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Abstract: In the formalism of generalized holographic dark energy (HDE), the holographic cut-off is
generalized to depend upon LIR = LIR

(
Lp, L̇p, L̈p, · · · , Lf, L̇f, · · · , a

)
with Lp and Lf being the particle

horizon and the future horizon, respectively (moreover, a is the scale factor of the Universe). Based
on such formalism, in the present paper, we show that a wide class of dark energy (DE) models
can be regarded as different candidates for the generalized HDE family, with respective cut-offs.
This can be thought as a symmetry between the generalized HDE and different DE models. In this
regard, we considered several entropic dark energy models—such as the Tsallis entropic DE, the Rényi
entropic DE, and the Sharma–Mittal entropic DE—and found that they are indeed equivalent with the
generalized HDE. Such equivalence between the entropic DE and the generalized HDE is extended
to the scenario where the respective exponents of the entropy functions are allowed to vary with the
expansion of the Universe. Besides the entropic DE models, the correspondence with the generalized
HDE was also established for the quintessence and for the Ricci DE model. In all the above cases,
the effective equation of state (EoS) parameter corresponding to the holographic energy density was
determined, by which the equivalence of various DE models with the respective generalized HDE
models was further confirmed. The equivalent holographic cut-offs were determined by two ways:
(1) in terms of the particle horizon and its derivatives, (2) in terms of the future horizon horizon and
its derivatives.

Keywords: holographic dark energy; equivalence with generalized HDE; Tsallis dark energy; Rényi
dark energy; Sharma-Mittal dark energy; quintessence dark energy; ricci dark energy

1. Introduction

The holographic principle originates from black hole thermodynamics and string
theory and establishes a connection of the infrared cutoff of a quantum field theory, which is
related to the vacuum energy, with the largest distance of this theory [1–4]. This holographic
consideration is extensively applied in field cosmology, particularly when describing the
dark energy (DE) era, generally as the holographic dark energy (HDE) model [5–36]. It may
be stressed that instead of adding an extra term in the Lagrangian, the HDE is based on the
holographic principle and on the dimensional analysis, and from this perspective, the HDE
is significantly different than the other dark energy models. Apart from the dark energy
era, the holographic principle has also been successfully applied to the early inflationary
Universe [37–42]. Actually, during the early Universe, the size of the Universe was small,
due to which, the holographic energy density was significant to triggering an inflationary
scenario, and moreover, the holographic inflation was also found to be compatible with
the 2018 Planck constraints. Recently, some of our authors showed that the energy density
coming from the holographic principle is able to unify the early inflationary scenario with
the late dark energy era in a covariant formalism [43]. From a different viewpoint, the
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application of the holographic principle was extended to the bouncing scenario in [44–48],
where the holographic energy density helps to violate the energy conditions and in turn
leads to a bouncing universe.

Coming back to the dark energy context, the holographic dark energy density is
proportional to the inverse squared of the holographic cut-off (LIR), which is usually
assumed to be the same as the particle horizon (Lp) or the future horizon (Lf). However, the
fundamental form of the LIR is still a debatable topic in this context. It is worth mentioning
that the most generalized cut-off has been proposed in [9], where in particular, the cut-off
is considered to depend upon LIR = LIR(Lp, L̇p, L̈p, · · · , Lf, L̇f, · · · , a), which in turn leads
to the generalized version of HDE (known as “generalized HDE”). Said generalized form
of LIR immediately leads to the following question:

• Do there exist suitable form(s) of LIR such that various dark energy models (including
the entropic DE models) can be thought to be equivalent to the generalized HDE? If
so, then what will be the equivalent form(s) of LIR for the respective DE models?

In the present paper, we intend to address the above questions. For this purpose,
we consider several entropic DE models, such as the Tsallis entropic DE [49–62], the
Rényi entropic DE [63–68], and the Sharma–Mittal entropic DE [67,69,70]. Here it may be
mentioned that unlike the Tsallis and Rényi entropy functions, Sharma–Mittal entropy
represents a more general two-parameter function. In this regard, our investigation was
carried for two cases: (1) the respective exponents of the entropy functions were treated
as constant, whereas in the second case, (2) the exponents were allowed to vary with
cosmic time; in particular, for the latter case, the exponents were considered to depend
on the evolving Hubble parameter of the Universe. Besides the entropic DE models, the
quintessence [71–75] and the Ricci DE [23,29,76,77] models were used in the analysis. In the
case of the quintessence model, a non-minimally coupled scalar field with an exponential
potential provides the dark energy density, whereas in the Ricci DE scenario, the space-time
Ricci curvature provides the dark energy density. Both the quintessence and the Ricci DE
models are in fact viable with respect to various dark energy observations. Interestingly, we
show that all such entropic DE, quintessence and Ricci DE models are indeed equivalent
with the generalized HDE, with suitable forms of the corresponding cut-offs.

2. The Thermodynamics of Space-Time and Applications to Cosmology

After the thermodynamical properties of the black hole were clarified [78,79] and it
was claimed that the entropy of the black hole is proportional to the area A of the horizon,

S =
A

4G
, A = 4πr2

H , (1)

which is called Bekenstein–Hawking entropy, where rH is the horizon radius—and we
work in units where h̄ = kB = c = 1—there were long and active studies where the
connections between gravity and thermodynamics were clarified [80–82]. In the studies,
we found that the FRW equations can be also regarded as the first law of thermodynamics
when we consider the Bekenstein–Hawking entropy by using the cosmological apparent
horizon [83–85] as a realization of the thermodynamics of space-time [80].

If, however, there are long range forces, such as the electromagnetic force and the
gravitational force, we know that the systems are non-additive systems and the standard
Boltzmann–Gibbs additive entropy should not be applied and we should generalize the
entropy to the non-extensive Tsallis entropy [49–51], and recently there were several
attempts in this regard (see [52–62]). If we apply Tsallis entropy to the black hole, instead
of Bekenstein–Hawking entropy, one finds [52],

ST =
A0

4G

(
A
A0

)δ

. (2)
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In the above expression, A0 is a constant and δ is the new parameter that quantifies
the non-extensivity. Then if we apply Tsallis entropy by using the apparent horizon to the
cosmology, the FRW equations should be modified and the modification can be regarded
as the contribution from the dark energy.

In information theory, Rényi entropy is often used as the measure of the entanglement.
If we apply Rényi entropy to the black hole, one finds [63–67]:

SR =
A0

Gδ
ln
(

1 +
δ

4

(
A
A0

))
. (3)

Rényi entropy has been also used to explain dark energy [67].
Here it may be mentioned that both the Tsallis and Rényi entropy expressions belong

to the one-parametric entropy family; there is also a two-parametric generalized entropy
which is called Sharma–Mittal entropy (SSM) and is written as [67,69,70]:

SSM =
A0

Gα

{(
1 +

δ

4

(
A
A0

)) α
δ

− 1

}
, (4)

where A0 is a constant, and α and δ are two independent parameters. Some cosmic
applications of Sharma–Mittal entropy can be found in [69], where the Hubble horizon
plays the role of the cut-off, and no mutual interaction between the cosmos components is
taken into account.

