0.749 (0.031)

35 0.615 (0.035) 0.739 (0.031) 0.750 (0.031)

20 0.795 (0.028) 0.897 (0.021) 0.930 (0.018)
τ0 = 0.25 200 25 0.813 (0.028) 0.905 (0.021) 0.924 (0.019)

35 0.804 (0.028) 0.894 (0.022) 0.929 (0.018)

30 0.760 (0.019) 0.806 (0.018) 0.813 (0.017)
τ0 = 0.35 500 35 0.764 (0.019) 0.801 (0.018) 0.813 (0.017)

40 0.761 (0.019) 0.804 (0.018) 0.815 (0.017)

30 0.901 (0.013) 0.955 (0.009) 0.976 (0.007)
τ0 = 0.25 500 35 0.902 (0.013) 0.958 (0.009) 0.976 (0.007)

40 0.904 (0.013) 0.960 (0.009) 0.974 (0.007)

70 0.789 (0.014) 0.816 (0.014) 0.824 (0.013)
τ0 = 0.35 800 100 0.794 (0.014) 0.815 (0.014) 0.826 (0.013)

120 0.790 (0.014) 0.810 (0.014) 0.823 (0.013)

70 0.945 (0.008) 0.971 (0.006) 0.980 (0.005)
τ0 = 0.25 800 100 0.949 (0.008) 0.975 (0.005) 0.982 (0.005)

120 0.941 (0.008) 0.975 (0.005) 0.984 (0.004)

Table 4. Empirical powers κ = 1.97, α = 0.05.

τ0 T N ρ0 = 0.8 ρ0 = 0.5 ρ0 = 0.2

20 0.695 (0.033) 0.742 (0.031) 0.792 (0.028)
τ0 = 0.35 200 25 0.698 (0.033) 0.746 (0.031) 0.778 (0.029)

35 0.695 (0.033) 0.745 (0.031) 0.777 (0.029)

20 0.862 (0.024) 0.949 (0.015) 0.966 (0.013)
τ0 = 0.25 200 25 0.877 (0.023) 0.951 (0.015) 0.969 (0.012)

35 0.870 (0.024) 0.963 (0.013) 0.968 (0.012)

30 0.775 (0.019) 0.814 (0.017) 0.823 (0.017)
τ0 = 0.35 500 35 0.766 (0.019) 0.812 (0.018) 0.824 (0.017)

40 0.777 (0.019) 0.810 (0.018) 0.823 (0.017)

30 0.975 (0.007) 0.988 (0.005) 0.995 (0.003)
τ0 = 0.25 500 35 0.974 (0.007) 0.990 (0.004) 1 (0)

40 0.970 (0.008) 0.991 (0.004) 1 (0)

70 0.806 (0.014) 0.823 (0.013) 0.835 (0.013)
τ0 = 0.35 800 100 0.803 (0.014) 0.826 (0.013) 0.837 (0.013)

120 0.805 (0.014) 0.829 (0.013) 0.838 (0.013)

70 0.990 (0.003) 0.995 (0.002) 1 (0)
τ0 = 0.25 800 100 0.989 (0.004) 0.996 (0.002) 1(0)

120 0.987 (0.004) 1 (0) 1 (0)

We compare our method with the kernel-weighted ratio method (Chen et al. [24]).
The empirical powers of the I(0) to I(1) tests are provided in Table 9. We let T = 200, 500,
κ = 1.43 and the location of change point τ

′
0 = 0.5. The other parameters are set as before.

In the kernel method, we choose bandwidth h = 0.2M, where the start time M is set to be
0.2T or 0.3T.
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Table 5. Empirical sizes (ρ0 = 0.5).

