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Abstract: A novel unsupervised texture classification technique is proposed in this research work. 
The proposed method clusters automatically the textures of an image collection in similarity classes 
whose number is not a priori known. A nonlinear diffusion-based multi-scale texture analysis ap-
proach is introduced first. It creates an effective scale-space by using a well-posed anisotropic dif-
fusion filtering model that is proposed and approximated numerically here. A feature extraction 
process using a bank of circularly symmetric 2D filters is applied at each scale, then a rotation-in-
variant texture feature vector is achieved for the current image by combining the feature vectors 
computed at all these scales. Next, a weighted similarity graph, whose vertices correspond to the 
texture feature vectors and the weights of its edges are obtained from the distances computed be-
tween these vectors, is created. A novel weighted graph clustering technique is then applied to this 
similarity graph, to determine the texture classes. Numerical simulations and method comparisons 
illustrating the effectiveness of the described framework are also discussed in this work. 

Keywords: unsupervised texture recognition; multi-scale image analysis; nonlinear anisotropic dif-
fusion model; numerical approximation algorithm; invariant texture feature vector; similarity 
graph; weight-connected graph-based clustering algorithm 
 

1. Introduction 
The image textures represent sets of primitives, known as texels, in some regular or 

repeated patterns. Texture analysis is an important and still challenging image analysis 
field that include various sub-domains, such as texture recognition, segmentation, syn-
thesis and retrieval. It has been applied in some well-known image processing and com-
puter vision domains, such as image and video object detection, recognition and tracking, 
image and video indexing and retrieval, medical imaging, remote sensing and product 
quality diagnosis. 

A texture recognition process consists of texture feature extraction and texture cate-
gories classification. The texture feature extraction methods could be divided into statis-
tics-based, structure-based, model-based and transformation-based schemes. The statisti-
cal techniques include histogram-based approaches [1], moment-based algorithms [2], 
Gray Level Co-occurrence Matrices (GLCM) [3,4], Binary Gabor Patterns (BGP) [5], Local 
Binary Patterns (LBP) [6] and energy variation-based approaches [7]. The structural tech-
niques include edge-based methods [8], morphological operators [9] and SIFT descriptors 
[10]. The model-based techniques include fractal texture models [11], Markov random 
field texture models [12] and auto-regressive models [13], while the transformation-based 
schemes include texture-featuring algorithms using 2D Gabor filters [14], 2D Wavelet 
transforms [15], Gabor Wavelets [16] and Curvelet transforms [17]. Other feature extrac-
tion approaches combine these texture descriptors [18]. 
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The texture recognition may have either a supervised or an unsupervised character, 
depending on the character of its classification process. Hence, the supervised machine 
learning algorithms that can be applied to the texture classification task include the mini-
mum distance classifier, K-Nearest Neighbor (K-NN), Artificial Neural Networks (ANN), 
Support Vector Machines (SVM) and Hidden Markov Models (HMMs) [19]. 

The unsupervised classification methods include the well-known K-means, hierar-
chical clustering, Self-Organizing Maps (SOM) and Dynamic Time Warping (DTW) tech-
niques [19]. Additionally, the deep learning models and graph clustering algorithms rep-
resent effective unsupervised classification solutions that can be applied successfully to 
texture recognition [20–22]. 

A graph clustering-based unsupervised texture recognition framework, which can 
be applied successfully in the texture indexing and retrieval domain, is also proposed in 
this article. Its feature extraction component is based on a partial differential equation 
(PDE)-based multi-scale image analysis approach that is more effective than single-scale 
and Gaussian filter-based multi-scale texture analysis schemes. Thus, the scale-space is 
created by applying the finite difference-based approximation algorithm that solves nu-
merically the well-posed nonlinear fourth-order anisotropic diffusion model introduced 
in the following section. 