Above considerations of different entropies eventually lead to different scenarios of
holographic dark energy, which will be discussed in the following two sections.

3. Dark Energy Corresponding to Tsallis, Rényi, and Sharma–Mittal Entropies

We assume Friedmann–Lemaître–Robertson–Walker (FLRW) space-time with a flat
spacial component, whose metric is given by

ds2 = −dt2 + a2(t) ∑
i=1,2,3

(
dxi
)2

. (5)

Here a(t) is called a scale factor.
If we define the Hubble rate H by H = ȧ

a , the radius rH of the cosmological horizon is
given by

rH =
1
H

. (6)

Then the entropy in the region inside the cosmological horizon could be given by the
Bekenstein–Hawking relation [82] in Equation (1). On the other hand, the flux of the energy
E or the increase of the heat Q in the region is given by

dQ = −dE = −4π

3
r3

H ρ̇dt = − 4π

3H3 ρ̇dt =
4π

H2 (ρ + p)dt , (7)

where we use the conservation law: 0 = ρ̇ + 3H(ρ + p). Then, by using the Hawking
temperature [83]

T =
1

2πrH
=

H
2π

, (8)

and the first law of thermodynamics TdS = dQ, one obtains Ḣ = −4πG(ρ + p), and by
integrating the expression, one obtains the first FLRW equation:

H2 =
8πG

3
ρ +

Λ
3

. (9)

Here the cosmological constant Λ appears as a constant of the integration.
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Instead of Bekenstein–Hawking entropy, Equation (1), we may use the non-extensive,
Tsallis entropy [49–51,54] in Equation (2). Then by applying the first law of thermodynamics
to the system, instead of Ḣ = −4πG(ρ + p), one gets [55]:

δ

(
H2

H2
1

)1−δ

Ḣ = −4πG(ρ + p) ; (10)

upon integrating which, one gets:

δ

2− δ
H2

1

(
H2

H2
1

)2−δ

=
8πG

3
ρ +

Λ
3

. (11)

Here a constant H1 is defined by A0 ≡ 4π
H2

1
. Then if we define the energy density ρT

and the pressure pT by

ρT =
3

8πG

H2 − δ

2− δ
H2

1

(
H2

H2
1

)2−δ
 , (12)

pT =
Ḣ

4πG

δ

(
H2

H2
1

)1−δ

− 1

− 3
8πG

H2 − δ

2− δ
H2

1

(
H2

H2
1

)2−δ
 , (13)

respectively. It is evident that ρT depends on the quadratic power of the Hubble parameter
and thus is symmetric with respect to the Hubble parameter. With the above forms of ρT
and pT, Equations (10) and (11) can be expressed as

Ḣ = −4πG[(ρ + p) + (ρT + pT)] ,

H2 =
8πG

3
(ρT + ρ) +

Λ
3

, (14)

respectively. Therefore, ρT and pT represent the energy density and pressure correspond
ing to Tsallis entropy. Consequently, the respective equation of state (EoS) parameter for
Tsallis entropy is given by

ωT =
pT

ρT
= −1 + 2

(
Ḣ
H2

)
δ

(
H2

H2
1

)1−δ

− 1

1− δ
2−δ

(
H2

H2
1

)1−δ

 (15)

It may be checked that the above expression of ωT leads to the conservation equation
for the Tsallis entropic energy density—i.e.,

ρ̇T + 3HρT(1 + ωT) = 0 . (16)

Here it deserves mentioning that the authors of [55] showed that the ωT in
Equation (15) leads to a viable dark energy epoch of our present Universe, where the
matter sector is considered to be dust. Moreover, the analysis is also extended to the case
where the radiation energy density is present too. In particular, due to the Tsallis entropic
energy density, the Universe exhibits the usual thermal history, with the sequence of matter
and dark-energy eras and the onset of acceleration occurs at around z ≈ 0.5 which is in
agreement with observations [55].
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In regard to the Rényi entropy Equation (3), the first law of thermodynamics gives

− H3Ḣ
H2 + δ

4 H2
1

= −4πG
3

ρ̇ , (17)

from which, we obtain

H2 =
8πG

3
ρ +

Λ
3
+

δ

4
H2

1 ln

(
H2

H2
1
+

δ

4

)
. (18)

Here the cosmological constant Λ appears as a constant of the integration again.
At this stage we may define the corresponding energy density and the pressure in the
following form:

ρR =
3δ

32G
H2

1 ln

(
H2

H2
1
+

δ

4

)
, (19)

pR = − Ḣ
4πG


1

1 + 4
δ

(
H2

H2
1

)
−

3δ

32G
H2

1 ln

(
H2

H2
1
+

δ

4

)
. (20)

Similarly to the Tsallis entropic case, the Rényi entropic energy density (i.e., ρR) seems
to be symmetric with respect to the Hubble parameter. Due to the above expressions
of ρR and pR, Equations (17) and (18) become similar to the usual Friedmann equations
where the total energy density and total pressure are given by ρeff = ρ + ρR and peff =
p + pR. Consequently, the EoS parameter corresponds to the Rényi entropy, and takes the
following form:

ωR =
pR

ρR
= −1− 8

3πδ

(
Ḣ
H2

1

)
1

ln
(

H2

H2
1
+ δ

4

)[
1 + 4

δ

(
H2

H2
1

)]
 . (21)

It may be mentioned that the above expression of ωR obeys the conservation equation
for Rényi entropic energy density. As shown in [67,68], the Rényi entropic energy density
(ρR) and the pressure (pR) can provide suitable description for the current accelerated
Universe, thereby leading to a dark energy model.

