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Abstract: In this paper, the parameter-switching technique was applied to control chaos in the Chen
oscillator and as a decryption mechanism in a secure transmission system, to transmit RGB and
grayscale images. In the past few decades, considerable efforts have been put into the study of
the stabilization of chaotic dynamical systems. Most of the well-known chaos control methods,
such as Ott, Grebogi, and Yorke (OGY), Pyragas, and open-loop methods, force an unstable periodic
orbit into a stable one while distorting the original attractor. On the other hand, the parameter-
switching technique is an elegant method that can synthesize an already-existing stable orbit, thereby
preserving the underlying attractor. Consequently, the main contributions of this work were the
FPGA realizations of the parameter-switching method and a secure image transmission system using
a synchronized master and slave topology. The results of the parameter-switching technique and
synchronization were verified using phase plots and time series. The chaos-encrypted image from the
image transmission system, verified using correlation, showed no relativity with the original image,
while the recovery of the decrypted image has no loss of quality. The encryption and decryption
system was symmetric, whereby the key was private. In this work, co-simulations were performed in
Active-HDL with MATLAB/Simulink, while the target FPGA board was the Xilinx’s Artix-7 AC701.

Keywords: chaos; Chen oscillator; FPGA; image transmission; parameter switching; VHDL

1. Introduction

The concept and qualitative theory of dynamical systems was originated by a French
mathematician, Henri Poincaré. The methods he developed prepared the foundation for
the analysis of a nonlinear system of differential equations. Generally, in a nonlinear system,
the time evolution of the states is controlled by laws that are dependent on the values of the
state variables in a way that does not accomplish proportionality [1]. A nonlinear system
consists of a state space, whose coordinates describe the state at any instant. To determine
the state of a dynamical system in the long term, the system must be iterated several times,
advancing in each iteration with a small step size. Starting with an initial point, the entire
future positions of a nonlinear system can be known, provided the system has a solution.
The future positions are collectively called a trajectory [2–5].

The characteristics of a nonlinear system can be verified by evaluating the bifurcation
diagram, nonlinear divergence, multistability, fractal dimension, and limit cycle [6,7].
Bifurcation is defined as the change in the dynamical behavior of a nonlinear system while
varying a parameter of the system. Nonlinear divergence occurs when the associated
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linear components of certain state variables are totally stable if the states approach infinity.
Multistability is a nonlinear behavior defining the occurrence of more than two stable
states. The fractal characteristic is seen when the system shows self-similarity in the phase
space geometric pattern, whereby the pattern is reproduced at smaller sizes to generate
surfaces and irregular shapes, which is impossible to show by conventional geometry. The
limit cycle is a behavior whereby the nonlinear dynamical system possesses a significant
periodic orbit. Lastly, an irregular and chaotic behavior occurs when the system displays
sensitivity to the initial value.

The intrinsic behavior of nonlinear dynamical systems after a long time when illus-
trated by the phase space diagram is dependent on the basin of attraction [8–11]. The basin
of attraction is simply the various initial conditions that give a dynamical system a particu-
lar qualitative state in the long term. Such qualitative behavior, in terms of the attractor,
includes chaotic, periodic, or quasi-periodic. This, by implication, means that there exist
in a nonlinear dynamical system different basins of attraction. Moreover, the inherent
nonlinearity in the coupled system as a factor for the system instability cannot be overem-
phasized. The tuning of nonlinearities to enhance the dynamical behavior of the system,
otherwise called functionalization, was studied in [12,13]. It has been shown that many
physical phenomena are intrinsically nonlinear in nature. For instance, nonlinear mod-
els govern physical phenomena such as fluid and plasma mechanics, elasticity, aircraft
and spacecraft control, gravitational and electrostatic attraction, gas dynamics, robotics,
biological systems, bio-mechanics, combustion, and chemical reactions. The chaotic behav-
ior of a nonlinear dynamical system is a basic property that encounters a huge number of
applications in engineering. Specifically, nonlinear systems are fundamental to the concept
of chaos theory, and deterministic and discrete chaotic dynamical systems are having many
interventions in engineering and science [14–19].

As a parameter of a dynamical system is varied, chaos is generated from an infinite se-
ries of period-doubling bifurcations of periodic orbits. This is called the period doubling to
chaos [20]. Chaotic attractors usually have closely-packed unstable periodic orbits (UPOs)
embedded in them. In the past few years, considerable efforts, both theoretical and exper-
imental, have been devoted to how to stabilize chaotic dynamical systems, whereby the
orbits change a little under small perturbations of a parameter. This is otherwise called
chaos control. Three famous chaos control techniques are the Ott, Grebogi, and Yorke
(OGY) method, the Pyragas method, and the open-loop control method. The OGY is a
discontinuous feedback control method, which works by first selecting an UPO from the
chaotic system and, then, an appropriate parameter giving a small, wisely chosen perturba-
tion once per cycle to keep the system on the selected orbit, while shifting and distorting the
chaotic attractor to reach the stabilization of the general UPOs [21–23]. The Pyragas method
is a feedback control technique, which applies an appropriate continuous control signal
to the system through a feedback function [24–26]. In the case of the open-loop method,
otherwise called the feed-forward method, a properly chosen external harmonic excitation
is applied to the system to ensure the convergence of the trajectories to the desired periodic
orbit [27,28]. Alternatively, a notable technique that is being used in controlling chaos
in dynamical systems is the parameter-switching method [29–31]. Compared with the
traditional chaos control techniques mentioned above, in which an UPO is forced into
a stable periodic orbit, the parameter-switching method synthesizes an already existing
stable orbit while preserving the underlying chaotic attractor.

