
symmetryS S

Article

General Summation Formulas Contiguous to the q-Kummer
Summation Theorems and Their Applications

Yashoverdhan Vyas 1 , Hari M. Srivastava 2,3,4,5,* , Shivani Pathak 1 and Kalpana Fatawat 6

����������
�������

Citation: Vyas, Y.; Srivastava, H.M.;

Pathak, S.; Fatawat, K. General

Summation Formulas Contiguous to

the q-Kummer Summation Theorems

and Their Applications. Symmetry

2021, 13, 1102. https://doi.org/

10.3390/sym13061102

Academic Editor: Alexei Kanel-Belov

Received: 28 May 2021

Accepted: 16 June 2021

Published: 21 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, School of Engineering, Sir Padampat Singhania University, Bhatewar,
Udaipur 313601, Rajasthan, India; yashoverdhan.vyas@spsu.ac.in (Y.V.); shivani.bhatt@spsu.ac.in (S.P.)

2 Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
3 Department of Medical Research, China Medical University, Taichung 40402, Taiwan
4 Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street,

AZ1007 Baku, Azerbaijan
5 Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy
6 Techno India NJR Institute of Technology, Plot SPL-T, Bhamashah (RIICO) Industrial Area, Kaladwas,

Udaipur 313003, Rajasthan, India; kalpana.fatawat@technonjr.org
* Correspondence: harimsri@math.uvic.ca

Abstract: This paper provides three classes of q-summation formulas in the form of general contigu-
ous extensions of the first q-Kummer summation theorem. Their derivations are presented by using
three methods, which are along the lines of the three types of well-known proofs of the q-Kummer
summation theorem with a key role of the q-binomial theorem. In addition to the q-binomial theorem,
the first proof makes use of Thomae’s q-integral representation and the second proof needs Heine’s
transformation. Whereas the third proof utilizes only the q-binomial theorem. Subsequently, the ap-
plications of these summation formulas in obtaining the general contiguous extensions of the second
and the third q-Kummer summation theorems are also presented. Furthermore, the investigated
results are specialized to give many of the known as well as presumably new q-summation theorems,
which are contiguous to the three q-Kummer summation theorems. This work is motivated by the
observation that the basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-)
gamma and q-hypergeometric functions and basic (or q-) hypergeometric polynomials, are applicable
particularly in several diverse areas including Number Theory, Theory of Partitions and Combina-
torial Analysis as well as in the study of Combinatorial Generating Functions. Just as it is known
in the theory of the Gauss, Kummer (or confluent), Clausen and the generalized hypergeometric
functions, the parameters in the corresponding basic or quantum (or q-) hypergeometric functions
are symmetric in the sense that they remain invariant when the order of the p numerator parameters
or when the order of the q denominator parameters is arbitrarily changed. A case has therefore been
made for the symmetry possessed not only by hypergeometric functions and basic or quantum (or
q-) hypergeometric functions, which are studied in this paper, but also by the symmetric quantum
calculus itself.

Keywords: symmetric quantum calculus; quantum or basic (or q-) hypergeometric series; q-Binomial
theorem; q-Kummer summation theorem; Thomae’s q-integral representation; Heine’s transformation;
q-Kummer second and third summation theorems

MSC: Primary 33D05; 33D15; Secondary 05A30; 11B65; 33C05; 33C20

1. Introduction, Motivation and Preliminaries

The celebrated Gauss hypergeometric function 2F1, the Kummer (or confluent) hy-
pergeometric function 1F1, the Clausen hypergeometric function 3F2, and various other
mathematical functions of hypergeometric type, are all contained in the generalized hyper-
geometric function rFs, involving r numerator parameters a1, · · · , ar and s denominator
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parameters b1, · · · , bs, as special cases. For definition and other details including the
criteria to ensure the convergence of the series defining the generalized hypergeometric
function rFs, we refer the reader to [1–4]).

The generalized basic or quantum (or q-) hypergeometric series is defined by (for
details, see [2,3,5–7]).

rΦs

 a1, · · · , ar ;

b1, · · · , bs ;
q, z


=

∞

∑
n=0

(a1; q)n · · · (ar; q)n
(b1; q)n · · · (bs; q)n

zn

(q; q)n

[
(−1)nq(

n
2)
]1+s−r

,

(1)

where the q-shifted factorials are given by

(a; q)0 := 1 and (a; q)n := (1− a) · · · (1− aqn−1) (n ∈ N), (2)

where, and in what follows, the symbol N0 denotes the set of 0-inclusive natural numbers
and N = N0 \ {0}. A detailed discussion on the convergence of the series (1) can be found
in [3] (p. 347), [6] (pp. 22–23) and [7] (pp. 4–5).