In case of Sharma–Mittal entropy, the first law of thermodynamics leads to the follow-
ing evolution of the cosmic Hubble parameter:(

1 +
δH2

1
4H2

) α
δ−1

Ḣ = −4πG(ρ + p) , (22)

by integrating which, we obtain

H2
1


(

δ
4

) α
δ−1

2− α/δ

(H2

H2
1

)2− α
δ

2F1

[
1− α

δ
, 2− α

δ
, 3− α

δ
;−4

δ

(
H2

H2
1

)]
=

8πG
3

ρ +
Λ
3

, (23)

where Λ is the constant of integration, 2F1 is the hypergeometric function, and to get the
above expression, we use the conservation equation of the matter components. Moreover,
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the constant H1 is related to A0 by A0 = 4π
H2

1
. Now if we define an energy density (ρSM) and

a pressure (pSM) like

ρSM =
3

8πG

H2 − H2
1


(

δ
4

) α
δ−1

2− α
δ

(H2

H2
1

)2− α
δ

2F1

[
1− α

δ
, 2− α

δ
, 3− α

δ
;−4

δ

(
H2

H2
1

)] , (24)

pSM =
Ḣ

4πG


(

1 +
δH2

1
4H2

) α
δ−1

− 1

− ρSM , (25)

respectively, then Equations (22) and (23) can be equivalently expressed as

Ḣ = −4πG[(ρ + p) + (ρSM + pSM)] ,

H2 =
8πG

3
(ρSM + ρ) +

Λ
3

. (26)

Thus we may argue that ρSM and pSM are the energy density and the pressure coming from
the cosmological description of Sharma–Mittal entropy. Furthermore, ρSM and pSM are
connected by the respective EoS, as given by

ωSM = −1 +
(

Ḣ
3H2

)
(

1 + δH2
1

4H2

) α
δ−1
− 1

1−
(
( δ

4 )
α
δ
−1

2− α
δ

)(
H2

1
H2

) α
δ−1

2F1

[
1− α

δ , 2− α
δ , 3− α

δ ;− 4
δ

(
H2

H2
1

)]
 , (27)

where we use Equations (24) and (25). The above form of ωSM immediately confirms
the conservation equation for the Sharma–Mittal entropic energy density. Furthermore,
as established in [67,69], the Sharma–Mittal entropic energy density leads to a late-time
acceleration epoch of our Universe. In [69], the Universe was considered to be filled by a
pressureless component and Sharma–Mittal entropic energy density, which do not have
any mutual interaction, and as a result, the present deceleration parameter was found to be
consistent with the present observation.

Before closing this section, here we would like to mention that the presence of entropic
energy densities indeed modify the FLRW equations. Such modifications can also be
encapsulated in the respective entropy functions. In particular, when we consider the
Bekenstein–Hawking entropy in the context of cosmology, one gets the usual FLRW equa-
tions and thus we have the expression like dS

dH = −2π/
(
GH3) which leads to S = S(H).

However for the modified entropy cases, the relation of S = S(H) will become different
compared to the Bekenstein–Hawking case. In particular, for the Tsallis entropy case, the
first FLRW Equation (11) leads to the following expression:

δ

(
H2

H2
1

)1−δ

HdH =
4πG

3
dρ , (28)

which along with the first law of thermodynamics (in Equation (7)), yields the respective
entropy in terms of the Hubble parameter as

dST

dH
= −2πδ

G

(
1

H3

)(
H2

H2
1

)1−δ

, (29)

which on integration, becomes ST = ST(H). It is evident that for δ = 1, the above expres-
sion becomes similar to that of the Bekenstein–Hawking case. Thereby the modification of
the Tsallis entropy compared to the Bekenstein-hawking case is clearly demonstrated by
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the expression of ST = ST(H). By a similar procedure, we can obtain the Rényi entropy
and the Sharma–Mittal entropy functions in terms of the Hubble parameter as

dSR

dH
= −2π

G

(
1

H3

)
1(

1 + δ
4

(
H2

1
H2

)) , (30)

dSSM

dH
= −2π

G

(
1

H3

)(
1 +

δ

4

(
H2

1
H2

)) α
δ−1

. (31)

Clearly, Equation (30) depicts that for δ = 1, one gets dSR
dH = −2π/

(
GH3), while

Equation (31) reveals that the situation α = δ leads to dSSM
dH = −2π/

(
GH3); i.e., they

become similar to that of the Bekenstein–Hawking entropy function for the aforesaid
conditions, respectively. Here we would like to mention that Equations (29)–(31) remains
symmetric under the transformation H → −H.

4. Generalized Holographic Energy

In the holographic principle, the holographic energy density is proportional to the
inverse squared infrared cutoff LIR, which could be related to the causality given by the
cosmological horizon:

ρhol =
3c2

κ2L2
IR

. (32)

Here κ2 = 8πG is the gravitational constant and c is a free parameter. The infrared
cutoff LIR is usually assumed to be the particle horizon Lp or the future event horizon Lf,
which are given as

Lp ≡ a
∫ t

0

dt
a

, Lf ≡ a
∫ ∞

t

dt
a

. (33)

Differentiating both sides of the above expressions leads to the Hubble parameter in terms
of Lp, L̇p or in terms of Lf, L̇f as

H
(

Lp, L̇p
)
=

L̇p

Lp
− 1

Lp
, H(Lf, L̇f) =

L̇f
Lf

+
1
Lf

. (34)

In [9], a general form of the cutoff was proposed:

LIR = LIR
(

Lp, L̇p, L̈p, . . . , Lf, L̇f, . . . , a
)

. (35)

Actually, the other dependency of LIR, particularly on the Hubble parameter, the Ricci
scalar and their derivatives, can be transformed to either Lp and their derivatives or L f and
their derivatives via Equation (34). The above cutoff could be chosen to be equivalent to a
general covariant gravity model:

S =
∫

d4√−gF
(

R, RµνRµν, RµνρσRµνρσ,2R,2−1R,∇µR∇µR, . . .
)

. (36)

We use the above expressions frequently in the following sections. With the help of
the generalized cut-off, we aim to show that the Tsallis, Rényi, and Sharma–Mittal entropic
dark energy may belong from the generalized dark energy family where the holographic
cut-offs are expressed in terms of the particle horizon and its derivatives or in terms of the
future horizon and its derivatives.
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A comparison of Equations (12) and (32) leads to the argument that Tsallis entropic
dark energy belongs to the generalized holographic dark energy family, where the corre-
sponding infrared cutoff LT is given by

3c2

κ2L2
T
=

3
8πG


(

L̇p

Lp
− 1

Lp

)2

− δ

2− δ
H2

1


(

L̇p
Lp
− 1

Lp

)2

H2
1


2−δ
 , (37)

in terms of Lp and its derivatives. To get the above expression, we use Equation (34).
Moreover, LT in terms of the future horizon and its derivatives are as follows:

3c2

κ2L2
T
=

3
8πG

( L̇f
Lf

+
1
Lf

)2

− δ

2− δ
H2

1


(

L̇f
Lf
+ 1

Lf

)2

H2
1


2−δ
 . (38)

Here we would like to determine whether the EoS parameter of the holographic
energy density corresponds to the cut-off LT, in particular, of ρhol = 3c2/

(
κ2L2

T
)
. In this

regard, the conservation equation of ρhol immediately yields the respective EoS parameter
(symbolized by Ω(T)

hol ) as

Ω(T)
hol = −1−

(
2

3HLT

)
dLT

dt
, (39)

where LT is obtained in Equation (37) (or Equation (38)) and the superscript “T” in the
above expression denotes the EoS parameter corresponds to the holographic cut-off LT.
Due to Equation (34), the above form of Ω(T)

hol seems to be equivalent to the EoS of the Tsallis

entropic energy density presented in Equation (15), i.e., Ω(T)
hol ≡ ωT. Said equivalence,

along with the fact that the Tsallis entropic energy density provides a viable dark energy
model, lead to the argument that the holographic energy density coming from the cut-off
LT is also able to produce a viable dark energy epoch at our current Universe.