Next, the texture recognition process is described in the third section. A texture fea-
ture extraction process is performed at each scale and the final texture descriptor is 
achieved by concatenating the feature vectors computed at multiple scales. Since these 
vectors are modeled using a combination of circularly symmetric 2D filters, the final tex-
ture feature vector provides a rotation-invariant texture recognition. The second stage of 
this unsupervised recognition procedure represents a graph clustering-based texture clas-
sification process. The graph clustering algorithms have been used successfully in a 
closely related field, namely texture segmentation [23]. Here, we use the graph theory to 
develop a novel texture feature vector clustering approach that does not make any prior 
assumptions on the number of the clusters. Thus, a similarity graph is constructed for the 
set of image textures to be classified. Its vertices correspond to their feature vectors, while 
its edges are weighted with some similarity values that are related to the distances be-
tween those vectors. Then, a weighted graph connectivity-based clustering technique in-
spired by the Highly Connected Subgraphs (HCS) clustering algorithm is applied to this 
similarity graph, in order to detect the texture classes. 

Some texture recognition simulations and method comparisons that illustrate the ef-
fectiveness of the proposed technique are described in the fourth section. The fifth section 
is dedicated to the main conclusions of this research work that ends with a section of ref-
erences. 

2. Nonlinear Anisotropic Diffusion-Based Model for Multi-Scale Analysis 
The texture recognition technique proposed here uses a multi-scale image analysis 

based on nonlinear anisotropic diffusion. The multi-scale and multi-resolution analysis 
techniques have been used successfully in various image analysis areas, since they pro-
vide much better results than the traditional mono-scale approaches. 

While many multi-scale texture analysis methods use scale spaces based on 2D 
Gaussian kernels [24], we create here a more effective scale-space representation by using 
a nonlinear PDE-based filtering model that combines second- and fourth-order aniso-
tropic diffusions. The proposed fourth-order PDE model is described in the following sub-
section and its numerical approximation scheme, which is further used in the scale-space 
creation process, is presented in Section 2.2. 
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2.1. A Combined Fourth-Order PDE-Based Filtering Model 
We have performed a lot of research in the PDE-based image processing and analysis 

field in the last decade, developing numerous PDE and variational models for image res-
toration and inpainting [25], segmentation [26] and compression [27] and video pro-
cessing [28]. Now, we consider a nonlinear parabolic fourth-order partial differential 
equation-based model that combines second and fourth order anisotropic diffusions, for 
the multi-scale texture analysis. It is composed of the next PDE and some boundary con-
ditions: 
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represents a 2D Gaussian filter kernel. 
We consider the following diffusivity function, which is properly chosen for an effi-

cient filtering [25], being positive, monotonic decreasing and convergent to 0, for both 
diffusion components of the PDE-based model (1): 
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where  0 , 1 , 5 , 1      and 1 0  . 

The terms  u   and  u   in (1) have been introduced to control the 
speed of the fourth-order and second-order diffusion processes. The positive function 
used by both of them has the next form: 

       
1

1: 0, 0, :  s s            (3)

where    , 1, 4 , 1,1 .5     and  0,1  . 
Since this compound PDE-based model (1) combines nonlinear second- and fourth-

order diffusion-based components, it would enjoy the filtering advantages of both of 
them. Hence, the second-order PDE-based term assures that the diffusion process is per-
formed along the gradient direction [25], which means the undesired blurring effect is 
avoided and the essential image features are preserved. The fourth-order diffusion term 
provides more natural restored images and overcomes the unintended staircasing. The 
behavior of this system is controlled by varying the ,  coefficient values. Hence, it 
provides a better deblurring when   is increased and  is decreased, and a better 
staircase effect removal otherwise. 

Additionally, the proposed nonlinear PDE model combines the anisotropic diffusion 
with a 2D Gaussian filter kernel to achieve a more effective additive Gaussian noise 
(AWGN) removal, which works properly in noisy conditions too. This fourth-order non-
linear diffusion-based model has a non-variational character, since it cannot be obtained 
from the minimization of an energy functional. It is also well-posed, since there exists a 
unique variational, or weak, solution, for it. That solution is computed numerically by 
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using a stable approximation scheme of (1) that converges to it. This discretization algo-
rithm that solves numerically the differential model and is applied in the scale-space cre-
ation process is presented in the following subsection. 