For the q-shifted factorials (2), we use a compact notation as follows:

(a1, · · · , ar; q)n := (a1; q)n · · · (ar; q)n (n ∈ N0). (3)

In addition, when n tends to infinity, we use the following notations:

(a; q)∞ :=
∞

∏
n=0

(1− aqn) (4)

and
(a1, · · · , ar; q)∞ := (a1; q)∞ · · · (ar; q)∞. (5)

For further identities involving the q-shifted factorials, we refer the reader to [7]
(pp. 351–352, Appendix I). Many of these identities for q-shifted factorials will be freely
used in our presentation here.

This article is motivated essentially by the fact that the basic (or q-) series, basic (or
q-) polynomials and basic (or q-) calculus, specifically the basic (or q-) hypergeometric
functions and the basic (or q-) hypergeometric polynomials have demonstrated applications
in the area of Number Theory such as, for example, the Theory of Partitions and are also
found to be useful in a wide range of fields (see, for details, [3] (pp. 350–351), [8] (p. 328),
and [9] (p. 1817); see also the references cited therein). Further motivation for studying
such quantum (or q-) hypergeometric functions in this paper can be found in the book
chapter, entitled “Symmetric quantum calculus" in [10].

In the theory and applications of the Gauss hypergeometric function 2F1, the Kummer
(or confluent) hypergeometric function 1F1, the Clausen hypergeometric function 3F2,
and various other mathematical functions of hypergeometric type, contained as special
cases in the generalized hypergeometric function rFs, it is often useful to know that
the sets of the r numerator parameters a1, · · · , ar and the s denominator parameters
b1, · · · , bs, are symmetric individually. The same is true individually for the sets of
the numerator parameters and the denominator parameters in the their quantum (or q-)
extensions involved in Equation (1), which we have considered in this paper.

There are many classical summation and transformation theorems for the hyperge-
ometric functions as listed by Slater (see, for example, [2] (Appendix III, pp. 243–245)
and [7] (pp. 354–356, Appendix II); see also [2] (p. 247, Appendix IV) and [5]).

The present work deals with the contiguous extensions of the basic (or q-) analogues
of three hypergeometric summation theorems due to Kummer [11]. The three classical,
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well-known and celebrated hypergeometric summation theorems for the 2F1(z) series
with z = −1 and z = 1

2 include Kummer’s first summation theorem for z = −1
(
see [2](

p. 243, Equation (III.5)
)

and [1] (p. 68, Theorem 26)
)

and the two summation theorems
for z = 1

2 [2]
(
p. 243, Equations (III.6) and (III.7)

)
. All three of these hypergeometric

summation theorems were given, in fact, by Kummer [11] (p. 134, Entries 1, 2 and 3) in
1836. We refer to these last three results as Kummer’s first summation theorem, Kummer’s
second summation theorem and Kummer’s third summation theorem, respectively (see
also the remarks by Choi et al. [12] about incorrectly giving credit instead to Gauss and
Bailey for the last two Kummer summation theorems for the 2F1(z) series with z = 1

2 ).
Of these three known summation theorems, until 1973, only a q-analogue of Kummer’s
first summation theorem was known as follows

(
see Reference [13] (p. 711); see also [14]

(p. 173)
)
:

2Φ1

 a, b ;

aq
b

;
q, − q

b

 =

(−q; q)∞

(
aq,

aq2

b2 ; q2

)
∞( aq

b
,− q

b
; q
)

∞

. (6)

The proof of the result stated in Equation (6) was based upon the specialization
of parameters in Jackson’s summation of the well-poised 6Φ5 [7]

(
p. 356, Equation

(II.20)
)
. Later on, in two different papers, Andrews (see [15,16]) described two proofs for

the q-analogue of Kummer’s first summation theorem. Andrews [15] employed series
rearrangement and the q-binomial theorem three times and, in [16], he used Heine’s
transformation and the q-binomial theorem, where the q-binomial theorem [7]

(
p. 8,

Equation (1.3.2)
)

and the Heine’s transformation [7]
(
p. 13, Equation (1.4.1)

)
are as follows:

∞

∑
n=0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

(max{|z|, |q|} < 1) (7)

and

2Φ1

 a, b ;

c ;
q, z

 =
(b, az; q)∞
(c, z; q)∞

2Φ1


c
b

, z ;

az ;

q, b

. (8)

Andrews [15] also derived the q-analogue of Kummer’s second summation theorem [6](
p. 31, Equation (1.4.6.5)

)
:

2Φ2

 a, b ;√
qab,−

√
qab ;

q, −q

 =
(−q; q)∞

(
aq, bq; q2)

∞

(qab; q2)∞
, (9)

and the q-analogue of Kummer’s third summation theorem
(
see [6]

(
p. 31, Equation (1.4.7.2)

)
and [7]

(
p. 354, Equation (II.10)

))
:

2Φ2

 a,
q
a

;

b,−q ;

q, −b

 =

(
ab,

qb
a

; q2
)

