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Abstract: In this article, we present a two-point boundary value problem with separated boundary
conditions for a finite nabla fractional difference equation. First, we construct an associated Green’s
function as a series of functions with the help of spectral theory, and obtain some of its proper-
ties. Under suitable conditions on the nonlinear part of the nabla fractional difference equation,
we deduce two existence results of the considered nonlinear problem by means of two Leray–
Schauder fixed point theorems. We provide a couple of examples to illustrate the applicability of the
established results.

Keywords: nabla fractional difference; boundary value problem; separated boundary conditions;
Green’s function; existence of solutions

1. Introduction

Denote the set of all real numbers and positive real numbers by R and R+, respectively.
Define by Na = {a, a + 1, a + 2, . . .} and Nb

a = {a, a + 1, a + 2, . . . , b} for any a, b ∈ R
such that b− a ∈ N1.

In this article, we consider the following nabla fractional difference equation associated
with separated boundary conditions:

−
(
∇ν−1

a
(
∇u
))

(t) + g(t)u(t) = f (t, u(t)), t ∈ Nb
a+2,

αu(a + 1)− β
(
∇u
)
(a + 1) = 0,

γu(b) + δ
(
∇u
)
(b) = 0.

(1)

Here a, b ∈ R with b− a ∈ N1; 1 < ν < 2; g : Nb
a → R; f : Nb

a ×R→ R; ∇ν−1
a denotes

the (ν− 1)-th order Riemann–Liouville backward (nabla) difference operator; ∇ denotes
the first order backward (nabla) difference operator; α, β, γ, δ ∈ R such that α2 + β2 > 0
and γ2 + δ2 > 0.

Gray and Zhang [1], Atici and Eloe [2] and Anastassiou [3] initiated the study of nabla
fractional sums and differences. The combined efforts of a number of researchers has
resulted in a fairly strong foundation to the basic theory of nabla fractional calculus during
the past decade. For a detailed discussion on the evolution of nabla fractional calculus, we
refer to the recent monograph [4] and the references therein.

We point out that problem (1) is a discrete version of the second order ordinary
differential Hill’s equation, which has a lot of applications in engineering and physics.
We can find, among others, several problems in astronomy, circuits, electric conductivity
of metals and cyclotrons. Hill’s equation is named after the pioneering work of the
mathematical astronomer George William Hill (1838–1914), see [5]. There is a long literature
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in the study of the oscillation of the solutions of such an equation and the constant sign
solutions. The reader can consult the monographs [6,7] and references therein. We note that
the boundary conditions cover the Sturm–Liouville conditions, which include, as particular
cases, the Dirichlet, Neumann and Mixed ones.

Recently, there has been a surge of interest in the development of the theory of nabla
fractional boundary value problems. Brackins [8] initiated the study of boundary value
problems for linear and nonlinear nabla fractional difference equations. Following this
work, several authors have studied nabla fractional boundary value problems extensively.
We refer to [9–18] and the references therein to name a few.

Brackins [8] showed that for all (t, s) ∈ Nb
a ×Nb

a+1 (see Figure 1)

G0(t, s) =

{
v1(t, s), t ∈ Nρ(s)

a ,
v2(t, s), t ∈ Nb

s
(2)

is the Green’s function related to the following boundary value problem:
−
(
∇ν−1

a
(
∇u
))

(t) = 0, t ∈ Nb
a+2,

αu(a + 1)− β
(
∇u
)
(a + 1) = 0,

γu(b) + δ
(
∇u
)
(b) = 0.

(3)

Here,

v1(t, s) =
1
ξ

[
αγHν−1(t, a)Hν−1(b, ρ(s)) + αδHν−1(t, a)Hν−2(b, ρ(s))

+ (β− α)γHν−1(b, ρ(s)) + (β− α)δHν−2(b, ρ(s))
]
,

v2(t, s) = v1(t, s)− Hν−1(t, ρ(s)),

ξ = (β− α)γ + αγHν−1(b, a) + αδHν−2(b, a) 6= 0.
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Figure 1. Graphic of G0(t, 20) for α = β = γ = 1, δ = 0 (Dirichlet case), µ = 3/2, a = 5 and b = 40.