Experimental verifications of chaotic systems through electronic implementations
led us to create real applications based on chaos, such as: secure communication systems
and cryptography. The field-programmable gate array (FPGA) is a viable option for
digitally implementing chaotic systems. They have become a very dependable choice
for the electronic implementation of chaotic systems because they can be reprogrammed,
making the FPGAs reusable, adaptable, and extremely cost effective; hence, they have
become the preferred option for the purpose of fast prototyping. Furthermore, FPGAs
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perform parallel processing at a higher speed. Moreover, designing FPGAs using hardware
description languages (HDLs) is done very quickly and efficiently.

Much work have been done on the implementation of chaotic systems on FPGAs.
For example: The authors in [32] showed a chaotic oscillator that was spherical in shape,
realized on the Artix-7 AC701 and Stratix III boards for transmission of RGB and grayscale
images. The numerical solution was obtained by applying the fifth Runge–Kutta method.
Both their MATLAB and VHDL simulations were in good agreement. In [33], a Lü–Chen
chaotic system was developed in VHDL with the Heun algorithm, implemented on a Virtex-
6 board, and the outputs confirmed the results obtained from MATLAB. Furthermore, the
work in [34] showed a 3D chaotic system realized on an FPGA DE2-115 Altera board,
using the Euler algorithm. The work included an application for encrypting an image with
chaos. In [35], a novel chaotic TRNG that was based on an ANN was implemented on a
Virtex-6 board. In this work, the numerical method for the underlying chaotic oscillator was
the fifth Runge–Kutta. A coupled map lattice, capable of displaying very complex spatio-
temporal chaotic behavior, was used in [36] to create a cryptosystem and implemented on
a Spartan-3 board. The article [37] considered the realization of a novel chaotic system,
having one parameter, on a Cyclone IV board using forward Euler to find the solution. The
investigation also included a secure communication system realized on the FPGA board.
Other recent related works on the FPGA implementation of secure communication systems
based on chaos can be found in [38–44].

In addition to the FPGA implementations discussed above, there are numerous numer-
ical implementations of image security systems as seen in [45–48]. In the work presented
in [45], a new image encryption system was proposed, based on a hyperchaotic oscillator,
cellular automata, and particle swarm optimization. The authors in [46] presented a novel
single-dimensional chaotic system and applied it to secure grayscale and RGB images.
In the encryption process, bits were first shifted dynamically, and then, a diffusion method
was applied to complete the image encryption. The work in [47] also applied a plain image
to generate the keys to control the method of image encryption and compression, based
on compressive sensing. The permutation and diffusion were performed by a 2D sine
logistic iterative chaotic map and a 2D logistic sine coupling map. Finally, a novel approach
was proposed in [48] to improve the cryptographic characteristics of substitution boxes,
with the Choquet fuzzy integral and DNA methods as the backbone. The image encryption
was performed using the DNA-coded fuzzy-based S-boxes and a Chen hyperchaotic map’s
chaotic sequence encoded by DNA. The numerical implementations of these works were
performed in MATLAB.

In this work, the authors investigated the application of the parameter-switching
technique in approximating the stable dynamics of the Chen oscillator and its usefulness in
a chaos-based image transmission system, with a view of a digital implementation on an
FPGA device. The encryption and decryption system embedded in the transmission system
was based on the symmetric cryptographic concept in which the key was kept private. In
light of the foregoing aim of this work, the following contributions to the state-of-the-art
are hereby highlighted:

(i) FPGA realization of the parameter-switching scheme to approximate the stable cycles
of the Chen oscillator, using VHDL as the implementation language with a word
length of 24 bits, on the Xilinx’s Artix-7 AC701 board. The VHDL implementation on
the FPGA board agreed completely with the numerical simulations done in MATLAB;

(ii) FPGA realization of a secure chaos-based image transmission system on the Xilinx’s
Artix-7 AC701 board, using VHDL with a 24 bit word length, whereby the parameter-
switching scheme was applied as a decryption mechanism to recover chaos-encrypted
RGB and grayscale images. The backbone of the secure image transmission system
was a synchronized master and slave Chen system, in which the state observer was
the slave system that approximated the master system. The VHDL implementation
and MATLAB numerical simulations of the image transmission were in complete
agreement.
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In the subsequent parts of this paper, Section 2 introduces the mathematical model
of the Chen oscillator, the parameter-switching technique applied in obtaining the stable
cycles of the Chen oscillator, and the synchronization method. Section 3 presents the results
of the synthesis of stable attractors by the parameter-switching scheme and synchronizing
two Chen oscillators in a master and slave configuration. Section 4 details the secure
image transmission system, with the application of the parameter-switching scheme for
decrypting chaos-encrypted RGB and grayscale images. Section 5 contains the discussion
of the results obtained in this work. Lastly, the conclusion is presented in Section 6.