T N
κ = 1.14 κ = 1.43 κ = 1.97

α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

20 0.083 (0.019) 0.062 (0.017) 0.088 (0.020) 0.058 (0.016) 0.115 (0.022) 0.043 (0.014)
200 25 0.122 (0.023) 0.053 (0.016) 0.102 (0.021) 0.059 (0.017) 0.102 (0.021) 0.067 (0.018)

35 0.095 (0.020) 0.055 (0.016) 0.096 (0.020) 0.052 (0.016) 0.086 (0.019) 0.055 (0.016)

30 0.097 (0.013) 0.052 (0.010) 0.095 (0.013) 0.053 (0.010) 0.107 (0.014) 0.058 (0.010)
500 35 0.110 (0.014) 0.049 (0.009) 0.114 (0.014) 0.054 (0.010) 0.089 (0.013) 0.045 (0.009)

40 0.110 (0.014) 0.050 (0.010) 0.092 (0.013) 0.043 (0.009) 0.096 (0.013) 0.052 (0.010)

70 0.098 (0.010) 0.058 (0.008) 0.094 (0.010) 0.051 (0.008) 0.100 (0.010) 0.050 (0.008)
800 100 0.102 (0.010) 0.047 (0.007) 0.107 (0.011) 0.049 (0.008) 0.101 (0.010) 0.051 (0.008)

120 0.097 (0.010) 0.054 (0.008) 0.098 (0.010) 0.052 (0.008) 0.099 (0.010) 0.050 (0.008)

Table 6. Empirical powers κ = 1.14, α = 0.05.

τ
′
0 T N ρ0 = 0.2 ρ0 = 0.5 ρ0 = 0.8

20 0.895 (0.022) 0.883 (0.023) 0.817 (0.027)
τ
′
0 = 0.5 200 25 0.897 (0.021) 0.881 (0.023) 0.827 (0.027)

35 0.910 (0.020) 0.882 (0.023) 0.825 (0.027)

20 0.922 (0.019) 0.894 (0.022) 0.834 (0.026)
τ
′
0 = 0.3 200 25 0.926 (0.018) 0.894 (0.022) 0.832 (0.026)

35 0.925 (0.019) 0.893 (0.022) 0.833 (0.026)

30 0.920 (0.012) 0.890 (0.014) 0.843 (0.016)
τ
′
0 = 0.5 500 35 0.922 (0.012) 0.891 (0.014) 0.840 (0.016)

40 0.921 (0.012) 0.892 (0.014) 0.845 (0.016)

30 0.944 (0.010) 0.928 (0.011) 0.865 (0.015)
τ
′
0 = 0.3 500 35 0.939 (0.010) 0.931 (0.011) 0.868 (0.015)

40 0.940 (0.010) 0.932 (0.011) 0.866 (0.015)

70 0.935 (0.009) 0.928 (0.009) 0.858 (0.012)
τ
′
0 = 0.5 800 100 0.938 (0.009) 0.928 (0.009) 0.856 (0.012)

120 0.940 (0.008) 0.929 (0.009) 0.856 (0.012)

70 0.959 (0.007) 0.945 (0.008) 0.905 (0.010)
τ
′
0 = 0.3 800 100 0.960 (0.007) 0.944 (0.008) 0.905 (0.010)

120 0.956 (0.007) 0.942 (0.008) 0.906 (0.010)

Table 9 shows that our test method is better than the kernel-weighted test method in
all listed cases. The empirical powers of our method are always greater than that of the
kernel method at two different start times. The powers increase when the value of T is
larger for the same ρ0. For fixed number T, the powers raise gradually with the decrease
of ρ0. In particular, our advantage is more obvious when the sample size is 200. In other
words, we can obtain high empirical powers with a small sample size. Our method is more
efficient. The numerical simulation shows excellent performance of our method.
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Table 7. Empirical powers κ = 1.43, α = 0.05.

τ
′
0 T N ρ0 = 0.2 ρ0 = 0.5 ρ0 = 0.8

20 0.915 (0.020) 0.890 (0.022) 0.844 (0.026)
τ
′
0 = 0.5 200 25 0.917 (0.019) 0.891 (0.022) 0.841 (0.026)

35 0.913 (0.020) 0.887 (0.023) 0.833 (0.026)

20 0.954 (0.015) 0.937 (0.017) 0.847 (0.025)
τ
′
0 = 0.3 200 25 0.950 (0.015) 0.934 (0.018) 0.851 (0.025)

35 0.951 (0.015) 0.935 (0.018) 0.851 (0.025)

30 0.950 (0.010) 0.935 (0.011) 0.880 (0.014)
τ
′
0 = 0.5 500 35 0.945 (0.010) 0.933 (0.011) 0.888 (0.014)