∞
(b; q)∞

(10)

by utilizing the following (Jackson’s) transformation [17]:

2Φ2

 a,
c
b

;

c, az ;

q, bz

 =
(z; q)∞
(az; q)∞

2Φ1

 a, b ;

c ;
q, z

 (11)

and the q-Kummer first summation theorem (6). We refer to the results (9) and (10) as the q-
Kummer second summation theorem and the q-Kummer third summation theorem, respectively.
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Contributions towards contiguous extensions of summation and transformation for-
mulas for basic (or q-) generalized hypergeometric series appear to be a lot less extensive.
For example, in the context of q-Kummer’s theorems (6), (9) and (10), Kim et al. [18]
re-derived the q-analogue of Kummer’s first theorem (6) by using Thomae’s q-integral rep-
resentation given by Equation (13) and also obtained two particular contiguous results [18](
p. 154, Equations (3.1) and (3.2)

)
. In the same context, recently, Harsh et al. [19] (pp. 81–92)

derived some more particular contiguous extensions of the q-Kummer’s first theorem
(6), one-by-one from certain q-contiguous relations. In another paper, Harsh et al. [20]
(pp. 29–31) derived some particular contiguous extensions of the q-Kummer second sum-
mation theorem (9) and the q-Kummer third summation theorem (10) by implementing the
summation formulas contiguous to the q-Kummer first theorem, derived in the previous pa-
per [19] (pp. 81–92), along the lines of the derivations by Andrews [15]. The particular con-
tiguous extensions for the three q-Kummer summation theorems, investigated in [19,20],
are very limited in numbers and are in scattered forms due to the one-by-one use of
q-contiguous relations. In conclusion, as per our observations, the general contiguous
extensions for the three q-Kummer summation theorems, which are presented in this paper
in the form of Theorems 1 to 6 have not appeared previously in the literature. For some
recent developments on the basic (or q-) analogues of the known results on summations,
transformations and reductions for ordinary hypergeometric series in one, two and more
variables (see, especially for a variety of techniques used in the q-analysis [21–25]).

A thorough review of the existing literature shows that not all of the results in the
theory of ordinary hypergeometric series have their basic (or q-) analogues. For example,
in [26], certain new ordinary hypergeometric identities are derived and the investigation
of their q-analogues has been placed as an open problem. In order to bridge this type of
important gaps in the existing literature, several workers have attempted to find transfor-
mations connecting basic hypergeometric series with different bases (see [27]). Notably,
the first attempt that has borne ample fruits is through a paper by Singh [28] in which he
discovered a relation between two 4Φ3 series

(
see [7]

(
p. 361, Equation (III.21)

))
with

bases q and q2, respectively. This solitary transformation filled in a century-old gap in the
theory of basic (or q-) series. In fact, it helped in proving an entire class of q-identities
known as basic analogues of identities of the Cayley–Orr type, which owe their origin to
certain problems in Stellar Physics. It is believed that the q-results, which we have derived
in this paper, are potentially useful in some or the other areas listed above as well as in, for
example, [3] (pp. 350–351) and [9] (p. 1817).

Our objective here is to investigate the compact and closed-form representations of
the general contiguous extensions (with bases q and q2) of the q-Kummer first summation
theorem (see Section 2, Theorems 1–3), and the q-Kummer second and third summation
theorems (see Section 3, Theorems 4–6). In particular, Theorems 1 and 2 (see Section 2) of
this paper provide two general contiguous extensions of the q-Kummer first summation the-
orem in the form of general summations for the following 2Φ1 basic (or q-) hypergeometric
series:

2Φ1


a, b ;

aq1±k

b
;

q, − q
b

 (k ∈ N0). (12)

The limiting cases of Theorems 1 and 2 when q→ 1 produce the general contiguous
extensions of Kummer’s theorem due to Choi et al. [29] (pp. 1523–1524, Equations (2.2)
and (2.3), respectively). Interestingly, Theorem 3 provides another q-analogue of the result
due to Choi et al. [29]

(
p. 1524, Equation (2.3)

)
(see Section 2). Further, in Section 3,

Theorems 1 to 3 are applied in conjunction with the Jackson’s transformation (11) to pro-
vide the generalizations of the q-Kummer second and third summation theorems in the
form of Theorems 4 to 6.
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2. General Contiguous Extensions of the q-Kummer First Theorem: Statements
and Derivations

In this section, we should first add a brief remark about the need for multiple proofs
of a given result. In the literature in the mathematical sciences, one can find numerous such
instances. Multiple proofs of a result provide different viewpoints as well as independent
ways to tackle the problem and, therefore, encourage and motivate the use of these different
ways to tackle other problems as well. For example, in the literature on generating functions,
there are presumably as many as five independent proofs of Jacobi’s celebrated generating
function for the Jacobi polynomials, of which the fifth proof was given by Srivastava [30].
The methodology and techniques, which were used in these five independent proofs, have
since been applied in deriving other families of generating functions as well. We also
observe that the three techniques used in [15,16,18], respectively, will be used to present
the three proofs of the general contiguous extensions of the first q-Kummer summation
Theorem (6) in Section 2.