This result was obtained by expressing the general solution of the nabla fractional
difference equation in (3), using the method of variation of constants. Notice that, for a
non-constant function g the expression of the general solution does not exist and, as a conse-
quence, the method used in [8] is not applicable for the following boundary value problem:
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
−
(
∇ν−1

a
(
∇u
))

(t) + g(t)u(t) = 0, t ∈ Nb
a+2,

αu(a + 1)− β
(
∇u
)
(a + 1) = 0,

γu(b) + δ
(
∇u
)
(b) = 0.

(4)

Due to this reason, Graef et al. [19] and Cabada et al. [20] followed a different approach.
Graef et al. [19] studied the following Dirichlet problem:{

−
(

Dµ
0 u
)
(t) + g(t)u(t) = w(t) f (t, u(t)), 0 < t < 1,

u(0) = u(1) = 0,

where 1 < µ < 2; g : [0, 1] → R, w : [0, 1] → R+ ∪ {0}, f : [0, 1]×R → R are continu-
ous functions, and Dµ

0 denotes the µth-th order Riemann–Liouville fractional derivative.
Cabada et al. [20] studied the following Dirichlet problem:

−
(
∆µu

)
(t) + g(t + µ− 1)u(t + µ− 1) = w(t) f (t + µ− 1, u(t + µ− 1)),

u(µ− 2) = u(µ + b + 1) = 0,

where t ∈ Nb+1
0 , b ∈ N5; 1 < µ < 2; g, w : Nb+1

0 → R with w 6≡ 0 on Nb+1
0 ; f : Nµ+b

µ−1 ×R→
R is a continuous function, and ∆µ denotes the µ-th order Riemann–Liouville forward
(delta) difference operator.

Similar to these works, we obtained the Green’s function related to (4) as a series of
functions by using the spectral theory. Then, under suitable conditions on g, w and f , we
proved the existence of at least one solution of the boundary value problem (1). This work
provides a new approach for constructing Green’s functions for nabla fractional boundary
value problems.

This article is organized as follows: In Section 2, we recall some definitions and
preliminary results. In Section 3, we obtain the Green’s function related to (4), and deduce
some of its important properties. In Section 4, we establish a couple of existence results for
the boundary value problem (1), using two different Leray–Schauder fixed point theorems
and under different assumptions on the data of the problem. Finally, we give some
examples to demonstrate the applicability of these results.

2. Preliminaries

In this section, we recall some elementary definitions and fundamental facts of nabla
fractional calculus, which will be used throughout the article. Denote by Na = {a, a +
1, a + 2, . . .} and Nb

a = {a, a + 1, a + 2, . . . , b} for any a, b ∈ R such that b− a ∈ N1. The
backward jump operator ρ : Na+1 → Na is defined by

ρ(t) = max {a, t− 1}, t ∈ Na.

The Euler gamma function is defined by

Γ(z) =
∫ ∞

0
tz−1e−tdt, <(z) > 0.

Using its reduction formula, the Euler gamma function can also be extended to the half-
plane <(z) ≤ 0 except for z ∈ {. . . ,−2,−1, 0}. For t ∈ R \ {. . . ,−2,−1, 0} and r ∈ R
such that (t + r) ∈ R \ {. . . ,−2,−1, 0}, the generalized rising function is defined by
the following:

tr =
Γ(t + r)

Γ(t)
.
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If t ∈ {. . . ,−2,−1, 0} and r ∈ R such that (t + r) ∈ R \ {. . . ,−2,−1, 0}, then we find
that tr = 0.

Let µ ∈ R \ {. . . ,−2,−1}, define the µ-th order nabla fractional Taylor monomial by
the following:

Hµ(t, a) =
(t− a)µ

Γ(µ + 1)
,

provided that the right-hand side exists. Observe that Hµ(a, a) = 0 and Hµ(t, a) = 0 for all
µ ∈ {. . . ,−2,−1} and t ∈ Na.

Let u : Na → R and N ∈ N1. The first order backward (nabla) difference of u is
defined by the following:(

∇u
)
(t) = u(t)− u(t− 1), t ∈ Na+1,

and the N-th order nabla difference of u is defined recursively by(
∇Nu

)
(t) =

(
∇
(
∇N−1u

))
(t), t ∈ Na+N .