2. Theoretical Framework

The Chen oscillator is one of the popular chaotic systems that has been widely re-
searched in the past few years [49–52]. It is comprised of the following coupled system of
ordinary differential equations of the first-order:

dx
dt = a(y− x)
dy
dt = (c− a)x− xz + cy
dz
dt = xy− bz

(1)

where x, y, and z are the system-dependent variables. Traditionally, the Chen oscillator
is chaotic when a = 35, b = 3, and c = 28. The oscillator is dissipative when a + b > c and
possesses the following three equilibrium points [49]: EP0 = (0, 0, 0), EP1 = (

√
b(2c− a),√

b(2c− a), 2c− a), and EP2 = (−
√

b(2c− a), −
√

b(2c− a), 2c− a). At EP0, the eigen-
values are λ1 = –3, λ2 = –30.8359, and λ3 = 23.8359. EP1 and EP2 have the same eigenvalues,
which are λ1 = –18.4280, λ2 = 4.2140 + 14.8846i, and λ3 = 4.2140 − 14.8846i.

2.1. Parameter-Switching Method

The parameter switching (PS) is an elegant method for approximating numerically
any desired solution of a continuous nonlinear and autonomous integer or fractional-
order dynamical system modeled by a general initial value problem (IVP) [29,30,53–55].
It involves selecting a limited number of parameter values in which the control parameter
p within the chosen set is switched in some periodic (deterministic) manner for relatively
short time sub-intervals ij, while numerically integrating the underlying IVP. At the end,
the solution obtained from the “switched” system in the PS scheme will converge to the
“averaged” solution when p is changed to p∗, which is the average of the values that are
switched. The next general IVP describes many dynamical systems, the Chen system in
Equation (1) inclusive:

dx
dt

= f (x(t)) + pAx(t), x(0) = x0, t ∈ I = [0, T] (2)

where f : Rn → Rn is a Lipschitz continuous nonlinear function, p ∈ R is the switched
parameter, x0 ∈ Rn represents the initial value, T > 0, and A ∈ L(Rn) is a constant matrix.
Modeling the Chen system in Equation (1) after the IVP in Equation (2) with parameter
c = p as the control parameter and giving a and b their conventional values, then:

f (x) =


a(y− x)

−ax− xz

xy− bz

 (3)

and:

A =


0 0 0

1 0 0

0 0 0

 (4)
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The PS is expressed in the scheme that follows:

[m1 p1, m2 p2, . . . , mN pN ] (5)

where pk are the control parameters, i.e., p in the general IVP above, mk represents the
weights associated with each pj, and N (N > 1) represents the total number of switched pa-
rameters. When the IVP is being integrated, starting with m1 integration steps, then p = p1.
In the following m2 sub-interval, p = p2. The integration continues in this manner until the
final mN sub-interval, whereby p = pN . Following the same procedure, the PS algorithm
repeats again until the integration time interval I is covered. Mathematically, sub-interval
ik = mkh. Figure 1 gives the illustration of the PS scheme.

Figure 1. Parameter-switching scheme showing the switched parameters pk and their associated
sub-interval ik times.

The “averaged” solution of p*, to which the PS solution converges, is denoted by:

p∗ =
∑N

k=1 mk pk

∑N
k=1 mk

(6)

Notation 1. Let A be the set of attractors depending on parameter p, P be the set of all possible p
values, andM be the set of all possible weights m.

Notation 2. PN = {p1, p2, . . . , pN} ⊂ P denotes the set of chosen p.MN = {m1, m2, . . . , mN}
⊂ M is the set of chosen m. AN = {Ap1 , Ap2 , . . . , ApN} ⊂ A is the set of the underlying
attractors corresponding to PN .

Notation 3. AS represents the attractor obtained from the “switched” solution using the PS
scheme, and A* is the attractor of the “averaged” solution when p = p*.

If the PS scheme in (5) is applied to any system represented by the initial value problem
in Equation (2), like the Chen model, it is possible to approximate any desired attractor
of the system by simply switching the control parameter. For example, to approximate a
stable orbit of a dynamical system, the set PN is chosen from the chaotic window of the
system, while p* corresponds to a periodic window. Hence, between the chaotic windows,
there exists at least one periodic window. It is important to note that the PS scheme does
not change the original properties of attractor AS.

Remark 1. The uniqueness of having different p values gives the possibility of getting different solutions.

Remark 2. In the practical sense, it is very much feasible to approximate an attractor A* from
within a set PN , which does not contain p*, i.e., p* 6∈ PN , but p* is within the real open interval
(p1, pN) because p* is a convex combination of ordered pk, where k = 1, 2, . . ., N.
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Remark 3. The same attractor AS can be obtained with different choices of PN andMN .

A four-step methodology for the synthesis of attractors by parameter switching is
adopted as follows:

Step 1: Select the appropriate switched parameters for the switching scheme and their
associated weights.