• The first technique is based on the earlier work [18], which used Thomae’s q-integral
representation [7]

(
p. 24, Equation (1.11.9)

)
, that is,

2Φ1

 a, b ;

c ;
q, z

 =
Γq(c)

Γq(b)Γq(c− b)

∫ 1

0
tb−1 (tzqa, tq; q)∞(

tz, tqc−b; q
)

∞
dqt (13)

along with the application of the following definition of the q-gamma function Γq(z) [7](
p. 20, Equation (1.10.1)

)
and Jackson’s q-integral [7]

(
p. 23, Equation (1.11.1)

)
:

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x (0 < q < 1) (14)

and ∫ 1

0
f (t)dqt = (1− q)

∞

∑
n=0

f (qn)qn, (15)

respectively. The derivation, which is discussed in Section 2 by using (13) (see First
proof of Theorem 1), is comparatively more compact and brief than the proof given by
Kim et al. [18];

• The second technique is based upon the earlier work [16], which used Heine’s trans-
formation (8) (see Second proof of Theorem 1);

• The third technique is based on the earlier work [15] which only used a three-times
application of the q-binomial theorem (7) (see Third proof of Theorem 1).

All three proofs of the general contiguous extensions of the first q-Kummer summa-
tion theorem (6), which we will present in this section, require one additional use of the
q-binomial theorem (7) compared to the corresponding proofs of q-Kummer first sum-
mation theorem (6), presented in earlier works [15,16,18]. In comparison with some of
the other methods leading to basic (or q-) extensions of hypergeometric summation and
transformation fomulas, the above-mentioned methodology and techniques, which we
use in this paper, are demonstrably much more widely applicable and in more general
situations as well.

We now state and prove the main results of this paper in the form of Theorems 1–3
along with their derivations. The q-binomial theorem (7) plays a key role in all the deriva-
tions presented here. However, in addition, the first proof uses Thomae’s q-integral and
the second proof needs Heine’s transformation, whereas the third proof depends only on
the q-binomial theorem (7).

Theorem 1. For any k ∈ N0, the following assertion holds true:
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2Φ1


a, b ;

aq1+k

b
;

q, − q
b

 =

(
a,

q1+k

b
,−q; q

)
∞(

aq1+k

b
; q

)
∞

(
q2

b2 ; q2

)
∞

·
k

∑
j=0

(
q−k; q

)
j

(q; q)j

(
q1+k

b

)j

(
aqj+2

b2 ; q2

)
∞(

aqj; q2
)

∞

,

(16)

provided that
∣∣∣ q
b

∣∣∣ < 1.

First Proof of Theorem 1.

Representing the left-hand side of Theorem 1 by Ω and using the Thomae’s q-integral (13),
we obtain:

Ω =

Γq

(
aq1+k

b

)

Γq(a)Γq

(
q1+k

b

) ∫ 1

0
ta−1 (tq,−tq; q)∞(

−tq1−b, tq1+k−b; q
)

∞
dqt. (17)

Applying an elementary identity for q-shifted factorials to the integrand of the previ-
ous result (Equation (17)) leads to

Ω =

Γq

(
aq1+k

b

)

Γq(a)Γq

(
q1+k

b

) ∫ 1

0
ta−1

(
t2q2; q2)

∞(
t2q2

b2 ; q2

)
∞

(
tq1−b; q

)
∞(

tq1+k−b; q
)

∞
dqt. (18)

Next, by applying the definitions of the q-gamma function (14) and Jackson’s q-
integral (15) to the right-hand side of Equation (18), we obtain

Ω =

(
a,

q1+k

b
; q

)
∞(

aq1+k

b
, q; q

)
∞

∞

∑
n=0

(
q2n+2; q2)

∞qan(
q2n+2

b2 ; q2

)
∞

(
q1+n

b
; q

)
∞(

q1+k+n

b
; q

)
∞

. (19)

Now, the application of the q-binomial theorem (7) to the last fraction of right-hand
side of Equation (19), yields:

Ω =

(
a,

q1+k

b
; q

)
∞(

aq1+k

b
, q; q

)
∞

k

∑
j=0

(
q−k; q

)
j

(q; q)j

(
q1+k

b

)j ∞

∑
n=0

(
q2n+2; q2)

∞q(a+j)n(
q2n+2

b2 ; q2

)
∞

. (20)

Finally, another application of the q-binomial theorem (7), this time for the summation
over n, leads to Theorem 1.
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Second Proof of Theorem 1.