Let u : Na+1 → R and N ∈ N1. The N-th order nabla sum of u based at a is given by
the following: (

∇−N
a u

)
(t) =

t

∑
s=a+1

HN−1(t, ρ(s))u(s), t ∈ Na,

where, by convention,
(
∇−N

a u
)
(a) = 0.

We define
(
∇−0

a u
)
(t) = u(t) for all t ∈ Na+1.

Definition 1. Let u : Na+1 → R and ν > 0. The ν-th order nabla sum of u based at a is given by
the following [4]: (

∇−ν
a u

)
(t) =

t

∑
s=a+1

Hν−1(t, ρ(s))u(s), t ∈ Na,

where, by convention,
(
∇−ν

a u
)
(a) = 0.

Definition 2. Let u : Na+1 → R, ν > 0 and choose N ∈ N1 such that N− 1 < ν ≤ N. The ν-th
order Riemann–Liouville nabla difference of u is given by the following [4]:(

∇ν
au
)
(t) =

(
∇N(∇−(N−ν)

a u
))

(t), t ∈ Na+N .

In [21,22], Jonnalagadda obtained the following properties of the Green’s function G0(t, s).

Theorem 1. Assume that the following condition holds [22]:

(A0) α, β, γ, δ ≥ 0, α2 + β2 > 0, γ2 + δ2 > 0 and β ≥ α.

Then,

1. G0(t, s) ≥ 0 for all (t, s) ∈ Nb
a ×Nb

a+1;
2. max

t∈Nb
a

G0(t, s) = G0(ρ(s), s) for all s ∈ Nb
a+1;

3. G0(ρ(s), s) < Λ, where

Λ =
1
ξ

[
αγHν−1(b, a)Hν−1(b, a) + αδHν−1(b, a)

+ (β− α)γHν−1(b, a) + (β− α)δ
]
.
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Theorem 2. Assume that the condition (A0) holds [21]. Then,

b

∑
s=a+1

G0(t, s) ≤ Ω,

for all (t, s) ∈ Nb
a ×Nb

a+1, where

Ω =
1
ξ

[
αγH2ν−1(b, a + 1) + αδH2ν−2(b, a + 1)

+ (β− α)γHν(b, a) + (β− α)δHν−1(b, a)
]
.

We mention the following classical result that will be used in the next section.

Lemma 1. Let X be a Banach space, A : X → X be a linear operator with the operator norm
‖A‖ [23] (page 795). Then, if ‖A‖ < 1, we have that (I − A)−1 exists and

(I − A)−1 =
∞

∑
n=0

An.

Here, I is the identity operator.

3. Green’s Function and Its Properties

In this section, we construct the Green’s function related to problem (4), and deduce
some significant properties.

We denote by X the set of all maps from Nb
a into R. Clearly, X is a Banach space

endowed with the maximum norm ‖ · ‖. We assume the following condition throughout
the paper.

(A1) There exists ḡ > 0 such that

|g(t)| ≤ ḡ <
1
Ω

, t ∈ Nb
a.

We define G : Nb
a ×Nb

a+1 → R by the following:

G(t, s) =
∞

∑
n=0

(−1)nGn(t, s), (5)

where G0(t, s) is given by (2), and set (see Figures 2–4).

Gn(t, s) =
b

∑
τ=a+1

G0(t, τ)Gn−1(τ, s)g(τ), n ∈ N1. (6)

Then, we have the following result.

Theorem 3. Assume that conditions (A0) and (A1) are fulfilled, then function G(t, s), defined in
(5) as a series of functions, is convergent for (t, s) ∈ Nb

a ×Nb
a+1. Moreover, G(t, s) is the Green’s

function for the boundary value problem (4).
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Figure 2. Graphic of G1(t, 20) for α = β = γ = 1, δ = 0 (Dirichlet case), µ = 3/2, a = 5, b = 40 and
g ≡ 1/100.
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Figure 3. Graphic of G2(t, 20) for α = β = γ = 1, δ = 0 (Dirichlet case), µ = 3/2, a = 5, b = 40 and
g ≡ 1/100.
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Figure 4. Graphic of the first three iterates of G(t, 20) for α = β = γ = 1, δ = 0 (Dirichlet case),
µ = 3/2, a = 5, b = 40 and g ≡ 1/100.