Step 2: Execute the parameter-switching scheme using the model in Equation (2) to
generate the synthesized attractor AS of the “switched” solution.

Step 3: Replace p in model (2) with p*, and run to generate attractor A* of the “aver-
aged” solution.

Step 4: Show that the attractor AS of the “switched” solution matches A* of the
“averaged” solution.

Remark 4. Without loss of generality, the initial condition x0 for the “switched” solution and y0
for the “averaged” solution are the same (x0 = y0), in order to reduce the transient steps.

2.2. Synchronization of Two Chen Oscillators

Hamiltonian systems with the observer-based approach are employed in this section
to synchronize two chaotic Chen oscillators in Equation (1), in a master–slave configuration.
The slave unit served as the state observer, which approximates the master unit. A detailed
description of the Hamiltonian systems with the observer-based approach is contained
in [56]. The following is the mathematical representation of the master and slave units in
the Hamiltonian system:

Let dx
dt = f (x) be a dynamical system, in which x ∈ Rn represents the state variable

and f : Rn → Rn is the nonlinear function. The Hamiltonian forms can be described as:

dx
dt

= J (x)
∂H
∂x

+ S(x)
∂H
∂x

+F (x), x ∈ Rn (7)

whereby H(x) = 1
2 xTMx is the energy function greater than zero belonging to Rn, in

which M is a definite matrix greater than zero, constant and symmetric. Therefore,
∂H
∂x = Mx. Furthermore, ∂H

∂x is the gradient vector derived from H(x). Matrix J (x) ful-
fills J (x) + J T(x) = 0, while S(x) satisfies S(x) = ST(x) for all x ∈ Rn. The vector field
J (x) ∂H

∂x is the conservative part of the system. S(x) represents the nonconservative part.
F (x) is the destabilizing vector.

Therefore, the master system for the case of the observer-based approach, which is a
category of the generalized Hamiltonian forms with a single output y(t), is given by:{

dx
dt = J (y) ∂H

∂x + S(y) ∂H
∂x +F (y), x ∈ Rn

y = C ∂H
∂x , y ∈ Rm (8)

whereby S represents a matrix, constant and symmetric, and C is a constant matrix.
The nonlinear slave state observer is constructed from Equation (7) as shown in the

next equation: { dξ
dt = J (y) ∂H

∂ξ + S(y) ∂H
∂ξ +F (y) +Key, ξ ∈ Rn

η = C ∂H
∂ξ , η ∈ Rm (9)

whereby ξ represents the estimate of vector x, η is the estimated output, K represents the
observer’s gain, while ey = y− η stands for the estimated error of the output. The estimated
error is calculated as e = x− ξ.

Based on the foregoing brief analysis, the master, which is the driving system, and
the slave, which is the response system, both of the Chen oscillator (1), are given in
Equations (10) and (11), respectively:
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
dx
dt
dy
dt
dz
dt

 =


0 a− c

2 0

−a + c
2 0 −x

0 x 0

∂H
∂x

+


−a c

2 0
c
2 c 0

0 0 −b

∂H
∂x

(10)


dξ1
dt

dξ2
dt

dξ3
dt

 =


0 a− c

2 0

−a + c
2 0 −x

0 x 0

∂H
∂x

+


−a c

2 0
c
2 c 0

0 0 −b

∂H
∂x

+


k1

k2

k3

ey (11)

The synchronization is said to be successful based on the next definition, in conjunction
with the following theorems.

Definition 1. Using the Hamiltonian systems, the synchronization of the master and slave systems
occurs when:

lim
t→∞
‖x(t)− ξ(t)‖ = 0 (12)

notwithstanding the values of the initial conditions x(0) and ξ(0) [57].

Theorem 1. The global, exponential, and asymptotic estimation of state x of the master system
(10) by the state ξ of the slave system (11) is achievable if both matrices (C,S) are observable [57].

Theorem 2. The global, exponential, and asymptotic estimation of state x of the master system
(10) by the state ξ of the slave system (11) is achievable if there is a constant matrix K, in which the
symmetric matrix:

[W − KC] + [W − KT]T = [S− KC] + [S− KC]T = 2
[

S− 1
2

(
KC + CTKT

)]
(13)

is negative definite [57].

3. VHDL Implementation and System Co-Simulation

This section contains the implementation results of the parameter-switching scheme
and master–slave synchronization. They were co-simulated in both MATLAB/Simulink
and Active-HDL. The word size for the VHDL coding was 24 bits: the integer part used
nine bits, and the fractional part occupied fourteen bits and one bit for the sign.