40 0.943 (0.010) 0.928 (0.011) 0.885 (0.014)

30 0.961 (0.009) 0.952 (0.010) 0.912 (0.013)
τ
′
0 = 0.3 500 35 0.961 (0.009) 0.955 (0.009) 0.901 (0.013)

40 0.962 (0.009) 0.954 (0.009) 0.909 (0.013)

70 0.951 (0.008) 0.936 (0.009) 0.872 (0.012)
τ
′
0 = 0.5 800 100 0.953 (0.007) 0.930 (0.009) 0.878 (0.011)

120 0.947 (0.008) 0.929 (0.009) 0.877 (0.011)

70 0.966 (0.006) 0.955 (0.007) 0.933 (0.009)
τ
′
0 = 0.3 800 100 0.970 (0.006) 0.959 (0.007) 0.919 (0.010)

120 0.968 (0.006) 0.957 (0.007) 0.927 (0.009)

Table 8. Empirical powers κ = 1.97, α = 0.05.

τ
′
0 T N ρ0 = 0.2 ρ0 = 0.5 ρ0 = 0.8

20 0.922 (0.019) 0.895 (0.022) 0.863 (0.024)
τ
′
0 = 0.5 200 25 0.921 (0.019) 0.897 (0.021) 0.866 (0.024)

35 0.925 (0.019) 0.896 (0.022) 0.850 (0.0225)

20 0.955 (0.014) 0.949 (0.015) 0.877 (0.023)
τ
′
0 = 0.3 200 25 0.959 (0.014) 0.954 (0.015) 0.885 (0.023)

35 0.956 (0.014) 0.946 (0.016) 0.888 (0.022)

30 0.958 (0.009) 0.941 (0.010) 0.892 (0.014)
τ
′
0 = 0.5 500 35 0.957 (0.009) 0.940 (0.010) 0.895 (0.014)

40 0.957 (0.009) 0.942 (0.010) 0.890 (0.014)

30 0.976 (0.007) 0.957 (0.009) 0.923 (0.012)
τ
′
0 = 0.3 500 35 0.975 (0.007) 0.962 (0.009) 0.921 (0.012)

40 0.973 (0.007) 0.961 (0.009) 0.925 (0.012)

70 0.958 (0.007) 0.944 (0.008) 0.881 (0.011)
τ
′
0 = 0.5 800 100 0.959 (0.007) 0.942 (0.008) 0.883 (0.011)

120 0.959 (0.007) 0.946 (0.008) 0.884 (0.011)

70 0.978 (0.005) 0.964 (0.007) 0.942 (0.008)
τ
′
0 = 0.3 800 100 0.973 (0.006) 0.965 (0.006) 0.941 (0.008)

120 0.973 (0.006) 0.966 (0.006) 0.945 (0.008)
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Table 9. Empirical powers of our method and the kernel method.

T N ρ0 Our Method Kernel Method

M = 0.2T M = 0.3T

T = 200

N = 20
0.2 0.915 0.784 0.751
0.5 0.890 0.766 0.679
0.8 0.844 0.757 0.644

N = 25
0.2 0.917 0.785 0.755
0.5 0.891 0.765 0.677
0.8 0.841 0.755 0.642

N = 35
0.2 0.913 0.786 0.752
0.5 0.887 0.766 0.676
0.8 0.833 0.752 0.641

T = 500

N = 30
0.2 0.950 0.934 0.910
0.5 0.935 0.880 0.847
0.8 0.880 0.849 0.731

N = 35
0.2 0.945 0.936 0.911
0.5 0.933 0.888 0.845
0.8 0.888 0.851 0.729

N = 40
0.2 0.943 0.933 0.910
0.5 0.928 0.886 0.848
0.8 0.885 0.850 0.730

4.2. Real-Data Analysis

There is growing evidence to indicate that many economic and financial time se-
quences have heavy-tailed features. Sometimes, the data contains changes in persistence.
We apply the ratio test method to analyze the foreign exchange rate data. The data set con-
tains 300 monthly foreign exchange rates for Sweden/US from January 1971 to December
1995. Figure 1 shows the real data. The data used here can be found on the website of
the Federal Reserve Bank of St. Louis. Figure 2 describes the first-order difference of the
original data in Figure 1. From Figure 2, we can see that there exist many ’outliers’.