2.2. Finite Difference-Based Numerical Approximation Algorithm 
The proposed fourth-order nonlinear diffusion-based filtering model is solved nu-

merically by applying a finite difference-based numerical approximation algorithm [29]. 
Thus, the space and the time coordinates will be quantized as following: 

   , , 1, .. . , , 1, .. . ,x ih y jh i I j J     and  , 0 , . . . ,t n t n N   , 
where h is the space siz, t represents the time step of the considered grid and 
 JhIh   is the support image’s dimension. Thus, the nonlinear fourth-order equation 
in (1) can be expressed as: 

              2 2
0 x y

u u u u u u u u u u u
t x y       

   
               

 (4)

The left component in (4) is discretized using the central finite differences [29], as 
follows: 
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Then, the right term of (4) is approximated. The component  u   is approx-
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Next, the fourth-order diffusion term   2 2u u    is discretized using the 

finite difference-based Laplacian approximation [29] as: 
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The other Laplacian-based term,  u  , is approximated as  ,i ju  . 

We may consider here the parameter values 1 th . Then, by using all the 
above finite difference-based approximation results, the next explicit iterative numerical 
approximation algorithm is obtained: 
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The numerical approximation scheme (8) is stable and consistent to the fourth-order 
anisotropic diffusion-based model (1) and converges in N iterations to its weak solution 
that represents the filtering output. This numerical procedure that solves the nonlinear 
PDE-based model has a polynomial time complexity and has been successfully used to 
create the effective scale-space representation for texture analysis that is detailed in the 
following section. 

3. Unsupervised Multi-Scale Texture Recognition Technique 
The following unsupervised texture recognition task is considered here: the image 

textures from the set  1 , ..., MT T T  must be grouped automatically in similarity clas-
ses whose number is not a priori known, on the basis of their extracted characteristics. 
Additionally, one supposes there are no isolated textures in this set, which means that for 
each texture, there is at least another texture from T that is similar to it. 

The novel texture recognition framework developed here uses the described aniso-
tropic diffusion-based model and a graph theory-based clustering scheme. Thus, a multi-
scale texture feature extraction approach that uses a scale-space created by applying the 
numerical approximation scheme described in the previous section is proposed first, in 
the next subsection. Then, an automatic unsupervised texture feature vector classification 
method that is based on a new graph clustering algorithm is described in Section 3.2. 

3.1. Multi-Scale Texture Feature Extraction Approach 
The numerical characteristics of each texture iT , where  1, ...,i M , are ex-

tracted using an effective multi-scale texture feature extraction technique. First, the pro-
posed approach constructs a proper scale-space representation by applying the nonlinear 
PDE-based filter (1) on that image texture until various moments of time t, and differenc-
ing the successive filtered textures. 

Thus, the finite difference-based numerical approximation algorithm (8) is applied 
on the current texture that becomes the discrete observed image, 0

iu T . One consid-
ers the filtering output achieved by (8) at the iteration moments 4k, where 

 0, ..., , 3k S S  . Then, the absolute differences between consecutive filtering re-
sults are computed and a scale-space representation with S scales is obtained as 

  4 10 4 4 8 4, , ..., S Su u u u u u   . 

The image at each scale  1, . . . ,r S  is denoted  4 1 4r r
rU u u   and rep-

resents the textural component of the PDE-based decomposition of  4 1ru  . It contains 
some contours of iT . A feature extraction process is then performed on rU  by combin-
ing some two-dimension circular filters. These filtering models that we consider for this 
task are inspired by those using a 2D Gabor function that is modified into a circularly 
symmetric version [30]. Because of their rotation-invariant character, the circularly sym-
metric Gabor filters provide a more performant texture analysis than the traditional Gabor 
filters [30]. Similarly, the frequency response of the considered 2D band-pass circularly 
symmetric filter is modeled as: 
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where 



 represents the central frequency and the product of the mean and standard 

deviation, and   represents the filter bandwidth [31]. 
Hence, a bank of Q filters with circular frequency responses provided by (9) is ap-

plied to rU . Each of these 2D filters is characterized by a standard deviation value 