Proof. For any h ∈ X and t ∈ Nb
a, consider the following linear boundary value problem:

−
(
∇ν−1

a
(
∇u
))

(t) + g(t)u(t) = h(t), t ∈ Nb
a+2,

αu(a + 1)− β
(
∇u
)
(a + 1) = 0,

γu(b) + δ
(
∇u
)
(b) = 0.

(7)



Symmetry 2021, 13, 1101 7 of 15

By definition of the Green’s function G0, the solutions u of this problem satisfy the
following identity:

u(t) =
b

∑
s=a+1

G0(t, s)[h(s)− g(s)u(s)],

which is the same to

u(t) +
b

∑
s=a+1

G0(t, s)g(s)u(s) =
b

∑
s=a+1

G0(t, s)h(s). (8)

Now, define the operators T1 : X → X and T2 : X → X by the following:

(T1h)(t) =
b

∑
s=a+1

G0(t, s)h(s), t ∈ Nb
a,

(T2u)(t) =
b

∑
s=a+1

G0(t, s)g(s)u(s), t ∈ Nb
a.

Then, (8) can be expressed as the following:

(I + T2)u = T1h.

Using condition (A1) and Theorem 1 the following is true:

‖T2‖ = max
‖u‖=1

‖T2u‖ = max
‖u‖=1

[
max
t∈Nb

a

|(T2u)(t)|
]

= max
‖u‖=1

[
max
t∈Nb

a

∣∣∣∣∣ b

∑
s=a+1

G0(t, s)g(s)u(s)

∣∣∣∣∣
]

≤ max
‖u‖=1

[
max
t∈Nb

a

b

∑
s=a+1

G0(t, s)|g(s)||u(s)|
]

≤ max
‖u‖=1

[
ḡ‖u‖max

t∈Nb
a

b

∑
s=a+1

G0(t, s)

]
< max
‖u‖=1

[ḡ‖u‖Ω] = ḡ Ω < 1.

Then, by Lemma 1, we have the following:

u = (I + T2)
−1T1h =

∞

∑
n=0

(−T2)
nT1h. (9)

Arguing in a similar manner than in [20], we can deduce the following:

(
(−T2)

nT1h
)
(t) =

b

∑
s=a+1

(−1)nGn(t, s)h(s), t ∈ Nb
a, n = 0, 1, 2, . . . (10)

Let us see now that the following inequality is fulfilled:

|(−1)nGn(t, s)| < Λ(ḡΩ)n, n = 0, 1, 2, . . . (11)

From Theorem 1, we have that (11) holds for n = 0. Assume now that (11) is true for
some n = k. Then, the following is true:
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∣∣∣(−1)k+1Gk+1(t, s)
∣∣∣ = ∣∣∣∣∣(−1)k+1

b

∑
τ=a+1

G0(t, τ)Gk(τ, s)g(τ)

∣∣∣∣∣
=

∣∣∣∣∣− b

∑
τ=a+1

G0(t, τ)(−1)kGk(τ, s)g(τ)

∣∣∣∣∣
≤

b

∑
τ=a+1

G0(t, τ)
∣∣∣(−1)kGk(τ, s)

∣∣∣|g(τ)|
< Λ(ḡΩ)k ḡ

b

∑
τ=a+1

G0(t, τ)

< Λ(ḡΩ)k ḡΩ = Λ(ḡΩ)k+1.

Thus, (11) holds for n = k + 1. By mathematical induction, (11) holds for any n = 0, 1, 2, . . ..
As a direct consequence of previous inequality and condition (A1), we deduce that for

all (t, s) ∈ Nb
a ×Nb

a+1 the following property is fulfilled:

|G(t, s)| =
∣∣∣∣∣ ∞

∑
n=0

(−1)nGn(t, s)

∣∣∣∣∣ ≤ ∞

∑
n=0
|(−1)nGn(t, s)|

< Λ
∞

∑
n=0

(ḡΩ)n =
Λ

1− ḡΩ
< ∞,

and, a a consequence, G(t, s) converges on Nb
a ×Nb

a+1.
Finally, expressions (5), (9) and (10) imply that for all t ∈ Nb

a the following equality
is fulfilled:

u(t) =
∞

∑
n=0

[
b

∑
s=a+1

(−1)nGn(t, s)h(s)

]
=

b

∑
s=a+1

[
∞

∑
n=0

(−1)nGn(t, s)

]
h(s)

=
b

∑
s=a+1

G(t, s)h(s). (12)

It is not difficult to verify that any function defined by (12) is a solution of the boundary
value problem (7). So we conclude that problem (7) has a unique solution and, as a
consequence, G is its related Green’s function.