3.1. Parameter Switching Implementation

To numerically implement the parameter-switching scheme, it was required to choose
a numerical technique with a fixed step-value h to integrate the underlying initial value
problem. The applied numerical method was the Runge–Kutta method (fourth order)
where h = 0.001. To approximate with the PS scheme the solution corresponding to p*, it
was therefore important to find a set P and the corresponding setM, such that Equation (6)
gives the searched value p*. For this work, N = 6; hence, PN = {p1, p2, p3, p4, p5, p6},MN =
{m1, m2, m3, m4, m5, m6}, and AN = {Ap1 , Ap2 , Ap3 , Ap4 , Ap5 , Ap6}. Our PN = {24.75, 25.80,
27.08, 27.38, 26.38, 25.10}, selected from the chaotic window in the bifurcation diagram in
Figure 2, as parameter c was varied.MN = {3, 2, 4, 1, 1, 1} was chosen such that Equation (6)
was verified, obtaining the “averaged” parameter p* = 26.0858, which corresponds to the
stable window at c = p* = 26.0858 in Figure 2.
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Figure 2. Bifurcation diagram of the Chen oscillator (1) showing the chaotic and stable regions as
parameter c is varied. The “averaged” parameter p* = 26.0858 is selected from the stable window.

The corresponding PS scheme is thus:

[m1 p1, m2 p2, m3 p3, m4 p4, m5 p5, m6 p6] = [3p1, 2p2, 4p3, 1p4, 1p5, 1p6] (14)

Several tools can be employed to numerically verify the approximation of the “averaged”
attractor A* by the synthesized attractor AS. In this investigation, three-dimensional phase
plots (after neglecting enough transient period) and time series were used.

For example, to obtain the stable cycle corresponding to the “averaged” parameter
p* with our PN and MN and using the PS scheme in (14), Equation (6) was evaluated
to obtain p* = 26.0858. The PS scheme in (14) was applied to the IVP in (2) to obtain a
synthesized attractor AS, which is the numerical approximation of the “averaged” attractor
A* from p*.

Figure 3a shows the co-simulation diagram of the implementation of the Chen model
in Active-HDL with MATLAB/Simulink. Embedded in the SINGLE_P1_CHEN_RK4
block is the numerical solution of the Chen model by fourth-order Runge–Kutta method,
while X, Y, and Z are the outputs from the state variables. Figure 3b is the block diagram
of the VHDL implementation of the PS scheme in Active-HDL. Processes SWITCHER and
RK4 implemented the PS scheme with the fourth-order Runge–Kutta method, while x_0,
y_0, and z_0 are the outputs.

In Figure 4 are the underlying chaotic attractors Ap1 , Ap2 , Ap3 , Ap4 , Ap5 , and Ap6 in
3D corresponding to parameters p1 = 24.75, p2 = 25.80, p3 = 27.08, p4 = 27.38, p5 = 26.38,
and p6 = 25.10, respectively, obtained from MATLAB and Active-HDL co-simulation of the
Chen model using the same parameters and initial condition.

Furthermore, Figures 5 and 6 present the results of the approximation of stable cy-
cles of the Chen oscillator by the parameter-switching algorithm. In Figure 5 are the
phase portraits in 3D, showing the “switched” solution AS (red), “averaged” solution
A* (blue), and overplots of AS and A*, at p = p* = 26.0858 by the parameter-switching
scheme [m1 p1, m2 p2, m3 p3, m4 p4, m5 p5, m6 p6], where m1 = 3, m2 = 2, m3 = 4, m4 = 1, m5 = 1,
m6 = 1 and p1 = 24.75, p2 = 25.80, p3 = 27.08, p4 = 27.38, p5 = 26.38, p6 = 25.10. Figure 6 is
the system time series of the three states x, y, and z of the Chen system. The time series
in MATLAB were plotted by superimposing the “switched” solution over the “averaged”
solution to show the matching. The obtained attractors AS and A* were indeed stable
cycles.
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(a)

(b)

Figure 3. Chen oscillator and parameter-switching scheme using the 4th-order Runge–Kutta method.
(a) Co-simulation in MATLAB/Simulink with Active-HDL. (b) Active-HDL block diagram of the
VHDL implementation.

Figure 4. Chaotic phase portraits of the Chen system (1) for the set AN corresponding to PN .
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Figure 5. Co-simulation results of the approximation of the Chen system’s stable cycle, illustrating
the “switched” solution AS (red), “averaged” solution A* (blue), and overplots of AS and A*.
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Figure 6. Time series of the three states x, y, and z. (a) MATLAB overplots: “switched” solution
AS (red) and “averaged” solution A* (blue). (b) Active-HDL: “switched” solution AS (upper) and
“averaged” solution A* (lower).
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Looking closely at the considered PS scheme, it is noted that the stable attractors AS

were synthesized from the combination of six underlying unstable attractors Ap1 , Ap2 , Ap3 ,
Ap4 , Ap5 , and Ap6 in Figure 4. This can be expressed in the form:

 Ap1

Chaos

+

 Ap2

Chaos

+

 Ap3

Chaos

+

 Ap4

Chaos

+

 Ap5

Chaos

+

 Ap6

Chaos

 =

 AS

Order

 (15)

The expression in (15) is akin to the generalized Parrondo’s paradox [55,58,59]. In this
situation, our PS scheme served as the chaos control mechanism in the Chen oscillator.