Interchanging a and b, in the Heine’s transformation (8), and letting

c =
aq1+k

b
and z = − q

b
,

and then denoting the resulting left-hand side by Ω, we obtain

Ω =
(a,−q; q)∞(

aq1+k

b
,− q

b
; q

)
∞

∞

∑
n=0

(
q1+k

b
,− q

b
; q

)
n

qan

(q2; q2)n
. (21)

Next, by using known identities involving q-shifted factorials and the q-binomial
theorem (7), to the right-hand side of Equation (21), we find that

Ω =

(
a,−q,

q1+k

b
; q

)
∞(

aq1+k

b
; q

)
∞

(
q2

b2 ; q2

)
∞

·
k

∑
j=0

(
q−k; q

)
j

(q; q)j

(
q1+k

b

)j

·
∞

∑
n=0

(
q2

b2 ; q2

)
n

(
qa+j)n

(q2; q2)n
,

(22)

Finally, by another application of the q-binomial theorem (7), this time to the last term
of the right-hand side of Equation (22), involving the summation over n, we are led easily
to Theorem 1.

Third Proof of Theorem 1.

If we represent the left-hand side 2Φ1 of Theorem 1 by Ω, then, from the series form
of 2Φ1, we can write that:

Ω = 2Φ1


a, b ;

aq1+k

b
;

q, − q
b

 =
∞

∑
n=0

(a; q)n(b; q)n

(
− q

b

)n

(
aq1+k

b
; q

)
n

(q; q)n

, (23)

Now, by first using a known identity for q-shifted factorials in

(a; q)n and

(
aq1+k

b
; q

)
n

,

and then applying the q-binomial theorem (7), we obtain
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Ω =
(a; q)∞(

aq1+k

b
; q

)
∞

∞

∑
m=0

(
q1+k

b
; q

)
m

(aqn)m

(q; q)m

·
∞

∑
n=0

(b; q)n

(
− q

b

)n

(q; q)n
.

(24)

Next, a second application of the q-binomial theorem (7), this time to the last term of
Equation (24), involving summation over n, yields

Ω =
(a,−q; q)∞(

aq1+k

b
,− q

b
; q

)
∞

∞

∑
m=0

(
q1+k

b
; q

)
m

(a)m

(q; q)m

(
− q

b
; q
)

m
(−q; q)m

. (25)

Now, if we apply the above-mentioned identity for q-shifted factorials to the terms of
the last quotient of Equation (25), we obtain

Ω =
(a,−q; q)∞(

aq1+k

b
,− q

b
; q

)
∞

∞

∑
m=0

(
q2

b2 ; q2

)
m

(a)m

(q2; q2)m

(
q1+k

b
; q

)
m( q

b
; q
)

m

. (26)

Next, by applying a known identity involving q-shifted factorials and performing
the third application of the q-binomial theorem (7), this time, to the last fraction of the
right-hand side of Equation (26), yields

Ω =
(a,−q; q)∞(

aq1+k

b
,− q

b
; q

)
∞

k

∑
j=0

(
q−k; q

)
j

(q; q)j

( q
b

; q
)

k

(
q1+k

b

)j

·
∞

∑
m=0

(
q2

b2 ; q2

)
m

q(a+j)m

(q2; q2)m
.

(27)

Finally, the fourth application of the q-binomial theorem (7), this time to the last term
of Equation (27), involving summation over m, leads us to Theorem 1.

Remark 1. The case k = 0 of Theorem 1 leads to the classical q-Kummer first summation theo-
rem (6). The limiting case q→ 1 of Theorem 1 yields a result due to [29]

(
p. 1523, Equation (2.2)

)
.
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Theorem 2. For any k ∈ N0, the following assertion holds true:

2Φ1


a, b ;

aq1−k

b
;

q, − q
b

 =
(a,−q; q)∞(

aq1−k

b
,− q1−k

b
; q

)
∞

·
k

∑
j=0

(
q−k; q

)
j

(q; q)j

(
− q

b

)j

(
aqj+2(1−k)

b2 ; q2

)
∞(

aqj; q2
)

∞

,

(28)

provided that
∣∣∣ q
b

∣∣∣ < 1.

Theorem 3. For any k ∈ N0, the following assertion holds true:

2Φ1

 a, bq−k ;

aq
b

;
q, − q

b

 =
(a,−q; q)∞( aq
b

,− q
b

; q
)

∞

·
k

∑
j=0

(
q−k; q

)
j

(q; q)j
(−q)j

(
aqj+2

b2 ; q2

)
∞(

aqj; q2
)

∞

,

(29)

provided that
∣∣∣ q
b

∣∣∣ < 1.

Proofs of Theorems 2 and 3.

Theorems 2 and 3 can also be proved along the lines of each of the above-mentioned
three proofs of Theorem 1. We choose to omit the analogous details which are involved in
each of these three demonstrations.