Similarly, by comparing Equations (19) and (32), the infrared cutoff LR corresponding
to the Rényi entropy is given by

3c2

κ2L2
R
=

3δ

32G
H2

1 ln

 1
H2

1

(
L̇p

Lp
− 1

Lp

)2

+
δ

4

 =
3δ

32G
H2

1 ln

(
1

H2
1

(
L̇f
Lf

+
1
Lf

)2

+
δ

4

)
, (40)

where, once again, we used Equation (34). The first expression of Equation (40) gives the
LR in terms of Lp and its derivatives, while the second one represents the same in terms of
Lf and its derivatives. Once again, the conservation equation of the holographic energy
density ρhol = 3c2/

(
κ2L2

R
)

leads to the corresponding EoS parameter (Ω(R)
hol ) as

Ω(R)
hol = −1−

(
2

3HLR

)
dLR

dt
, (41)

where LR is given in Equation (40). It can be easily checked that the Ω(R)
hol satisfies the

conservation relation: ρ̇hol + 3H
(

1 + Ω(R)
hol

)
= 0, where ρhol represents the holographic

energy density coming from the cut-off LR. Equations (34) and (40) indicate that the above
expression of Ω(R)

hol proves to be equivalent with ωR in Equation (21), i.e., Ω(R)
hol ≡ ωR.

Thereby, since the Rényi entropic energy density suitably describes the current acceleration
of our Universe, we may argue that the holographic energy density coming from LR is able
to produce the late time cosmic acceleration.
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Finally, Equations (24) and (32) clearly argue that Sharma–Mittal entropic dark energy
can also be thought as one of the candidates for the generalized dark energy family, where
the corresponding cut-off (LSM) is given by

3c2

κ2L2
SM

=
3

8πG


(

L̇p

Lp
− 1

Lp

)2

− H2
1


(

δ
4

) α
δ−1

2− α/δ



(

L̇p
Lp
− 1

Lp

)2

H2
1


2− α

δ

×2F1

1− α

δ
, 2− α

δ
, 3− α

δ
;−4

δ


(

L̇p
Lp
− 1

Lp

)2

H2
1



 , (42)

in terms of the particle horizon and its derivatives. Similarly, the LSM in terms of the future
horizon and its derivatives is given by

3c2

κ2L2
SM

=
3

8πG


(

L̇f
Lf

+
1
Lf

)2

− H2
1


(

δ
4

) α
δ−1

2− α
δ



(

L̇f
Lf
+ 1

Lf

)2

H2
1


2− α

δ

×2F1

1− α

δ
, 2− α

δ
, 3− α

δ
;−4

δ


(

L̇f
Lf
+ 1

Lf

)2

H2
1



 . (43)

Furthermore, using the conservation relation of ρhol = 3c2/
(
κ2L2

SM
)
, we can determine

that the EoS parameter (Ω(SM)
hol ) corresponds to the holographic energy density coming

from the cut-off LSM as

Ω(SM)
hol = −1−

(
2

3HLSM

)
dLSM

dt
, (44)

where LSM is given in Equation (42) (or in Equation (43)). Due to Equation (34), it is evident
that the above form of Ω(SM)

hol is equivalent to the EoS of the Sharma–Mittal entropic energy

density of Equation (27), i.e., Ω(SM)
hol = ωSM. Due to this equivalence, we may argue that

the holographic energy density ρhol = 3c2/
(
κ2L2

SM
)

can produce the late-time acceleration
of our Universe.

Therefore, the dark energy models coming from Tsallis entropy, the Rényi entropy,
and Sharma–Mittal entropy can be thought as different candidates for the general-
ized holographic dark energy family, and the respective infrared cutoffs are given by
Equations (37)–(43) respectively. Thereby, such holographic cut-offs establish symmetry
between generalized HDE and the respective entropic DE model(s).

5. Extended Cases of Entropic Dark Energy Models

In this section we consider the models extended as in [86], where the non-extensive
exponent δ of Tsallis entropy, Equation (2), or Rényi entropy Equation (3), depends on the
energy scale and shows a running behavior [87]. In [87], it has been claimed that such
behaviors may appear because the entropy corresponds to physical degrees of freedom
and the degrees of freedom depend on the scale, as implied by the renormalization of a
quantum theory. In the case of gravity, if the space-time fluctuates at high energy scales,
the degrees of freedom may increase. On the other hand, if gravity becomes a topological
theory, the degrees of freedom may decrease.

In cosmology, if we assume that the energy scale could be given by the Hubble scale H,
δ in Equation (2), or Equation (3) may depend on H [87]. Thereby we use a dimensionless

variable x ≡ H2
1

H2 by introducing a parameter H1 whose dimension is identical to H. Then in
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case of the Tsallis entropy Equation (2), instead of Equation (11), one obtains the following
generalized first FLRW equation (see the Appendix A for the detailed derivation),

−H2
1

{
xδ(x)−2 + 2

∫ x
dxxδ(x)−3

}∣∣∣∣
x=

H2
1

H2

=
8πG

3
ρ +

Λ
3

, (45)

and we may define the effective energy density ρT by

ρT ≡
3

8πG

H2 + H2
1

{
xδ(x)−2 + 2

∫ x
dxxδ(x)−3

}∣∣∣∣
x=

H2
1

H2

 . (46)

Thereby the presence of a varying exponent in the Tsallis entropy modifies the FLRW
equations, which may have considerable impacts in the Universe’s evolution, both at high
and low energy scales. Clearly, in order to determine the explicit expression of ρT from
the above equation, one needs a functional form of δ(x). Some of our authors proposed
a suitable form of δ(x) in [87], which allows one to analytically perform the integration
in Equation (46) and also leads to an unified scenario of early inflation with late-time
acceleration. Actually, the form of δ(x) was chosen in such a way that at high and low
energy scales it acquires values away from the standard value 1, and at intermediate scales
it comes close to unity [87].