0 50 100 150 200 250 300
3

4

5

6

7

8

9

10

Figure 1. Monthly exchange rate data for Sweden/US.



Symmetry 2021, 13, 936 13 of 22

0 50 100 150 200 250 300
−0.5

0

0.5

1

Figure 2. First order difference data for Figure 1.

According to Figure 1, the real data maybe has a persistence change from I(0) to I(1).
We apply our method to detect persistence change in this sequence. First, we used the
bootstrap approximation method to determine the rejection domain by the statistic (37).
Then, we discovered that the test statistic is larger than the critical value. Therefore, we
reject the null hypothesis. This means there could be a change point in persistence from
I(0) to I(1). Based on Kim’s [1] method, the change point estimation is 104. This coincides
with our detection results.

One question we have is whether the conclusion of a rejection is caused by persistence
change points or by ’outliers’. In order to solve this problem and to make our conclusion
more reliable, we also tested the first-order difference data in Figure 2. The monitoring
process that used the same parameters as before does not discover changes in persistence.
This result shows that the initial data contains a possible change point and that the first-
order difference series is stationary.

Furthermore, we conclude that there could be a change point in persistence from I(0)
to I(1). The estimated change point 104 is located at the point August, 1979. Referring to
the history of the American economic policy, this estimated location can be well interpreted.
In the second half of the 1970s, the US government decided to adopt an expansionary fiscal
policy and a monetary policy to stimulate the economy due to the high inflation, high
unemployment rate, and economic growth rate of the US economy. After President Reagan
took office, the dollar began to strengthen and the foreign exchange rate for Sweden/US
reached its highest point in July 1985. Thus, this implies that the sequence goes from
stationary to nonstationary because of the stimulus of the economic policy.

5. Discussion

We focused on the symmetric I(1)-to-I(0) and I(0)-to-I(1) persistence change testing
problems in this paper. A ratio test based on bootstrap approximation was proposed to
detect this type of change in heavy-tailed observations. On the basis of residual CUSUM,
the test statistic was constructed in a ratio form. We proved the null distribution of the test
statistic. The consistency under alternative hypothesis was also discussed. However, the
null distribution of the test statistic contains an unknown tail index. Then, we presented
the bootstrap methodology.

Over the past few decades, many economic and financial data have displayed changes
in persistence. This type of changes causes substantial practical problems concerning
inflation rates, short-term interest rates, and government budget deficits, especially the
issue of inflation persistence that plays a key role in the formulation and evaluation of
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quantitative macroeconomic models; see Korenok et al. [25]. Furthermore, a possible
application of testing persistence change is to predictive regression, predicting a low-
persistence I(0) variable such as stock returns using a highly persistent predictor; see
Kejriwal et al. [13] and Verdickt et al. [26].

Our study thus offers a new strategy to treat persistence change detecting problems.
There are still some shortcomings in our work: for example, how to select the bootstrap
sample sizes N for a fixed T, how to determine the direction of the persistence change, etc.
We will conduct further research into these questions.

6. Conclusions

In this paper, the new ratio and bootstrap test for persistence change with heavy-
tailed innovations was proposed. This paper focuses on the I(1)-to-I(0) and I(0)-to-I(1)
persistence change detecting problems. We derived the asymptotic distributions of the ratio
tests under the corresponding null hypothesises. However, the asymptotic distributions
are dependent on tail index κ, which is unknown and difficult to estimate. To solve this
problem, we presented an approximate method based on the bootstrap methodology. As
most subsampling methods, our approach relies on the choice of the subsample size
N. Under the alternative, we proved the consistency of the ratio and bootstrap test. The
simulation results show that the empirical sizes and powers perform well. In conclusion, the
ratio test based on bootstrap method constitutes an effective tool for detecting persistence
change with heavy-tailed sequence.
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Appendix A

Lemma A1 ([24]). If the time series {εt} was generated by the AR(1) process (2) with |ρt| =
|ρ| < 1 and the innovation process {et} satisfies Assumption 1, then

(
a−1

T

[Tτ]

∑
t=1

εt, a−2
T

[Tτ]

∑
t=1

ε2
t

)
d−→
(
ψ∞U1(τ), Ψ2

2U2(τ)
)
, (A1)

where ψ∞ =
∞
∑

j=0
ϕj, Ψ2 denotes the l2 norm of sequence {ϕj} and ϕj = ρj.