Remark 2. The case k = 0 of Theorem 2 leads to the classical q-Kummer first theorem (6). The
limiting case of Theorem 2, when q → 1, yields a known result [29]

(
p. 1524, Equation (2.3)

)
.

The case k = 0 of Theorem 3 leads to the classical q-Kummer first theorem (6). The limiting case of
Theorem 3, when q→ 1, leads to a known result in [29]

(
p. 1524, Equation (2.3)

)
.

3. General Contiguous Extensions of the q-Kummer Second Summation Theorem and
the q-Kummer Third Summation Theorem

This section presents the application of the general contiguous extensions of the
q-Kummer first summation theorem.

Theorem 4. For any k ∈ N0, the following assertion holds true:

2Φ2

 a, b ;√
abq1−k,−

√
abq1−k ;

q, −q1−k



=
(a,−q; q)∞(
abq1−k; q2

)
∞

k

∑
j=0

(
q−k; q

)
j
(−q)j

(q; q)j

(
bq1+j−k; q2

)
∞(

aqj; q2
)

∞

.

(30)
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Proof. Replacing b by
c
b

and then letting

c =
√

abq1−k and z = −

√
bq1−k

a

in Jackson’s transformation (11), we obtain

2Φ2

 a, b ;√
abq1−k,−

√
abq1−k ;

q, −q1−k



=

−
√

bq1−k

a
; q


∞(

−
√

abq1−k; q
)

∞

2Φ1


a,

√
aq1−k

b
;

√
abq1−k ;

q, −

√
bq1−k

a

.

(31)

Finally, by applying a result, which is obtained by a replacement of b by

√
aq1+k

b
in

Theorem 3, to the right-hand side of Equation (31), leads us to Theorem 4.

Remark 3. The case k = 0 of Theorem 4 leads us to the q-Kummer second summation theorem (9).
The limiting case of Theorem 4, when q → 1, gives an additional result in the form of a general
contiguous extension of Kummer’s second summation theorem.

Theorem 5. For any k ∈ N0, the following assertion holds true:

2Φ2

 a,
q1+k

a
;

b,−q ;

q, − b
qk

 =

(
q1+k

a
,

ab
q1+k

; q

)
∞(

b,
q
a

; q
)

∞

·
k

∑
j=0

(
q−k; q

)
j

(
q1+k

a

)j

(q; q)j

(
bq1+j−k

a
; q2

)
∞(

abqj−k−1; q2
)

∞

.

(32)

Proof. The choice c =
bq1+k

a
in Jackson’s transformation (11), followed by a replacement

of b by
ab

q1+k
and the substitution z = − q

a
, we obtain

2Φ2

 a,
q1+k

a
;

b,−q ;

q, − b
qk

 =

(
− q

a
; q
)

∞
(−q; q)∞

2Φ1

 a,
ab

q1+k
;

b ;

q, − q
a

. (33)

Finally, applying a result, which is obtained by an interchange of a and b, followed

by a replacement of b by
ab

q1+k
in Theorem 1, to the right-hand side of Equation (33) leads

to Theorem 5.

Remark 4. The case k = 0 of Theorem 5 leads us to the q-Kummer third summation theorem (10).
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Remark 5. The limiting case q→ 1 of Theorem 5 gives an additional result in the form of a general
contiguous extension of Kummer’s third summation theorem.

Theorem 6. For any k ∈ N0, the following assertion holds true:

2Φ2

 a,
q1−k

a
;

b,−q ;

q, −bqk

 =

(
− q

a
,

ab
q1−k

; q
)

∞(
b,− q1−k

a
; q

)
∞

·
k

∑
j=0

(
q−k; q

)
j

(
− q

a

)j

(q; q)j

(
bq1+j−k

a
; q2

)
∞(

abqj+k−1; q2
)

∞

.

(34)

Proof. First of all, taking c =
bq1−k

a
in Jackson’s transformation (11), followed by a re-

placement of b by
ab

q1−k
and the substitution z = − q

a
, we obtain a transformation from

2Φ2 to 2Φ1 similar to Equation (33). At the end, the result developed from Theorem 2, by

interchanging a and b and then setting b 7→ ab
q1−k

, can be applied to the right-hand side of

the obtained transformation to yield Theorem 6.

Remark 6. The case k = 0 of Theorem 6 leads us to the q-Kummer third summation theorem (10).
The limiting case of Theorem 6, when q → 1, gives an additional result in the form of another
general contiguous extension of Kummer’s third summation theorem.

4. Special Cases and Additional q-Summations

Several known as well as additional q-summations are presented in this section as
special cases of Theorems 1 to 6.

1. Theorem 1, for k = 1, 2, 3, 4 and 5, produces the results given in [19]
(
pp. 892–83,

Equations (6.100) to (6.104)
)
, respectively. For example, the case k = 1 of Theorem 1 is

as shown below [19]
(
p. 82, Equation (6.100)

)
:

2Φ1

 a, b ;

aq2

b ;
q, − q

b

 =
(−q; q)∞(

1− q
b
)( aq2

b ,− q
b ; q
)

∞

·
[(

aq, aq2

b2 ; q2
)

∞
− q

b

(
a, aq3

b2 ; q2
)

∞

]
.