In case of the Rényi entropy Equation (3), the first law of thermodynamics gives (see
the Appendix A for the detailed derivation)

H2 =
8πG

3
ρ +

Λ
3
+ 4H2

1

∫ x
dxx−2

{(
δ(x)
16

1 + δ(x)
4 x

)
+

(
1

δ(x)2 ln
(

1 +
δ(x)

4
x
)
− 1

δ(x)

1
4 x

1 + δ(x)
4 x

)
δ′(x)

}∣∣∣∣∣
x=

H2
1

H2

, (47)

where δ′(x) = dδ
dx . Then we may define the effective energy density ρR corresponding to

Rényi entropy by

ρR ≡ 4H2
1

∫ x
dxx−2

{(
δ(x)
16

1 + δ(x)
4 x

)
+

(
1

δ(x)2 ln
(

1 +
δ(x)

4
x
)
− 1

δ(x)

1
4 x

1 + δ(x)
4 x

)
δ′(x)

}∣∣∣∣∣
x=

H2
1

H2

. (48)

The terms containing δ′(x) in the above expression of ρR arise due to the varying
exponent δ = δ(x). Such terms may play an important role during the early and late cosmic
evolution of the Universe. In particular, we expect that at high and low energy scales,
the δ(x) should deviate from the standard value unity and thus have a significant role in
driving the inflation or the late dark energy epoch. However the modified cosmology from
the Rényi entropy with a varying exponent has not been extensively studied in various
earlier literature. Thereby, it will be an interesting avenue to study the possible effects of ρR
in Equation (48) in the context of inflation or late-time acceleration, or even in the bouncing
scenario. However these are out of the scope from the present work, and thus we expect to
study it in future work.

Coming back to Sharma–Mittal entropy, there are two independent parameters
(α and δ), and in the extended scenario, we take α = α(x) and δ to be constant. However,
in the extended case of the Sharma–Mittal entropy, one may choose both the parameters
being dependent on x = H2

1 /H2, i.e., α = α(x) and δ = δ(x). For simplicity, here we stick
to the aforementioned consideration, i.e., α = α(x) and δ = constant. Said consideration
leads to the FLRW equation as (see the Appendix A for the detailed derivation)

−H2
1 f (x)

∣∣∣
x=

H2
1

H2

=
8πG

3
ρ +

Λ
3

, (49)

with,



Symmetry 2021, 13, 928 11 of 21

f (x) =
∫ x

dxx−2


(

1 +
δx
4

) α(x)
δ −1

− 4α′(x)
α(x)

(1 +
δx
4

) α(x)
δ

− 1

+
4α′(x)
α(x)δ

(
1 +

δx
4

) α(x)
δ

ln
(

1 +
δx
4

) . (50)

Consequently, the effective energy density corresponding to Sharma–Mittal entropy
can be shown as follows.

ρSM =
3

8πG

{
H2 + H2

1 f (x)
}∣∣∣∣

x=
H2

1
H2

. (51)

Equations (46), (48), and (51) immediately tell one that the infrared cut-offs LT, LR,
and LSM corresponding to the extended versions of Tsallis entropy, Rényi entropy, and
Sharma–Mittal entropy are given by

3c2

κ2L2
T
=

3
8πG

( L̇p

Lp
− 1

Lp

)2

+ H2
1

{
xδ(x)−2 + 2

∫ x
dxxδ(x)−3

}∣∣∣∣
x=H2

1

(
L̇p
Lp−

1
Lp

)−2


=

3
8πG

( L̇f
Lf

+
1
Lf

)2

+ H2
1

{
xδ(x)−2 + 2

∫ x
dxxδ(x)−3

}∣∣∣∣
x=H2

1

(
L̇f
Lf
+ 1

Lf

)−2

 , (52)

3c2

κ2L2
R
=

4H2
1

G

∫ x
dxx−2

{(
δ(x)
16

1 + δ(x)
4 x

)
+

(
1

δ(x)2 ln
(

1 +
δ(x)

4
x
)
− 1

δ(x)

1
4 x

1 + δ(x)
4 x

)
δ′(x)

}∣∣∣∣∣
x=H2

1

(
L̇p
Lp−

1
Lp

)−2

=
4H2

1
G

∫ x
dxx−2

{(
δ(x)
16

1 + δ(x)
4 x

)
+

(
1

δ(x)2 ln
(

1 +
δ(x)

4
x
)
− 1

δ(x)

1
4 x

1 + δ(x)
4 x

)
δ′(x)

}∣∣∣∣∣
x=H2

1

(
L̇f
Lf
+ 1

Lf

)−2
, (53)

and

3c2

κ2L2
SM

=
3

8πG


(

L̇p

Lp
− 1

Lp

)2

+ H2
1 f (x)


∣∣∣∣∣∣
x=H2

1

(
L̇p
Lp−

1
Lp

)−2

=
3

8πG

{(
L̇f
Lf

+
1
Lf

)2

+ H2
1 f (x)

}∣∣∣∣∣
x=H2

1

(
L̇f
Lf
+ 1

Lf

)−2
, (54)

respectively, with f (x) being shown in Equation (50). Therefore, even for the extended
case, the holographic energies coming from Tsallis entropy, Rényi entropy, and Sharma–
Mittal entropy can be expressed by the general infrared cutoffs in [9]. Interestingly, the
corresponding cut-offs are determined in terms of the particle horizon and its derivative or
in terms of the future horizon and its derivative.

6. Some Other DE Models and Their Equivalence with Generalized HDE

Besides the Tsallis, Rényi, and Sharma–Mittal entropic DE scenario, some other DE
models, in particular the quintessence [71–74] and Ricci DE models [23,29,76], are included
the present analysis. Their equivalence with the generalized HDE and the corresponding
cut-offs are discussed in the following two subsections respectively.

6.1. Quintessence Dark Energy

The present observation indicates that the equation of state parameter at the present
Universe is close to ω ' −1; however, this says little about the time evolution of ω, and
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thus we can broaden our situation and consider a dark energy model where the equation of
state changes with time. Said dark energy models are the scalar field dark energy models
where the dynamics of the scalar field over the FLRW space-time leads to a evolving EoS of
the Universe. So far, a large number of scalar field dark energy models have been proposed,
these include quintessence, phantoms, k-essence, tachyon, and dilatonic dark energy.