 , 1, . . . ,q q Q   , where   > 1. Some proper values for the mean  and 
the parameter   were selected in order to provide optimal texture analysis results. The 
image at each rth scale, rU , is mean-normalized first and next convolved to each 2D cir-
cular filter of that set. The L2 norm of each filtered image is then computed. Hence, a Q-
dimensional feature vector composed of these norm values,  rV U , is obtained at each 
scale. Then, the final texture feature vector of the observed image (current texture) is de-
termined by concatenating the feature vectors computed at multiple scales of the scale-
space, as follows: 

         0
1 2:   ... i SV T V u V U V U V U      (10)

The QS-dimensional feature vector given by (10) represents a noise-insensitive in-
variant texture descriptor. Given the anisotropic diffusion-based denoising model its 
multi-scale creation is based on, it works properly in both clean and noisy conditions, and, 
because of the 2D circular filters used in its construction, it describes properly both normal 
and rotated textures. 

3.2. Graph Clustering-Based Automatic Texture Feature Vector Classification Technique 
The invariant texture feature vector set determined in the previous subsection, 
    1 , ..., MV T V T , has to be clustered automatically into an unknown number of sim-

ilarity classes. We have performed some research in the unsupervised machine learning 
domain. Several effective unsupervised classification techniques have been introduced in 
our past works [32,33]. They could be applied in this texture feature vector clustering case, 
but here we propose a more performant automatic unsupervised feature vector classifica-
tion algorithm that uses the graph theory [34], to solve this task. 

The graph theory has been successfully applied in the data clustering domain, since 
the similarity could be expressed easily by a graph. Clustering with graphs means consid-
ering the entire clustering problem as a graph, whose vertices represent the entities to be 
classified, and the weights of its edges are related to the distances between those entities. 
A graph clustering algorithm separates the sparsely connected dense subgraphs from each 
other. The entities within a cluster are connected to each other but have no connection to 
those outside the cluster. 

Hence, various graph-based cluster models have been developed in the last decades. 
Some clustering algorithms, such as the HCS scheme, are based on graph connectivity 
[35], while other graph clustering approaches represent SOM extensions for graph-based 
clustering [36], random walk-based clustering algorithms [37], Function-Described Graph 
(FDG)-based clustering methods [38], tree-based clustering solutions [39], graph-based K-
means clustering models [40], spectral clustering approaches [41], Graph Neural Net-
works [42] and the signed-graph clustering schemes [43]. 

The graph clustering techniques have been successfully applied in some important 
domains, such as image segmentation, content-based image retrieval, computer vision, 
network routing and analysis of social networks. The texture segmentation field, which is 
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closely related to the texture recognition area, has been approached successfully using 
graph-based clustering algorithms [23]. Here, we consider such a graph clustering solu-
tion for unsupervised texture recognition. 

Thus, the proposed technique creates a similarity-weighted graph for our texture fea-
ture vector set, first. Then, a graph connectivity-based clustering algorithm is proposed 
and applied to the undirected weighted graph. 

Therefore, let us consider  ,G E V , an undirected graph whose vertex set V
contains M vertices, or nodes, corresponding to the textures iT , or their  iV T  feature 
vectors, and E  V V  represents its set of undirected linking edges. Then, these edges 
are weighted with some node similarity values. 

The similarity of two vertices of V is inversely proportional to the value of the dis-
tance between the feature vectors corresponding to them. Therefore, one computes all the 
distances between the texture feature vectors and defines the following weighting func-
tion for G: 

 
    

 1: ,  , , , 1, ..., ,
,

ij
i j

w E R w w i j i j M i j
d V T V T

       (11)

where d represent the Euclidian distance, but some other metrics could be applied here as 
well. 

By assigning these ijw  weights to E, one obtains a fully connected similarity-
weighted graph G, since any two nodes of the vertex set V  are linked by a weighted 
edge in its structure. Since the texture feature vectors computed by (10) represent power-
ful texture descriptors, the distances between feature vectors of textures from the same 
similarity class have much lower values than the distances between feature vectors of tex-
tures belonging to different classes. Obviously, that means the weights corresponding to 
nodes of the same cluster are much higher than the weights of the edges linking nodes of 
different graph clusters. Therefore, we have: 

           
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

, 1,..., : min , max , max mini j i j ij ijC i C j C i C jC i C j C i C j
i j M d V T V T d V T V T w w

  
     (12)

where C (i) returns the index of the similarity class (cluster) where the texture iT  should 
be inserted. 