(35)

In addition, for k = 6, 7, 8, · · · , Theorem 1 gives a number of additional q-
summations. For instance, taking k = 6 in Theorem 1, yields

2Φ1


a, b ;

aq7

b
;

q, − q
b

 =

(
a,

q7

b
,−q; q

)
∞(

aq7

b
; q

)
∞

(
q2

b2 ; q2

)
∞

·
6

∑
j=0

(
q−6; q

)
j

(q; q)j

(
q7

b

)j

(
aqj+2

b2 ; q2

)
∞(

aqj; q2
)

∞

.

(36)
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Next, by splitting the summation over j in two parts by selecting the even and
odd values of j and then applying the identities (4) and (2), followed by further
simplifications, leads to the following presumably new result:

2Φ1

 a, b ;

aq7

b ;
q, − q

b


=

1(
1− q

b
)(

1− q2

b

)(
1− q3

b

)(
1− q4

b

)(
1− q5

b

)(
1− q6

b

)
·

(−q; q)∞(
aq7

b ,− q
b ; q
)

∞

[(
aq, aq8

b2 ; q2
)

∞
X1 −

(
a, aq7

b2 ; q2
)

∞
Y1

]
,

(37)

where X1 and Y1 are as given below:

X1 =
(

1− aq6

b2

)[(
1− aq2

b2

)(
1− aq4

b2

)
+ λ1

{(
1− aq4

b2

)
+

q7(1−aq2)
b2

}]
+

q21(1−a)(1−aq2)(1−aq4)
b6

and

Y1 = λ′1

{(
1− aq3

b2

)(
1− aq5

b2

)
+

q14(1−aq)(1−aq3)
b4

}
+

(1+q2)(1+q3)(1+q+q2+q3+q4)(1−aq)q6

b3

(
1− aq5

b2

)
,

with
λ1 =

q3(1+q2+q4)(1+q+q2+q3+q4)(1−a)
b2

and
λ′1 =

q(1+q+q2+q3+q4+q5)
b .

2. Theorem 2, for k = 1, 2, 3, 4 and 5, produces the results given by [19]
(
pp. 83–84,

Equations (6.105) to (6.109)
)
, respectively, with Equations (6.106)–(6.109) in their cor-

rected forms. In addition, for k = 6, 7, 8, · · · , Theorem 2 gives a number of additional
q-summation formulas. For instance, the case when k = 6 is given below:

2Φ1

 a, b ;

a
bq5 ;

q, − q
b

 =
(−q; q)∞(

a
bq5 ,− 1

bq5 ; q
)

∞

·
[(

aq, a
b2q4 ; q2

)
∞

X2 +
(

a, a
b2q5 ; q2

)
∞

Y2

]
,

(38)

where X2 and Y2 are as given below:

X2 =
(

1− a
b2q6

)[(
1− a

b2q10

)(
1− a

b2q8

)
+ λ2

{(
1− a

b2q8

)
+
(1−aq2)

b2q5

}]
+

(1−a)(1−aq2)(1−aq4)
b6q15
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and

Y2 = λ′2

{(
1− a

b2q7

)(
1− a

b2q9

)
+

(1−aq)(1−aq3)
b4q10

}
+

(1+q2)(1+q3)(1+q+q2+q3+q4)(1−aq)
b3q12

(
1− a

b2q7

)
,

with
λ2 =

(1+q2+q4)(1+q+q2+q3+q4)(1−a)
b2q9

and
λ′2 =

(1+q+q2+q3+q4+q5)
bq5 .

3. Theorem 3, for k = 1, 2, 3 and 4, produces the results given by [19]
(
pp. 85–86,

Equations (6.114) to (6.117)
)
, respectively. In addition, for k = 5, 6, 7, · · · , Theorem 3

gives a number of additional q-summations. For instance, the case when k = 5 yields

2Φ1

 a, b
q5 ;

aq
b ;

q, − q
b

 =
(−q; q)∞( aq
b ,− q

b ; q
)

∞

·
[(

aq, aq6

b2 ; q2
)

∞
X3 +

(
a, aq7

b2 ; q2
)

∞
Y3

]
,

(39)

where X3 and Y3 are given by

X3 =
(

1− aq2

b2

)(
1− aq4

b2

)
+ λ3

{(
1 + q2

)(
1− aq4

b2

)
+

(1−aq2)
q3

}
and

Y3 = λ′3

{(
1− aq3

b2

)
+

(1+q2)(1−aq)
q5

}
+

(1−aq)(1−aq3)
q10 ,

with
λ3 =

(1+q+q2+q3+q4)(1−a)
q7

and
λ′3 =

(1+q+q2+q3+q4)
q4

(
1− aq5

b2

)
.