In this section, we consider the quintessence dark energy (QDE) model and aim to
show that QDE is equivalent to the generalized holographic dark energy model, where
LIR = LIR

(
Lp, L̇p, L̈p, Lf, L̇f, L̈f

)
. The QDE action is given by

S =
∫

d4x
√
−g
[

R
16πG

− 1
2

gµν∂µφ∂νφ−V(φ)

]
, (55)

where φ is the quintessence scalar field and V(φ) is its potential. The presence of the
potential is important in the dark energy context; otherwise the energy density and pressure
of the scalar field become equal, which in turn leads to a decelerating expansion of the
Universe. In particular, with V(φ) = 0, the FLRW scale factor of the Universe evolves as
a(t) ∼ t2/3, and thus the scalar field model without potential is not compatible with dark
energy observations. The quintessence potential has the following form [71–74],

V(φ) = V0 exp

[
−
√

16πG
p

φ

]
, (56)

with V0 and p being constants. The quintessence model with the above exponential
potential has been extensively studied in [74], where it was shown that the potential of
Equation (56) leads to a viable dark energy model with respect to SNIa, BAO, and H(z)
observations. However, the most stringent constraint on the dark energy EoS parameter
(ωQ) comes from the BAO observations—in particular, −1 < ωQ < −0.85 [74].

The FLRW equations corresponding to the action Equation (55) are

H2 =
8πG

3

(
1
2

φ̇2 + V(φ)

)
,

Ḣ =− 4πGφ̇2 , (57)

where, due to the homogeneity, the scalar field is considered to be the function of time only.
The first FLRW equation immediately leads to the quintessence energy density as

ρQ =
1
2

φ̇2 + V(φ) = − Ḣ
8πG

+ V(φ) , (58)

where in the second line, we use Ḣ = −4πGφ̇2. Equation (58) shows that the quintessence
energy density is not symmetric with respect to the Hubble parameter, unlike the case of
entropic dark energy models (that we considered earlier) where the entropic energy density
proves to be symmetric with respect to the Hubble parameter. The exponential form of
the quintessence potential (see Equation (56)) allows the following solutions of the Hubble
parameter and the scalar field:

H =
p
t

and φ(t) = 2
√

p
16πG

ln
(

t
t0

)
, (59)

respectively. Here t0 is fudicial time and V0, p, and t0 are related by the following con-
straint equation:

3p− 1 = V0t2
0

(
8πG

p

)
. (60)
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Furthermore, the evolution of the Hubble parameter clearly indicates that in order to
get an accelerating expansion of the Universe, the parameter p is constrained to be p > 1.
By using Equations (56) and (59), we can express the quintessence potential in terms of the
Hubble parameter as follows:

V(φ) =

(
3− 1

p

)
H2

8πG
. (61)

Plugging back the above expression into Equation (58), we get ρQ in terms of H and
Ḣ as

ρQ =
1

8πG

{(
3− 1

p

)
H2 − Ḣ

}
. (62)

Furthermore, the pressure in the present context is given by

pQ = − Ḣ
8πG

−V(φ) = − 1
8πG

{(
3− 1

p

)
H2 + Ḣ

}
, (63)

which, along with Equation (62) immediately leads to the corresponding EoS parameter:

ωQ = −

{(
3− 1

p

)
H2 + Ḣ

}
{(

3− 1
p

)
H2 − Ḣ

} . (64)

Having set the stage, now we are in a position to show the equivalence be-
tween QDE and the generalized holographic dark energy model. The comparison of
Equations (62) and (32) immediately leads to the equivalent holographic cut-off (LQ) corre-
sponds to the QDE as follows:

3c2

κ2L2
Q

=
1

8πG


(

3− 1
p

)(
L̇p

Lp
− 1

Lp

)2

−
(

L̈p

Lp
−

L̇2
p

L2
p
+

L̇p

L2
p

)
=

1
8πG

{(
3− 1

p

)(
L̇f
Lf

+
1
Lf

)2

−
(

L̈f
Lf
−

L̇2
f

L2
f
− L̇f

L2
f

)}
. (65)

Thereby the QDE can be equivalently mapped to the generalized holographic dark
energy model where the cut-off is a function of Lp, L̇p, and L̈p, or a function of Lf, L̇f, and

L̈f. Furthermore, the EoS parameter (Ω(Q)
hol ) corresponding to the hologrphic cut-off LQ is

given by

Ω(Q)
hol = −1−

(
2

3HLQ

)
dLQ

dt
, (66)

where LQ is shown above. Clearly, in accordance of Equation (34), Ω(Q)
hol becomes equivalent

to the ωQ of Equation (64). Said equivalence leads to the fact that similar to the quintessence
energy density, the holographic energy density coming from the cut-off LQ also provides a
good dark energy model of our Universe.

6.2. Ricci Dark Energy

In this section, we attempt to establish that the Ricci dark energy (RDE) model
has direct equivalence to the generalized holographic dark energy model. The RDE
model [23,29,76] catches special attention, as the dark energy density in this context has a
geometric origin; in particular, the dark energy density is given by
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ρRD =
α

16π
R =

3α

8π

(
Ḣ + 2H2

)
, (67)

with R being the space-time Ricci scalar and α a model parameter. The above expression of
ρRD along with its conservation equation lead to the corresponding EoS parameter as

ωRD = −1 +
α(1 + z)

8π

d
dz

[
ln
(

Ḣ + 2H2
)]

, (68)

where we use the explicit form of ρRD, and z = a−1 − 1 is known as the red-shift factor.
It is evident that the parameter α actually controls the evolution of the ωRD, and hence
the Universe’s evolution. In particular, it has been shown in [29] that for 1/2 < α < 1,
the RDE has EoS −1 < ωRD < −1/3, and for the case α < 1/2, the RDE starts from
quintessence-like and evolves to phantom-like. In regard to the observational compatibility
of RDE, the parameter α is constrained by α = 0.394+0.152

−0.106 from SNIa only (1σ); however, a
joint analysis of the SNIa+CMB+BAO observations gives a much tighter constraint on α as
α = 0.359+0.024

−0.025 [29].
Equations (67) and (32) indicate that the RDE has a direct equivalence to the gener-

alized holographic dark energy model, where the corresponding the cut-off (LRD) can be
expressed as

3c2

κ2L2
RD

=
3α

8π

{
L̈p

Lp
+

L̇2
p

L2
p
− 3

L̇p

L2
p
+

2
L2

p

}
, (69)

in terms of Lp, L̇p and L̈p. Similarly, the LRD in terms of future horizon and its derivatives
is given by

3c2

κ2L2
RD

=
3α

8π

{
L̈f
Lf

+
L̇2

f
L2

f
+ 3

L̇f

L2
f
+

2
L2

f

}
. (70)

Such holographic cut-offs establish symmetry between the RDE and generalized HDE.
Furthermore a modified form of RDE has been proposed in [77], where the dark energy
density comes with the following form.