Proof of Theorem 1. Under H0, εt =
t

∑
i=1

ei. If dt = 0, ε̂0,t = yt = εt and ε̂1,t = yt = εt, then

Lemma 1 gives that,

T−1a−2
T

[Tτ]

∑
t=1

ε̂2
0,t = T−1

[Tτ]

∑
t=1

(a−1
T

t

∑
i=1

ei)
2 =⇒

∫ τ

0
U1(r)2dr ≡ V1,0(τ),

https://www.stlou-isfed.org/
https://www.stlou-isfed.org/
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T−1a−2
T

T

∑
t=[Tτ]+1

ε̂2
1,t = T−1

T

∑
t=[Tτ]+1

(a−1
T

t

∑
i=1

ei)
2 =⇒

∫ 1

τ
U1(r)2dr ≡ V1,1(τ).

If dt = 1,

ε̂0,t = εt −
1

[Tτ]

[Tτ]

∑
i=1

εi, ε̂1,t = εt −
1

[T(1− τ)]

T

∑
i=[Tτ]+1

εi,

We have

a−2
T

[Tτ]

∑
t=1

ε̂2
0,t = a−2

T

[Tτ]

∑
t=1

ε2
t −

1
[Tτ]a2

T
(
[Tτ]

∑
t=1

εt)
2,

a−2
T

T

∑
t=[Tτ]+1

ε̂2
1,t = a−2

T

T

∑
t=[Tτ]+1

ε2
t −

1
[T(1− τ)]a2

T
(

T

∑
t=[Tτ]+1

εt)
2.

Hence

T−1a−2
T

[Tτ]

∑
t=1

ε̂2
0,t = T−1

[Tτ]

∑
t=1

(a−1
T

t

∑
i=1

ei)
2 − 1

[Tτ]/T
(T−1a−1

T

[Tτ]

∑
t=1

εt)
2

=⇒
∫ τ

0
U1(r)2dr− 1

τ

( ∫ τ

0
U1(r)dr

)2

≡ V2,0(τ),

T−1a−2
T

T

∑
t=[Tτ]+1

ε̂2
1,t = T−1

T

∑
t=[Tτ]+1

(a−1
T

t

∑
i=1

ei)
2 − 1

[T(1− τ)]/T
(T−1a−1

T

T

∑
t=[Tτ]+1

εt)
2

=⇒
∫ 1

τ
U1(r)2dr− 1

1− τ

( ∫ 1

τ
U1(r)dr

)2

≡ V2,1(τ).

If dt = (1, t)T , let δ = (α, β)T ; then, by the definition of LS, we can obtain(
α̂− α

β̂− β

)
=

(
∑ ∑ t

∑ t ∑ t2

)−1(
∑ εt

∑ tεt

)
,

where ∑ =
[Tτ]

∑
t=1

, if we estimate δ using the samples y1, ..., y[Tτ], and ∑ =
T
∑

t=[Tτ]+1
, if we

estimate δ using the samples y[Tτ]+1, ..., yT .

Consider ε̂0,t first; according to the continuous mapping theorem, we obtain

T−1a−1
T

[Tτ]

∑
t=1

εt =⇒
∫ τ

0
U1(r)dr ≡ K1(τ), (A2)

T−1a−1
T

[Tτ]

∑
t=1

tet =⇒ U1(τ)−
∫ τ

0
U1(r)dr,
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T−2a−1
T

[Tτ]

∑
t=1

tεt = T−2a−1
T
( [Tτ]

∑
t=1

tεt−1 +
[Tτ]

∑
t=1

tet

)
= T−2a−1

T

[Tτ]

∑
t=1

tεt−1 + OP(T−1)

=⇒
∫ τ

0
rU1(r)dr

≡ K2(τ).