4. Theorem 4, for k = 1, 2 and 3, produces the results given by [20] (pp. 29–30,
Equations (23)–(25)), respectively. In addition, for k = 4, 5, 6, · · · , Theorem 4 gives a
number of additional q-summations. For instance, the case when k = 4 yields

2Φ2

 a, b ;√
ab
q3 ,−

√
ab
q3 ;

q, − 1
q3

 =
(−q; q)∞(

ab
q3 ; q

)
∞

·
[(

aq, bq; q2)
∞X4 +

(
a, b; q2)

∞Y4
]
,

(40)

where X4 and Y4 are as given below:

X4 =
(

1− b
q

)
λ4 +

(1−a)
q3 λ′4

and

Y4 =
(1+q)(1+q2)

q3

{(
1− b

q2

)
+ (1−aq)

q3

}
,
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with
λ4 =

{(
1− b

q3

)
+ (1−a)

q

}
and

λ′4 =

{(
1− b

q

)
(1+q+2q2+q3)

q2 +
(1−aq2)

q3

}
.

5. Theorem 5, for k = 1 and 2, produces the results given in [20] (p. 30, Equations (26) and (27)),
respectively. In addition, for k = 3, 4, 5, · · · , Theorem 5 gives a number of additional
q-summations. For instance, the case when k = 3 yields

2Φ2

 a, q4

a ;

b,−q ;
q, − b

q3

 =
1(

1− q
a
)(

1− q2

a

)(
1− q3

a

)
(b; q)∞

·
[(

b
a , ab

q3 ; q2
)

∞
X5 −

(
bq
a , ab

q4 ; q2
)

∞
Y5

]
,

(41)

where X5 and Y5 are given by

X5 =
(

1− b
aq2

)
+

(1+q+q2)q3

a2

(
1− ab

q4

)
and

Y5 =
(1+q+q2)q

a

(
1− b

aq

)
+ q6

a3

(
1− ab

q3

)
.

6. Theorem 6, for k = 1 and 2, produces the results given in [20]
(
pp. 30–31, Equations (28)

and (29)
) (

Equation (29) with minor corrections
)
. Moreover, for k = 3, 4, 5, · · · , Theorem 6

gives a number of other presumably new q-summations. For instance, the case when
k = 3 yields the following result:

2Φ2

 a, 1
aq2 ;

b,−q ;
q, −bq3

 =
a3q3

(1 + aq2)(1 + aq)(1 + a)(b; q)∞

·
[(

b
a , abq3; q2

)
∞

X6 +
(

bq
a , abq2; q2

)
∞

Y6

]
,

(42)

where X6 and Y6 are as given below:

X6 =
(

1− b
aq2

)
+

(1+q+q2)
a2q3

(
1− abq2

)
and

Y6 =
(1+q+q2)

aq2

(
1− b

aq

)
+

(1−abq3)
a3q3 .

5. Concluding Remarks and Observations

In conclusion, this paper establishes a fact that the known techniques, which were
used in [15,16,18] to derive the three q-Kummer summation theorems, can be applied in a
straightforward manner to develop the general contiguous extensions of the q-Kummer
summation theorems (6), (9) and (10). Moreover, the techniques used in this paper are
clearly more efficient and more effective than the use of the contiguous relations by Harsh
et al. (see [19,20]), because the techniques used here have been demonstrated to be much
more widely applicable and in more general situations as well (see also some related earlier
works [31–36]) on the subject of our present investigation. In a forthcoming sequel to this
article, we aim at investigating several general contiguous extensions of the q-analogues of
Dixon’s summation theorem [7]

(
p. 355, Equation (II.13)

)
, Watson’s summation theorem [7]
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(
p. 355, Equation (II.16)

)
and Whipple’s summation theorem [7]

(
p. 355, Equations (II.18)

and (II.19)
)
. This seemingly worthwhile sequence to our present work is under preparation

and will be communicated in the foreseeable future.
In view of the applications, which are mentioned in [16] (Sections 2 and 3) regarding

derivations of partitions as well as number-theoretic identities from the basic hypergeomet-
ric summations and transformations, and also the applications of Watson’s transformation
in deriving the Rogers–Ramanujan type identities

(
see [2] (pp. 103–105) and [7] (p. 44)

)
,

the results investigated here are potentially useful in these directions.
It may be remarked that, in a recent paper by Srivastava [8], the so-called (p, q)-

calculus was exposed to be a rather trivial and inconsequential variation of the classical
q-calculus, since the additional parameter p is redundant (see, for details, Reference [8]
(p. 340)). This observation by Srivastava [8] will indeed apply also to any attempt to
produce the rather straightforward (p, q)-variations of the results which we have presented
in this paper.
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