Next, a weighted graph partitioning process will be performed on G. Thus, we pro-
pose a novel connectivity-based clustering technique adapted for undirected weighted 
graphs, which is inspired by the Highly Connected Subgraphs (HCS) clustering algorithm 
[34]. 

The HCS method searches for highly connected subgraphs, by using the minimum 
cut of the graph. Hence, it checks if the graph G is highly connected, which means its total 
edge connectivity (minimum number of edges whose deletion from a graph disconnects 

it) satisfies the property  
2

k G 
V

, where V represents the cardinal of the vertex 

set. If so, the algorithm returns that graph, otherwise it partitions the graph into two sub-
graphs, by using its minimum cut, then applies recursively on them. 

The weighted graph clustering algorithm proposed for our partitioning task does not 
search for highly connected graphs in the classical sense, since G is even fully connected. 
It will search for highly weight-connected graphs, a term that we define here. While a highly 
connected graph has very few missing edges, a highly weight-connected graph should be 
characterized by very few low-weight edges, preferably none. Given the graph weight 
property given by (12) and the definition of T, we may introduce an even stronger condi-
tion for this type of graph, which says that the lowest weight of an edge cannot be much 
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lower than the highest weight of an edge of that graph. Hence, we may define a highly 
weight-connected graph as a weighted fully connected graph having the property: 

 
min

, , 1, ..., ,
max

ij

ij

w
i j M i j

w
     (13)

where  0.5,1   represents a properly selected threshold that must be exceeded by 
the ratio between the minimum and maximum values of the weighted adjacency matrix 
of G. 

Therefore, the proposed algorithm returns G as clustering output if the graph satisfies 
the property (12). Otherwise, it divides G into the subgraphs 1G  and 2G , by applying 
the minimum cut of this weighted graph. 

While the HCS-based clustering approach determines the minimum cut as the mini-
mum set of edges without which the graph will become disconnected, our weight-based 
graph clustering algorithm computes the minimum cut of G as the minimum sum of 
weights of edges that when removed from G, divides it into two subgraphs. The minimum 
cut of this weighted graph is determined by applying the Max-Flow/Min-Cut Theorem 
that states that the amount of the maximum flow through any network from a given 
source to a given sink is equal to the weight of the minimum cut. Therefore, one could 
find the minimum cut of the graph by calculating the network’s maximum flow, using the 
Ford–Fulkerson (FFA) algorithm [44]. 

Next, this weighted graph clustering procedure is executed recursively on 1G  and 

2G . Thus, it determines all the subgraphs of the similarity graph G that satisfy the con-
dition (13). These highly weight-connected subgraphs determine the similarity clusters of 
the vertex set, V . Each time such a subgraph is detected by the recursive scheme, all its 
vertices are labeled with its index. For example, the vertices  1 , ..., pv v  V  of the ith 

detected subgraph are labeled as    1 ... :pC v C v i   . The detected graph node clusters 

represent the unsupervised texture classification, since the vertices of each cluster repre-
sent similar textures, or closed feature vectors. The final texture recognition result can be 
expressed as {C(1), …, C(M)}. The time complexity of this clustering procedure is bounded 
by  2 ,C f EV , where the number of detected classes  (1),..., ( )C card C C M , and 

 ,f EV , representing the time complexity of determining a minimum cut of the graph 

G, is bounded by an  2O EV  execution time. 

The weight-connected graph-based texture clustering technique proposed here out-
performs other unsupervised classification approaches that can be applied to texture anal-
ysis, such as the K-means model, SOM and the hierarchical agglomerative or divisive clus-
tering algorithms [18]. Its main advantage over them is that it does not require any prior 
knowledge about the optimal number of texture clusters. 