3.2. Master–Slave Synchronization

In this work, the system parameter values for the synchronization of the Chen oscilla-
tors were a = 35, b = 3. For parameter c, all six values in the set PN were separately used.
The chosen gains of the observer were k1 = 2, k2 = 100, and k3 = 0. The synchronization
errors were computed and plotted as e1 = x1− ξ1, e2 = x2− ξ2, e3 = x3− ξ3, in which xi is
the master system and ξi is the slave system. The phase error between xi and ξi is plotted
as well. The total number of samples was 10 × 104. Figure 7a shows the co-simulation
diagram of the synchronization in MATLAB/Simulink, whereby XM1, YM1, and ZM1 are
the outputs of the master system, XS1, YS1, and ZS1 are the outputs of the slave system,
while E1, E2, and E3 are the synchronization errors. The block SYNC_TOP_SINGLE_P
contains the function that performs the synchronization of the master and slave systems.
Figure 7b represents the Active-HDL block diagram in the VHDL implementation. The
entities Master and Slave represent the master and slave systems, respectively, while entity
Sync handles the synchronization process. For the master system, the outputs are xm, ym,
and zm; for the slave system, the outputs are xs, ys, and zs; while the synchronization
errors are e1, e2, and e3.

(a) (b)

Figure 7. Hamiltonian synchronization of master and slave Chen systems. (a) Co-simulation in MATLAB/Simulink with
Active-HDL. (b) Active-HDL block diagram of the VHDL implementation.

Two cases of synchronization, co-simulated in MATLAB and Active-HDL, are pre-
sented in this section. In the first case, the synchronization used different initial conditions
as follows: x0 = (4.075, 4.425, 13.73) for the master system and ξ0 = (3, 3.5, 10.5) for the slave
system. The second case used the same initial condition, x0 = (4.075, 4.425, 13.73), for the
master system, as well as the slave system. Initial conditions of the systems were randomly
selected from the basins of attraction, out of the many possible values. The basins of
attraction of the Chen system (1) can be visualized in Figure 8. It was computed using the
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Newton–Raphson method [60,61]. To plot the basins, the chosen upper and lower bounds
within the state space were x = [−25, 25], y = [−25, 25], and z = [−30, 50]. The points in
red color converge to the equilibrium point EP0 represented by the black diamond shape,
while those in green and blue converge to the equilibrium points EP1 and EP2 indicated by
the two black circles, respectively. The eigenvalues at the three equilibria had at least one
positive value, hence the possibility of strange attractors.

Both the master and slave chaotic oscillators were sensitive to the respective initial
values. This was confirmed by computing the Lyapunov exponents, which for each initial
condition had a positive value. In both cases, the master and slave phase diagrams, the
phase errors, and the synchronization errors were analyzed. Perfect synchronization was
achieved, considering the synchronization and phase error plots, for all the values of
parameter c starting with c = p1, in which the error signals e1, e2 and e3 became zero (the
same results were obtained for p2–p6). Therefore, suffice it to say that the ratio between the
master state xi and slave state ξi was one when the synchronization was achieved.

Figure 8. Basins of attraction of the Chen system (1) on x− y plane at a = 35, b = 3, and c = 24.75;
equilibrium point EP0 has the red regions as its basin; equilibrium point EP1 has green regions as its
basin; while equilibrium point EP2 has blue regions as its basin.

4. Application in Image Transmission

In this section, the synchronized Chen oscillators in the previous section are applied
to develop a system for secure communication, to transmit grayscale and RGB images of
size 640 × 480 pixels (307,200 words) and 320 × 240 pixels (230,400 words), respectively.
Furthermore, the implementation of the image transmission system was co-simulated in
both MATLAB/Simulink and Active-HDL. The main attraction here was the application
of the parameter-switching technique to decrypt a transmitted (encrypted) image. In the
communication concept, the master system is the transmitter subsystem, while the slave
system is the receiver subsystem. The co-simulation diagram of the image transmission
system in Simulink with Active-HDL and the Active-HDL block diagram are shown in
Figure 9, respectively. In Figure 9a, img_origin, encrypted_column, and img_rx_column from
the output ports generate the original image, the encrypted image, and the decrypted image
signals, respectively, in MATLAB, and the function that coordinates the image transmission
is embedded in the TRANSMISSION_TOP block. On the other hand, Figure 9b contains
four entities, namely Master, which is the master system, Slave, the slave system, Sync, the
synchronization unit, and TXN_RXN, the unit that handles the actual image transmission.
The original, encrypted, and decrypted image signals were received via image_original,
encrypted, and image_out output ports.
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(a) (b)

Figure 9. Image transmission system. (a) Co-simulation diagram in MATLAB/Simulink with Active-HDL. (b) Active-HDL
block diagram.

The image transmission system is briefly described in the following three-
step methodology:

Step 1: Creating the original RGB and grayscale image data in VHDL.
Step 2: Encrypting the original image with the chaotic state of the master system, e.g.,

master_x, in the TXN_RXN entity in Figure 8 (the master system is developed with any of
the parameters in PN).

Step 3: Recovering the image data, e.g., image_out, from the encrypted signal by
removing chaos using the corresponding state of the slave system, e.g., slave_x.