ρRD = 3
(

αH2 + βḢ
)

, (71)

with α and β being two parameters. The comparison of the above equation with Equa-
tion (32) immediately leads to the equivalence holographic cut-off (in terms of Lp and its
derivatives or in terms of Lf and its derivatives) corresponds to the modified RDE s

3c2

κ2L2
RD

=3

α

(
L̇p

Lp
− 1

Lp

)2

+ β

(
L̈p

Lp
−

L̇2
p

L2
p
+

L̇p

L2
p

)
=3

{
α

(
L̇f
Lf

+
1
Lf

)2

+ β

(
L̈f
Lf
−

L̇2
f

L2
f
− L̇f

L2
f

)}
, (72)

where we use Equation (34). The EoS parameter (Ω(RD)
hol ) corresponds to the holographic

energy density ρhol = 3c2/
(
κ2L2

RD
)

arising from its conservation relation; in particular,
we get

Ω(RD)
hol = −1−

(
2

3HLRD

)
dLRD

dt
, (73)

which, due to Equation (34), is clearly equivalent to the ωRD of Equation (68). Thus,
similarly to the RDE, the holographic energy density having the cut-off LRD proves to be a
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viable dark energy model of the Universe in regard to the SNIa+CMB+BAO observations.
Therefore, the RDE and the modified RDE may be regarded as certain candidates for the
generalized holographic dark energy family, with the respective holographic cut-offs being
given by Equations (69), (70), and (72), respectively.

Before concluding, we consider the scale invariant cosmological field equations [88]
and investigate their holographic counterparts. Said field equations are given by [88]

H2 =
8πG

3
ρ− 2H

λ̇

λ
, (74)

2Ḣ + 3H2 = −8πGp− 4H
λ̇

λ
, (75)

where ρ and p represent the energy density and pressure of the matter components. More-
over, λ parametrizes the scale invariance, which varies with the expansion of the Universe,
i.e., λ = λ(a(t)). Here it may be mentioned that the authors of [88] proposed an infla-
tionary scenario in the context of scale invariance cosmology, in which case the matter
components are provided by a slow rolling scalar field, in particular, ρ = 1

2 C
(
Ψ̇2 + U(Ψ)

)
and p = 1

2 C
(
Ψ̇2 −U(Ψ)

)
, where Ψ is a scalar field, U(Ψ) is its potential, and C is a constant

(for more information about C, see [88]). Clearly the field Equations (74) and (75) can be
equivalently mapped to the holographic cosmological scenario, where the holographic
cut-off and the corresponding EoS parameter are given by

3c2

κ2L2
SI

= ρ(a)− 3
4πG

(
λ̇(a)
λ(a)

)(
L̇p

Lp
− 1

Lp

)
, (76)

or ,
3c2

κ2L2
SI

= ρ(a)− 3
4πG

(
λ̇(a)
λ(a)

)(
L̇f
Lf

+
1
Lf

)
, (77)

and

Ω(SI)
hol = −1−

(
2

3HLSI

)
dLSI

dt
. (78)

Equations (76) and (77) represent the LSI in terms of Lp (and its derivative) and Lf (and
its derivative) respectively. The EoS parameter in Equation (78) satisfies the conservation
relation of the holographic energy density ρhol = 3c2/

(
κ2L2

SI
)
. As a whole, the scale

invariant cosmological model (described by Equations (74) and (75)) has a holographic
counterpart, with the cut-off being given in Equation (78).

At this stage it deserves mentioning that as far as we could see in many examples of
modified gravity, scalar-tensor theory, and gravity in relation to fluids, the corresponding
FLRW equations can be always mapped to holographic cosmology with specific IR cut-offs.
However, the physical nature of such cut-offs remains obscure.

7. Conclusions

Dark energy (DE) is one of the most puzzling issues in modern cosmology. In particu-
lar, DE may even be an issue of quantum gravity. In this regard, the holographic principle,
one of the cornerstones of quantum gravity, plays an important role in describing the
dark energy of our Universe. Based on the holographic principle and on the dimensional
analysis, the theory of holographic dark energy (HDE) has been formulated, where the
dark energy density is proportional to the inverse squared if the infrared cut-off is true.
The holographic cut-off is usually considered to be same as the particle horizon or the
future horizon. It may be stressed that instead of adding a term into the Lagrangian,
the HDE is based on the holographic principle and on the dimensional analysis and this
makes the HDE significantly different than the other theory of DE. In [9], a generalized
HDE was proposed where the cut-off (LIR) was generalized to be a function of the particle
horizon (Lp) and its derivatives of any order, or a function of the future horizon (Lf) and
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its derivatives of any order: LIR = LIR
(

Lp, L̇p, L̈p, · · · , Lf, L̇f, · · · , a
)
. Evidently, with such a

generalized form of the LIR, the phenomenology of the generalized HDE becomes richer.
Based on the formalism of the generalized HDE, we showed that a wide class of dark

energy models can be regarded as different candidates for the generalized holographic
dark energy family with respective cut-offs. In this regard, we first considered several
entropic DE models, in particular, Tsallis entropic DE, Rényi entropic DE, and Sharma–
Mittal entropic DE, and showed that they are indeed equivalent to the generalized HDE
model. The corresponding cut-offs were determined in terms of Lp and L̇p, or in terms of
Lf and L̇f, respectively. Such equivalences between the entropic DE and the generalized
HDE were established for two cases: (1) in the first case, the exponents of the respective
entropy functions were regarded to be constant, while in the second case (2) the exponents
varied with cosmic time; the exponents were considered to depend on the evolving Hubble
parameter. Here it may be mentioned that for the entropic DE models, the equivalent
holographic cut-offs depend on the first derivative of Lp or Lf. Besides such entropic DE
models, some other DE models—such as (1) the quintessence model where a minimally
coupled scalar field with an exponential potential serves the dark energy density, and (2)
the Ricci DE where the space-time curvature provides the dark energy density—have also
been proven to be equivalent to the generalized HDE. The equivalent holographic cut-off
corresponds to the quintessence. The Ricci DE model depends on either Lp, L̇p, and L̈p;
or Lf, L̇f, and L̈f. It may be noted that for both the quintessence and Ricci DE models,
the equivalent cut-offs depend on the second derivative of Lp or Lf, unlike those of the
entropic DE models, where as mentioned earlier, the corresponding LIR depends at most
on the first derivative of the Lp or Lf, respectively. Finally, it deserves mentioning that
in all the cases, we determined the effective EoS parameter for the DE models and the
corresponding generalized HDE models, where the EoS parameters are represented by
ωi and Ω(i)

hol, respectively (where i denotes the various cases we considered). As a result,

we found that ωi ≡ Ω(i)
hol, which further confirms the equivalence between various DE

models and the respective generalized HDE models. This indicates symmetry between the
generalized HDE and different DE models.