A simple unsupervised weighted graph-based texture classification example is de-
scribed in Figure 1. The seven texture images to be recognized are displayed in the num-
bered nodes of a weighted graph. The graph does not satisfy (13), so the proposed clus-
tering approach disconnects it by detecting the minimum cut that is represented by the 
red edges and has a maximum flow (sum of red weights) of 0.0298. The subgraph com-
posed of nodes 5 and 7 is highly weight-connected, so it represents the first cluster. The 
other subgraph is not, so it is divided by the next minimum cut, marked by blue edges 
and having a maximum flow of 0.0204. The obtained subgraphs, composed of nodes {1, 3, 
4} and {2, 6}, are highly weight-connected, so they represent the second and the third sim-
ilarity clusters. The cluster number is displayed in red, blue or purple inside each vertex. 
Hence, three clusters are obtained and the texture classification result is [2 3 2 3 1 3 1]. 
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Figure 1. Weight-connected graph-based texture clustering example. 

4. Discussion 
The automatic graph clustering-based unsupervised texture recognition technique 

proposed here was tested successfully on thousands of images from various texture data-
bases. Some important and voluminous texture collections, such as the Kylberg database 
[45] and the Brodatz album [46], were used in our texture recognition experiments. 

These texture recognition tests were conducted on an Intel (R) Core (TM) i7-6700HQ 
CPU 2.60 GHz processor on 64 bits that operated Windows 10. We determined empirically 
the parameters of the proposed framework that provide optimal recognition output, ap-
plying the trial and error method. Those optimal parameter values are the following: the 
number of scales S = 4, the number of circular filters Q = 6, the mean 1 .4  , 

1 .2   and the graph-related threshold 0 .66  . 
The experiments were performed on numerous textures, rotated at various orienta-

tions, from the mentioned databases. Thus, we considered 16 texture classes from each 
database, which are displayed in Figure 2. Each texture category of the Brodatz collection 
contains 25 [128 × 128] textures for each of the orientations: 0°, 20°, 30°, 45°, 60°, 70°, 90° 
and 120°. Each texture category of the Kylberg database contains 20 [576 × 576] textures 
for each of those angles. 

 
Figure 2. Representative images of the texture classes used in the recognition tests: a) Brodatz; b) Kylberg 
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Various forms of the texture set T were created using these texture datasets. A large 
texture set, characterized by a high |T| = M value, would lead to a high execution time, 
because of the high computational complexity of the proposed framework. Hence, most 
of our experiments used testing sets with the number of textures M < 100 and containing 
images of various orientations and from various texture categories of the mentioned da-
tabases. 

The described method properly classifies textures rotated by any angle, because of 
its rotation-invariant multi-scale texture feature extraction approach. It achieves a high 
texture recognition rate, its effectiveness being assessed by using several performance 
metrics, such as precision, recall, F1 score and accuracy [47]. Our technique obtains high 
values of these measures that are adapted for pairs of data points, since it produces very 
few misclassifications representing false positives and negatives. 

Method comparisons were also performed. This texture recognition framework out-
performs many existing mono- and multi-scale unsupervised recognition techniques, 
such as those using texture features based on image moments [2], LBP [4], GLCM [3], cir-
cular 2D Gabor filters [30] and Gabor Wavelet Transforms [16] in combination with K-
means, SOM or hierarchical clustering schemes, in both clean and noisy conditions. Both 
the nonlinear anisotropic diffusion-based multi-scale texture feature extraction approach 
and the weighted graph-based texture clustering solution proposed here provide better 
results than other texture analysis and classification methods, as shown by the perfor-
mance metrics values displayed in Table 1. The proposed approach achieves higher pre-
cision, recall, F1 and accuracy scores than the methods using the mentioned features with 
K-means or hierarchical agglomerative clustering schemes. 

Table 1. Method comparison results: performance metric values achieved by several texture recognition models. 

 Precision Recall F1 Accuracy 
The proposed technique 0.9708 0.9752 0.9730 0.9745 

Proposed multi-scale feature extraction + K-means 0.9652 0.9617 0.9634 0.9657 
Proposed multi-scale feature extraction + hierarchical 

agglomerative clustering 0.9638 0.9624 0.9631 0.9652 

Moment-based feature extraction + K-means 0.9268 0.9163 0.9215 0.9205 
Moment-based feature extraction + hierarchical ag-

glomerative clustering 0.9174 0.9197 0.9185 0.9143 

LBP features + K-means 0.9345 0.9367 0.9356 0.9375 
LBP + hierarchical agglomerative clustering 0.9459 0.9422 0.9440 0.9378 