(A3)

We have

T−1a−2
T

[Tτ]

∑
t=1

ε̂2
0,t = T−1a−2

T

[Tτ]

∑
t=1

(
εt − (α̂− α)− (β̂− β)t

)2

= T−1a−2
T

[Tτ]

∑
t=1

(
εt

2 + (α̂− α)2 + (β̂− β)2t2 − 2εt(α̂− α)

− 2(β̂− β)tεt + 2(α̂− α)(β̂− β)t
)

.

(A4)

The proof before gives that

T−1a−2
T

[Tτ]

∑
t=1

εt
2 =⇒

∫ τ

0
U1(r)2dr ≡ V1,0(τ), (A5)

combining (A2) and (A3) with a tedious calculation, we can obtain

T−1a−2
T

[Tτ]

∑
t=1

εt(α̂− α) =

(4[Tτ] + 2)(
[Tτ]

∑
t=1

εt)2 − 6(
[Tτ]

∑
t=1

tεt)(
[Tτ]

∑
t=1

εt)

Ta2
T [Tτ]([Tτ]− 1)

=⇒ 4τ−1K1(τ)
2 − 6τ−2K1(τ)K2(τ),

the rest of (A4) can be analysed similarly. Then,

T−1a−2
T

[Tτ]

∑
t=1

ε̂2
0,t =⇒ V1,0(τ) + 4τ−1(3τ−1K1(τ)K2(τ)− K1(τ)

2 − 3τ−2K2(τ)
2)

≡ V3,0(τ).

Similar arguments gives that

T−1a−2
T

T

∑
t=[Tτ]+1

ε̂2
1,t =⇒ V1,1(τ) + 4(1− τ)−1

(
3(1− τ)−1G1(τ)G2(τ)

− G1(τ)
2 − 3(1− τ)−2G2(τ)

2
)

≡ V3,1(τ).

The proof of Theorem 1 is finished.

Proof of Theorem 2. We omit proofs for the dt = 0 and dt = (1, t)T cases; these are
straightforward but tedious and follow the same logical development as those presented
for the dt = 1 case.

If a persistence change point occurs at [Tτ0] and if τ0 ≤ τ < 1, then Lemma 2 gives
that

a−2
T

T

∑
t=[Tτ]+1

ε̂2
1,t = a−2

T

T

∑
t=[Tτ]+1

ε2
t −

1
[T(1− τ)]a2

T
(

T

∑
t=[Tτ]+1

εt)
2 = OP(1).
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Since

a−2
T

[Tτ]

∑
t=1

ε̂2
0,t = a−2

T

[Tτ]

∑
t=1

ε2
t −

1
[Tτ]a2

T
(
[Tτ]

∑
t=1

εt)
2

= a−2
T

[Tτ0]

∑
t=1

ε2
t + a−2

T

[Tτ]

∑
t=[Tτ0]+1

ε2
t −

1
[Tτ]a2

T

(
(
[Tτ0]

∑
t=1

εt)
2

+ (
[Tτ]

∑
t=[Tτ0]+1

εt)
2 + 2(

[Tτ0]

∑
t=1

εt)(
[Tτ]

∑
t=[Tτ0]+1

εt)
)

,

(A6)

according to Lemma 2 and (A5), we can get

a−2
T

[Tτ]

∑
t=[Tτ0]+1

ε2
t = OP(1) a−2

T

[Tτ0]

∑
t=1

ε2
t = OP(T),

based on Lemma 2 and (A2), the remainder of (A6) can be dealt with analogously, then

a−2
T

[Tτ]

∑
t=1

ε̂2
0,t = OP(T).

Hence
RT(τ) = OP(T).

If 0 < τ < τ0, following the same proof line above, we obtain

RT(τ) = OP(1).

The statistics (13)–(15) are monotonic increasing functions. Thus,

H(RT) = OP(T).

This completes the proof of Theorem 2.