Lemma 2. Assume conditions (A0) and (A1). Let G be defined by (5) and the following:

Ḡ(s) =
G0(ρ(s), s)

1− ḡΩ
, s ∈ Nb

a+1. (13)

Then,
|G(t, s)| ≤ Ḡ(s), (t, s) ∈ Nb

a ×Nb
a+1.

Proof. First, we prove the following:

|(−1)nGn(t, s)| < G(s− 1, s)(ḡΩ)n, s ∈ Nb
a+1, n = 0, 1, 2, . . . (14)

Theorem 1 implies that inequality (14) is true for n = 0.
Assume now that (14) holds for some n = k. We will show that (14) holds for

n = k + 1. Consider the following:
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∣∣∣(−1)k+1Gk+1(t, s)
∣∣∣ = ∣∣∣∣∣(−1)k+1

b

∑
τ=a+1

G0(t, τ)Gk(τ, s)g(τ)

∣∣∣∣∣
=

∣∣∣∣∣− b

∑
τ=a+1

G0(t, τ)(−1)kGk(τ, s)g(τ)

∣∣∣∣∣
≤

b

∑
τ=a+1

G0(t, τ)
∣∣∣(−1)kGk(τ, s)

∣∣∣|g(τ)|
< G(s− 1, s)(ḡΩ)k ḡ

b

∑
τ=a+1

G0(t, τ)

< G(s− 1, s)(ḡΩ)k ḡΩ = G(s− 1, s)(ḡΩ)k+1.

Thus, (14) holds for n = k + 1 and the inequalities are deduced from
mathematical induction.

Now, from (5), (13) and (14), for s ∈ Nb
a+1, we obtain the following:

|G(t, s)| =
∣∣∣∣∣ ∞

∑
n=0

(−1)nGn(t, s)

∣∣∣∣∣ ≤ ∞

∑
n=0
|(−1)nGn(t, s)|

< G(s− 1, s)
∞

∑
n=0

(ḡΩ)n

=
G0(ρ(s), s)

1− ḡΩ
= Ḡ(s),

and the proof is complete.

From the previous result, we deduce the following consequence for g ≤ 0.

Corollary 1. Assume that condition (A) is fulfilled and

−ḡ < g(t) ≤ 0, t ∈ Nb
a.

Then, G(t, s) ≥ 0 for each (t, s) ∈ Nb
a ×Nb

a+1.

Proof. From Theorem 1, we know that G0(t, s) ≥ 0 for each (t, s) ∈ Nb
a ×Nb

a+1. The result
follows immediately from (5) and (6).

4. Existence of Solutions

In this section, we derive two existence results for the nonlinear problem (1). Define
the operator T : X → X (X defined in previous section) by the following:

(
Tu
)
(t) =

b

∑
s=a+1

G(t, s) f (s, u(s)), t ∈ Nb
a. (15)

In view of (12), it is clear that u is a fixed point of T if and only if u is a solution of (1).
For any R > 0 given, we define the following set:

KR = {u ∈ X : ‖u‖ < R}.

Clearly, KR is a non-empty open subset of X, 0 ∈ KR and T : KR → X.
Now, denoting by

max
t∈Nb

a

| f (t, 0)| = M and
b

∑
s=a+1

Ḡ(s) = K (> 0),
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we enunciate the following list of assumptions:

(A2) f : Nb
a ×R→ R is continuous;

(A3) f satisfies the Lipschitz condition with respect to the second variable with the Lips-
chitz constant L on Nb

a ×KR. That is, for all (t, u), (t, v) ∈ Nb
a × [−R, R], the following

inequality holds:
| f (t, u)− f (t, v)| ≤ L|u− v|.

(A4) There exists a continuous function σ : Nb
a → R+ and a continuous nondecreasing

function ψ : R+ → R+ such that

| f (t, u)| ≤ σ(t)ψ(|u|), (t, u) ∈ Nb
a ×R.

(A5) 0 < LK < 1.