In this work, the three states x, y, and z were applied as transmission variables to
encrypt and decrypt the images. The total simulation time for the RGB image transmission
was 234,400 samples and 311,200 samples for grayscale image transmission. It is important
to state that the initial conditions and the system parameters were private keys in the
encryption and decryption, making the system a symmetric one. The co-simulation results
from Active-HDL with Simulink, showing the original, encrypted, and received image
data, are shown in Figure 10 for the grayscale image and Figure 11 for the RGB image. In
both figures, the original images (in red color) are mixed with chaos to give the encrypted
images (in blue color). Moreover, with respect to Figure 9, the original image signals were
obtained from the img_origin and image_origin ports, encrypted image signals from the
encrypted_column and encrypted ports, and the received image signals via the img_rx_column
and image_out ports.

In Figure 12a,b are found the actual original, encrypted, and recovered grayscale and
RGB images obtained from our best result, respectively. Statistical analyses were performed
in MATLAB to find the correlation between the original and encrypted images, encrypted
and received images, and original and received images. The results are presented in Table 1.
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Table 1. Correlation coefficients’ analysis of the original, encrypted, and received RGB and
grayscale images, using the parameter-switching scheme for image decryption.

Transmission
Variable

Correlation RGB Image Grayscale
ImageRed Green Blue

x
Original and Encrypted 0.0342 0.0543 0.0315 0.0352
Encrypted and Received 0.0342 0.0543 0.0315 0.0352
Original and Received 1 1 1 1

y
Original and Encrypted 0.0316 0.0498 0.0296 0.0362
Encrypted and Received 0.0316 0.0498 0.0296 0.0362
Original and Received 1 1 1 1

z
Original and Encrypted 0.0649 0.0747 0.0711 0.0672
Encrypted and Received 0.0649 0.0747 0.0711 0.0672
Original and Received 1 1 1 1
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Figure 10. Waveforms of the 640 × 480 grayscale image from transmission variable x, showing the
original (red), encrypted (blue), and received (magenta) recovered by the parameter-switching
technique. (a) Co-simulation diagram in MATLAB/Simulink with Active-HDL. (b) Active-HDL.
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Figure 11. Waveforms of the 320 × 240 RGB image data from transmission variable y, showing the
original (red), encrypted (blue), and received (magenta) recovered by the parameter-switching
technique. (a) Co-simulation diagram in MATLAB/Simulink with Active-HDL. (b) Active-HDL.

(a)

(b)

Figure 12. Co-simulation image data, showing the original image (left), encrypted image (middle),
and received image (right) recovered by the parameter-switching technique: (a) 640 × 480 grayscale
image, transmitted via state variable x; (b) 320 × 240 RGB image, transmitted via state variable y.
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5. Discussion

The nonlinearities inherent in the Chen model (1) help give rise to the chaotic attractors
in Figure 4. Upon the application of the parameter-switching scheme to evaluate the Chen
model, effectively evaluating six different Chen chaotic systems in turn in the process, a
stable Chen system was obtained. Suffice it to say that chaos in the underlying six chaotic
attractors was controlled to give rise to a stable cycle (see the “switched” solution AS in
Figure 5).

The backbone of the image transmission system in Figure 9 was the synchronized
master and slave Chen systems. The slave unit Slave had embedded in it a parameter
switching unit, which used the scheme in (14) to stabilize chaos in the master system to
recover the encrypted image data. In the results presented in Figures 10–12, each pixel of
the original grayscale and RGB image data was blended with the chaotic state of the master
unit to create the encrypted image data. Specifically, in Figures 10 and 11, it is observed
that the encrypted image data became random. The randomness in the encrypted images
rendered them meaningless to potential hackers. After the images were reconstructed, the
randomness was removed, and it can be seen that the recovered images were exactly the
same as the original images. This result was significant because the recovery was achieved
by applying the parameter-switching technique.

In the correlation results in Table 1, it is shown that with a correlation of one between
the original and received images for both the RGB and grayscale images, the transmitted im-
ages were recovered fully without any loss of quality by applying the parameter-switching
technique for the decryption. Considering the security of the encrypted images, given by
the correlation between the original and encrypted images, our best result was obtained
from variable y for the RGB images and x for the grayscale image. As a matter of fact,
the correlations between the original and encrypted grayscale and RGB images, as well
as between the encrypted and received grayscale and RGB images were the same, mean-
ing that both the original and received images were the same. Moreover, the computed
mean-squared error (MSE) was zero; hence, the peak-signal-to-noise ratio (PSNR) tended
to infinity. This revelation was attributed to the fact that the chaos-based transmission
system was resistant to noise and distortion [62].

All the work carried out in this investigation, namely the implementation of the Chen
oscillator, the synthesis of attractors by the parameter-switching scheme, the synchroniza-
tion of Chen oscillators, and image transmission, was realized on an FPGA device. As
stated earlier, the HDL used was VHDL, and the size of the digital block was twenty-four
bits: the integer segment used nine bits; the fraction occupied fourteen bits and one bit
for the sign. The FPGA emulations were performed on the Xilinx Artix-7 AC701 board
Device Number XC7A200TFBG676-2. The FPGA resources consumed by the activities
listed above are presented in Table 2. As we can see, each of the activities required only
less than one percent of the total registers on the FPGA board for the implementation. The
same amount of FPGA resources was utilized to implement the Chen chaotic oscillator and
the parameter-switching scheme to approximate stable cycles of the Chen oscillator.