Proof of Theorem 3. Under H
′
0, if dt = 0, ε̂0,t = yt = εt, and ε̂1,t = yt = εt, then Lemma 2

gives that

a−2
T

[Tτ]

∑
t=1

ε̂2
0,t = a−2

T

[Tτ]

∑
t=1

ε2
t =⇒ Ψ2

2U2(τ) ≡W1,0(τ),

a−2
T

T

∑
t=[Tτ]+1

ε̂2
1,t = a−2

T

T

∑
t=[Tτ]+1

ε2
t =⇒ Ψ2

2U2(1− τ) ≡W1,1(τ).

If dt = 1,

ε̂0,t = εt −
1

[Tτ]

[Tτ]

∑
i=1

εi, ε̂1,t = εt −
1

[T(1− τ)]

T

∑
i=[Tτ]+1

εi,
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We have

a−2
T

[Tτ]

∑
t=1

ε̂2
0,t = a−2

T

[Tτ]

∑
t=1

ε2
t −

1
[Tτ]a2

T
(
[Tτ]

∑
t=1

εt)
2

= a−2
T

[Tτ]

∑
t=1

ε2
t −OP(T−1)

=⇒ Ψ2
2U2(τ)

≡W2,0(τ),

a−2
T

T

∑
t=[Tτ]+1

ε̂2
1,t = a−2

T

T

∑
t=[Tτ]+1

ε2
t −

1
[T(1− τ)]a2

T
(

T

∑
t=[Tτ]+1

εt)
2

= a−2
T

T

∑
t=[Tτ]+1

ε2
t −OP(T−1)

=⇒ Ψ2
2U2(1− τ)

≡W2,1(τ).

If dt = (1, t)T , let δ = (α, β)T , then by the definition of LS, we can obtain(
α̂− α

β̂− β

)
=

(
∑ ∑ t

∑ t ∑ t2

)−1(
∑ εt

∑ tεt

)
,

where ∑ =
[Tτ]

∑
t=1

, if we estimate δ using the samples y1, ..., y[Tτ], and ∑ =
T
∑

t=[Tτ]+1
, if we

estimate δ using the samples y[Tτ]+1, ..., yT .
Consider ε̂0,t first; according to the continuous mapping theorem, we obtain

T−1a−1
T

[Tτ]

∑
t=1

tεt =⇒ ψ∞
(
U1(τ)−

∫ τ

0
U1(r)dr

)
, (A7)

and we have

a−2
T

[Tτ]

∑
t=1

ε̂2
0,t = a−2

T

[Tτ]

∑
t=1

(
εt − (α̂− α)− (β̂− β)t

)2

= a−2
T

[Tτ]

∑
t=1

(
εt

2 + (α̂− α)2 + (β̂− β)2t2 − 2εt(α̂− α)

− 2(β̂− β)tεt + 2(α̂− α)(β̂− β)t
)

.

(A8)

Lemma 2 gives that

a−2
T

[Tτ]

∑
t=1

εt
2 =⇒ Ψ2

2U2(τ),
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combining Lemma 2 and (A7) with a tedious calculation, we can obtain

a−2
T

[Tτ]

∑
t=1

(α̂− α)2 =
1

a2
T [Tτ]([Tτ]− 1)2

(
(4[Tτ] + 2)2(

[Tτ]

∑
t=1

εt)
2 + 36(

[Tτ]

∑
t=1

tεt)
2

− 12(4[Tτ] + 2)(
[Tτ]

∑
t=1

εt)(
[Tτ]

∑
t=1

tεt)
)

= OP(T−1),

the rest of (A8) can be analysed similarly. Then,

a−2
T

[Tτ]

∑
t=1

ε̂2
0,t = a−2

T

[Tτ]

∑
t=1

εt
2 + OP(T−1) =⇒ Ψ2

2U2(τ) ≡W3,0(τ).

Similar arguments give that

a−2
T

T

∑
t=[Tτ]+1

ε̂2
1,t = a−2

T

T

∑
t=[Tτ]+1

εt
2 + OP(T−1) =⇒ Ψ2

2U2(1− τ) ≡W3,1(τ).

The proof of Theorem 3 is finished.
For the remainder of this part, we omit proofs for the dt = 0 and dt = (1, t)T

cases. These are simple but tedious and follow the same proof line as those discussed for
dt = 1.