GLCM + K-means 0.9505 0.9574 0.9539 0.9547 
GLCM + hierarchical agglomerative clustering 0.9578 0.9603 0.9590 0.9603 

Circularly symmetric 2D Gabor filter + K-means 0.9647 0.9612 0.9629 0.9651 
Circularly symmetric 2D Gabor filter + hierarchical 

agglomerative clustering 0.9635 0.9623 0.9629 0.9638 

2D Gabor Wavelets + K-means 0.9706 0.9736 0.9721 0.9739 
2D Gabor Wavelets + hierarchical agglomerative clus-

tering 0.9703 0.9731 0.9717 0.9734 

We also calculated and included in this table the performance measure values ob-
tained by the PDE-based multi-scale texture feature extraction proposed here in combina-
tion with the two clustering algorithms, in order to assess our feature extraction and graph 
clustering techniques. As it results from Table 1, the two combinations achieve perfor-
mance metric values that are somewhat lower than those of the described recognition 
framework, but higher than those of the other texture analysis models. That means our 
multi-scale feature extraction technique provides better texture descriptors than moment-
based, LBP-based, GLCM-based and multi-scale circularly symmetric 2D Gabor filter-
based featuring methods. The moment-based method tested here uses sequences of nine 
invariant area moments as feature vectors; the LBP-based approach uses a number of 
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neighbors of eight and radius values from 1 to 5; the GLCM-based scheme uses eight off-
sets; and the circularly symmetric Gabor filters use center frequencies F, taking values 
from 2 to 8. Only the multi-scale 2D Gabor Wavelet-based feature extraction approach 
gets slightly better values than our featuring scheme when applied with those clustering 
models. 

The values from that table also mean that the weighted graph-based texture cluster-
ing technique proposed here represents a better unsupervised texture classification solu-
tion than K-means and hierarchical agglomerative clustering schemes. Unlike our fully 
automatic graph clustering algorithm, those clustering models (and many others also) re-
quire knowledge of the number of texture classes, so they need some cluster validity in-
dexes in order to become automatic. 

Thus, the two main components of this texture recognition framework operate to-
gether very well. Its multi-scale circular filter-based feature extractor produces powerful 
texture descriptors that determine dense texture clusters, which can be separated success-
fully by its weighted graph-based unsupervised classifier that was specially created for 
this type of cluster. 

5. Conclusions 
The novel automatic unsupervised rotation-invariant texture recognition technique 

introduced in this work brings together several important research domains, such as im-
age processing and analysis, partial differential equations, numerical analysis and graph 
theory. It also brings some original contributions in both stages of the recognition process. 

Thus, the feature extraction component of the recognition framework is based on a 
new multi-scale texture analysis approach that is an important contribution of our re-
search. It uses a fast-converging finite difference-based numerical approximation algo-
rithm proposed by us that is consistent with a novel well-posed PDE-based model com-
bining second- and fourth-order anisotropic diffusions and 2D Gaussian filter kernels, to 
create the scale-space representation. A new 2D circular filter-based texture feature ex-
traction solution is applied at each scale, determining strong rotation-invariant feature 
vectors. 

The unsupervised texture classification is performed by applying a novel graph clus-
tering technique that is another contribution of this work. The automatic texture clustering 
approach, proposed here, which uses a fully connected weighted similarity graph corre-
sponding to the texture feature vector set, determines the optimal texture clusters without 
a priori knowledge about their number. 

Additionally, the proposed texture recognition framework achieves high values of 
the performance metrics and outperforms many other unsupervised texture recognition 
techniques. Unfortunately, our technique may require higher execution times than other 
recognition methods, because of the higher time complexity of its multi-scale texture fea-
ture extraction process. 

We may try to further improve it by transforming the multi-scale texture analysis 
part into a multi-resolution analysis approach. Our recognition method can be applied 
successfully in other image analysis and computer vision domains, such as texture index-
ing and retrieval, where the cluster-based texture indexes could be obtained using this 
method, texture segmentation and image and video object detection. Further applications 
and improvements of the proposed texture recognition framework will represent the fo-
cus of our future research. 
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