Table 2. Utilization of FPGA resources in the Xilinx Artix-7 AC701 board to implement the: (1) Chen
chaotic oscillator, (2) parameter-switching scheme applied to approximate stable cycles of the Chen
oscillator, and (3) the Hamiltonian form synchronization of Chen oscillators.

Chen Oscillator Parameter Switching Synchronization

Resources Available Used Utilization
(%) Used Utilization

(%) Used Utilization
(%)

Slice LUTs 134,600 5615 4 5472 4 11,935 9
Memory LUTs 46,200 0 0 0 0 0 0
Registers 269,200 144 <1 179 <1 479 <1
I/O pins 400 73 18 73 18 145 36
Block RAMs 13,140,000 0 0 0 0 0 0
DSPs 740 44 6 40 5 64 9
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Table 3 exhibits the utilization of FPGA resources for the image transmission,:
the grayscale consumed more resources than the RGB, in particular with the amount of utilized
slice LUTs. The difference in the slice LUTs utilization was attributed to the size of the images,
which were 307,200 words for the grayscale and 230,400 words for the RGB image.

Table 3. Utilization of FPGA resources in the Xilinx Artix-7 AC701 board to implement RGB and grayscale
image transmissions by Chen oscillators using the parameter-switching scheme for decryption.

Resources Available
RGB Image Grayscale Image

Used Utilization (%) Used Utilization (%)

Slice LUTs 134,600 73,157 54 83,810 62
Memory LUTs 46,200 0 0 0 0
Registers 269,200 885 <1 948 <1
I/O pins 400 75 19 75 19
Block RAMs 13,140,000 0 0 0 0
DSPs 740 104 14 104 14

The secure communication system realized on the Intel’s Artix-7 AC701 board in this
investigation was compared with some other implementations [38,63–65], using some of
the FPGA resources and other parameters such as the type of board, the numerical method
applied, the language of implementation, and the format of the fixed-point number. This
is presented in Table 4. The FPGA resource consumption on Artix-7 AC701 performed
favorably against the compared works.

Table 4. Comparing this work with other FPGA implementations of secure communication systems.

Parameter This Work (RGB) This Work (Grayscale) Ref. [38] Ref. [63] Ref. [64] Ref. [65]

FPGA Artix-7 Artix-7 ZYNQ Cyclone IV Stratix IV Virtex 5
Slice LUTs 54% 62% 43% 33% 27% 24%
Registers <1% <1% 25% 27% <1% 5%
I/O pins 19% 19% 24% N/A 22% 32%
Block RAMs 0% 0% N/A 96% 40% N/A
DSPs 14% 14% N/A 24% 7% 62%
Algorithm RK-4 RK-4 RK-4 Euler Euler RK-4
Language VHDL VHDL Verilog Verilog VHDL VHDL
Number 24 bit 24 bit 32 bit 32 bit 19 bit 32 bit

At this juncture, it is important to state that, compared to other systems of commu-
nication, like the spread spectrum [66,67], the chaos-based image transmission system
implemented in this investigation had the advantage of simplicity. The major subsystems
were the master (transmitter) and the slave (receiver), unlike the traditional methods,
which have many subsystems. Another merit is that the implemented system employed
the chaotic states for both synchronization and encryption, unlike the other communication
methods, which use a tool for synchronization and another for encryption. Furthermore, in
terms of the number of rounds needed for encryption and decryption, our method used
just a single round for each operation, as against several rounds in methods such as the
Advanced Encryption Standard (AES) and the Data Encryption Standard (DES) [68,69].
Moreover, the chaos-based transmission system was resistant to noise and distortion. Lastly,
our encryption system was less susceptible to security attacks because of the very large key
space provided by the parameters and the initial condition.

6. Conclusions

The digital implementation of the parameter-switching scheme as the chaos control
mechanism was highlighted in this paper. In another situation, parameter switching can
function as the chaos anti-control mechanism, whereby two or more underlying stable
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attractors are combined to synthesize a chaotic attractor. The first major contribution of this
work was the FPGA realization of the parameter-switching scheme to approximate stable
cycles of the Chen oscillator. The second major contribution was the FPGA realization of
a secure communication system whereby the parameter-switching scheme was applied
as a decryption mechanism to recover chaos-encrypted RGB and grayscale images. In
addition, the Chen chaotic model and master–slave synchronization by Hamiltonians
and the observer-based approach were also realized on an FPGA device. In each activity,
co-simulation results in MATLAB/Simulink and Active-HDL were presented to verify the
FPGA realizations. In the case of the image transmission, the results of our experiment
confirmed that the method implemented in this work was beneficial to secure communi-
cation systems. The bit depth of the grayscale image was eight bits, while the RGB was
twenty-four bits, but our method is applicable to images of any bit depth.
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The following abbreviations are used in this manuscript:

DSP Digital signal processor
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IVP Initial value problem
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