Proof of Theorem 4. If a persistence change point occurs at [Tτ
′
0] and if 0 < τ < τ

′
0, then

Lemma 2 gives that

a−2
T

[Tτ]

∑
t=1

ε̂2
0,t = a−2

T

[Tτ]

∑
t=1

ε2
t −

1
[Tτ]a2

T
(
[Tτ]

∑
t=1

εt)
2

= a−2
T

[Tτ]

∑
t=1

ε2
t −

1
[Tτ]

(a−1
T

[Tτ]

∑
t=1

εt)
2

= OP(1).

Since

a−2
T

T

∑
t=[Tτ]+1

ε̂2
1,t = a−2

T

T

∑
t=[Tτ]+1

ε2
t −

1
[T(1− τ)]a2

T
(

T

∑
t=[Tτ]+1

εt)
2,

thus

T−1a−2
T

T

∑
t=[Tτ]+1

ε̂2
1,t = T−1a−2

T

[Tτ
′
0 ]

∑
t=[Tτ]+1

ε2
t + T−1a−2

T

T

∑
t=[Tτ

′
0 ]+1

ε2
t

− 1
T[T(1− τ)]a2

T

(
(

[Tτ
′
0 ]

∑
t=[Tτ]+1

εt)
2 + (

T

∑
t=[Tτ

′
0 ]+1

εt)
2

+ 2(
[Tτ
′
0 ]

∑
t=[Tτ]+1

εt)(
T

∑
t=[Tτ

′
0 ]+1

εt)
)

,

(A9)
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according to Lemma 2, we obtain

T−1a−2
T

[Tτ
′
0 ]

∑
t=[Tτ]+1

ε2
t = OP(T−1),

and based on the continuous mapping theorem, we obtain

T−1a−2
T

T

∑
t=[Tτ

′
0 ]+1

ε2
t =⇒

∫ 1

τ
′
0

U1(r)2dr = OP(1).

The remainder of (A9) can be dealt with analogously; then,

T−1a−2
T

T

∑
t=[Tτ]+1

ε̂2
1,t = OP(1).

Hence
MT(τ) = OP(T).

If τ
′
0 ≤ τ < 1, following a similar proof to that above, we obtain

MT(τ) = OP(1).

The statistics (25)–(27) are monotonic increasing functions. Thus,

H(MT) = OP(T).

This completes the proof of Theorem 4.

Proof of Theorem 5. To simplify the proof, we assume that the parameters δ and ρ in (1)
and (2) are known. If dt = 1, then

ε̂i = εi −
1
T

T

∑
i=1

εi, i = 1, ..., T.

This means êi ≡ ei in Step 1. Consider

ẽi = ei −
1
T

T

∑
i=1

ei, i = 1, ..., T.

When we select one of ẽ1, ..., ẽT , we select the corresponding unobservable noise
variable denoted as ei. This means that

e∗i = ei −
1
T

T

∑
i=1

ei, i = 1, ..., N.

Therefore,

a−1
N

[Nt]

∑
i=1

e∗i = a−1
N

[Nt]

∑
i=1

ei −
[Nt]
TaN

T

∑
i=1

ei.

By Lemma 1 and Assumption 2, we have

[Nt]
TaN

T

∑
i=1

ei =
[Nt]

T
T1/κ L(T)
N1/κ L(N)

1
aT

T

∑
i=1

ei ≤ 2(N/T)1−1/κ−γ 1
aT

T

∑
i=1

ei = op(1).

The above inequality follows from L(T)/L(N) ≤ 2(T/N)γ [27], and γ > 0 is chosen
so small that 1− 1/κ − γ > 0.
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Horváth and Kokoszka [17] showed that, for any bounded continuous functional f on
D[0, 1]

Pε

(
f (a−1

M

[Mt]

∑
i=1

ei) ≤ x
)

P−→ P( f (U1(t)) ≤ x).

Then, we can obtain

a−1
N

[Nt]

∑
i=1

e∗i =⇒ U1(t).

Similar arguments give that

a−2
N

[Nt]

∑
i=1

e∗i
2 =⇒ U2(t).

Hence, we can complete this proof using a similar proof to that of Theorem 1.

Proof of Theorem 6. The proof is similar to the proof of Theorem 3.
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