In summary, a wide class of dark energy models, including the entropic DE models,
were found to be equivalent with the generalized HDE, with the corresponding cut-offs
being determined in terms of the particle horizon and its derivatives or in terms of the
future horizon and its derivatives. However, understanding the choice of a fundamental
viable cut-off still remains to be a debatable topic. The comparison of such cut-offs for
realistic descriptions of the Universe’s evolution may help provide better understanding of
the holographic principle. Furthermore, it is interesting to note that recently, holographic
inflation [38] was proposed with the above generalized holographic cut-off. Our considera-
tions indicate that similar equivalence may be established between different inflationary
theories and the holographic inflationary model with a generalized cut-off.
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Appendix A. Detailed Derivations of Extended Cases of Entropic Dark Energy Models

Appendix A.1. Derivation of Equation (45)

Tsallis entropy with a varying exponent, in particular, δ = δ(x) where x = H2
1 /H2,

is given by

ST =
A0

4G

(
A
A0

)δ(x)
. (A1)

Therefore,

dST
dt = ∂S

∂A
dA
dt + ∂S

∂x
dx
dt

= − 1
4G

(
8πḢ
H3

)(
A
A0

)δ(x)−1
{

δ(x) + H2
1

H2 ln
(

H2
1

H2

)
δ′(x)

}
= − 1

4G

(
8π
H3

)(
H2

1
H2

)δ(x)−1{
δ(x) + H2

1
H2 ln

(
H2

1
H2

)
δ′(x)

}
Ḣ ,

(A2)

where in the second equality of the above equation, we used A = 4πr2
h and rh = H−1.

By using the above expression of dS
dt in the first law of thermodynamics in Equation (7),

one gets {
δ(x) +

H2
1

H2 ln

(
H2

1
H2

)
δ′(x)

}(
H2

1
H2

)δ(x)−1

Ḣ = −4πG(ρ + p) , (A3)

with ρ and p representing the energy density and pressure of the matter contents, which
obey the conservation relation: ρ̇ + 3H(ρ + p) = 0. In accordance with this conservation
relation, we can integrate Equation (A3) as∫

dx xδ(x)−1{δ(x) + xδ′(x) ln x
}

H
dH
dx

=
4πG

3
ρ +

Λ
6

, (A4)

where Λ is the constant of integration. The expression x = H2
1 /H2 immediately yields

H
dH
dx

= −
H2

1
2x2 , (A5)

and by plugging that into Equation (A4), we obtain

−H2
1

∫
dx
{

δ(x) + xδ′(x) ln x
}

xδ(x)−3 =
8πG

3
ρ +

Λ
3

⇒ −H2
1

{
xδ(x)−2 + 2

∫
dx xδ(x)−3

}∣∣∣∣
x=H2

1 /H2
=

8πG
3

ρ +
Λ
3

, (A6)

which is written in Equation (45).

Appendix A.2. Derivation of Equation (47)

Rényi entropy with varying δ = δ(x) is given by

SR =
A0

Gδ(x)
ln
(

1 +
δ(x)

4

(
A
A0

))
. (A7)

Therefore,
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dSR

dt
=

∂SR
∂A

dA
dt

+
∂SR
∂x

dx
dt

=
1

4G
1(

1 + δ(x)
4

(
A
A0

)) dA
dt

+
A0

G

− δ′(x)
δ2(x)

ln
(

1 +
δ(x)

4

(
A
A0

))
+

δ′(x)

4δ(x)
(

1 + δ(x)
4

(
A
A0

))( A
A0

)dx
dt

=
8π

H3

− 1

4
(

1 + δ(x)
4

(
A
A0

)) + δ′(x)

 1
δ2(x)

ln
(

1 +
δ(x)

4

(
A
A0

))
− x

4δ(x)
(

1 + δ(x)
4

(
A
A0

))

( Ḣ

G

)
.

By plugging the above expression into Equation (7), one gets the evolution of Ḣ in the
present case as 1(

1 + xδ(x)
4

) − 4δ′(x)

 1
δ2(x)

ln
(

1 +
xδ(x)

4

)
− x

4δ(x)
(

1 + xδ(x)
4

)

Ḣ = −4πG(ρ + p) . (A8)

Using the conservation relation ρ̇+ 3H(ρ + p) = 0, we integrate Equation (A8) to yield

∫
dx

 1(
1 + xδ(x)

4

) − 4δ′(x)

 1
δ2(x)

ln
(

1 +
xδ(x)

4

)
− x

4δ(x)
(

1 + xδ(x)
4

)

H

dH
dx

=
4πG

3
ρ +

Λ
6

, (A9)

where Λ represents the constant of integration. Due to the expression of H dH
dx shown in

Equation (A5), the above equation takes the following form:

H2 =
8πG

3
ρ +

Λ
3
+ 4H2

1

∫ x
dxx−2

{(
δ(x)
16

1 + δ(x)
4 x

)
+

(
1

δ(x)2 ln
(

1 +
δ(x)

4
x
)
− 1

δ(x)

1
4 x

1 + δ(x)
4 x

)
δ′(x)

}∣∣∣∣∣
x=

H2
1

H2

, (A10)

which is written in Equation (47).

Appendix A.3. Derivation of Equation (49)

Sharma–Mittal entropy with varying exponent, in particular, with α = α(x) and
δ = constant, is given by

SSM =
A0

Gα(x)


(

1 +
δ

4

(
A
A0

)) α(x)
δ

− 1

 . (A11)

Thereby,

dSSM

dt
=

∂SSM
∂A

dA
dt

+
∂SSM

∂x
dx
dt

=
1

4G

(
1 +

δ

4

(
A
A0

)) α(x)
δ −1 dA

dt

+
A0

G

− α′(x)
α2(x)


(

1 +
δ

4

(
A
A0

)) α(x)
δ

− 1

+
α′(x)
α(x)δ

(
1 +

δ

4

(
A
A0

)) α(x)
δ

ln
(

1 +
δ

4

(
A
A0

))dx
dt

=
8π

H3

[
− 1

4

(
1 +

δ

4

(
A
A0

)) α(x)
δ −1

+
α′(x)
α2(x)


(

1 +
δ

4

(
A
A0

)) α(x)
δ

− 1

− α′(x)
α(x)δ

(
1 +

δ

4

(
A
A0

)) α(x)
δ

ln
(

1 +
δ

4

(
A
A0

))](
Ḣ
G

)
. (A12)
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The above expression of dSSM
dt along with the first law of thermodynamics in

Equation (7) lead to the following equation of Ḣ:

[(
1 +

δx
4

) α(x)
δ −1

− 4α′(x)
α2(x)


(

1 +
δx
4

) α(x)
δ

− 1

+
4α′(x)
α(x)δ

(
1 +

δx
4

) α(x)
δ

ln
(

1 +
δx
4

)]
Ḣ = −4πG(ρ + p) , (A13)

and upon integration, we obtain Equation (49). Here it may be mentioned that to derive
Equation (49), we use H dH

dx = −H2
1 /(2x2) and the conservation relation of ρ.
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