First, we present a nonlinear alternative of Leray–Schauder for contractive maps.

Theorem 4. (Theorem 3.2) Suppose U is an open subset of a Banach space X, 0 ∈ U and
F : Ū → X a contraction with F(Ū) bounded [24]. Then, either of the following is true:

1. F has a fixed point in Ū.
2. There exist λ ∈ (0, 1) and u ∈ ∂U with u = λFu,

holds.

Now, we establish sufficient conditions on existence of solutions for (1) using Theorem 4.

Theorem 5. Assume (A0)–(A3), (A5) hold. If we choose R such that

R ≥ MK
1− LK

, (16)

then the boundary value problem (1) has a solution in KR.

Proof. First, we show that T is a contraction. To see this, let u, v ∈ KR, t ∈ Nb
a, and consider

the following:

∣∣(Tu
)
(t)−

(
Tv
)
(t)
∣∣ = ∣∣∣∣∣ b

∑
s=a+1

G(t, s) [ f (s, u(s))− f (s, v(s))]

∣∣∣∣∣
≤

b

∑
s=a+1

|G(t, s)|| f (s, u(s))− f (s, v(s))|

≤ L
b

∑
s=a+1

Ḡ(s)|u(s)− v(s)|

≤ LK‖u− v‖,

implying that
‖Tu− Tv‖ ≤ LK‖u− v‖.

Since
0 < LK < 1,

it follows that T is a contraction.
Next, we prove that T(KR) is bounded.
To see this, let u ∈ KR (‖u‖ ≤ R), t ∈ Nb

a, and consider the following:
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∣∣(Tu
)
(t)
∣∣ = ∣∣∣∣∣ b

∑
s=a+1

G(t, s) f (s, u(s))

∣∣∣∣∣
≤

b

∑
s=a+1

|G(t, s)|| f (s, v(s))|

=
b

∑
s=a+1

|G(t, s)|| f (s, u(s))− f (s, 0) + f (s, 0)|

≤
b

∑
s=a+1

Ḡ(s)| f (s, u(s))− f (s, 0)|+
b

∑
s=a+1

Ḡ(s)| f (s, 0)|

≤ L
b

∑
s=a+1

Ḡ(s)|u(s)|+ M
b

∑
s=a+1

Ḡ(s)

≤ LK‖u‖+ MK ≤ [LR + M]K,

implying the following:
‖Tu‖ ≤ [LR + M]K.

Thus, T(KR) bounded.
Now, suppose there exist v ∈ ∂KR (‖v‖ = R) and λ ∈ (0, 1) such that

v = λTv. (17)

Using the definition of T in (17) and arguing as before, we obtain the following:

|v(t)| =
∣∣λ(Tv

)
(t)
∣∣ ≤ [LR + M]λK < [LR + M]K, t ∈ Nb

a,

which implies the following:
R = ‖v‖ < [LR + M]K

or, which is the same,

R <
MK

1− LK
,

in contradiction with (16).
Hence, by Theorem 4, we deduce that operator T has a fixed point in KR and the proof

is complete.

Remark 1. We note that in the previous result, if M = 0 then we have that u ≡ 0 on [0, 1] is a
solution of problem (1). On the contrary, if M > 0 the obtained function is non trivial on [0, 1]

Next, we enunciate a nonlinear alternative of Leray–Schauder for continuous and
compact maps.

Theorem 6. Let E be a Banach space, C a closed, convex subset of E, U an open subset of C and
0 ∈ U [24] (Theorem 6.6). Suppose that F : Ū → C is a continuous, compact map. Then, either of
the following is true:

1. F has a fixed point in Ū, or
2. there is a u ∈ ∂U and λ ∈ (0, 1) with u = λFu.

Now, we establish sufficient conditions on existence of solutions for (1) using Theorem 6.

Theorem 7. Assume that conditions (A0)–(A2), and (A4) hold. If we choose R such that

R
K‖σ‖ψ(R)

≥ 1, (18)
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then the boundary value problem (1) has a solution in KR.

Proof. Since T is a summation operator on a discrete finite set, it is trivially continuous
and compact. Now, suppose that there exist v ∈ ∂KR (‖v‖ = R) and λ ∈ (0, 1) such that
(17) holds. Using the definition of T in (17), we obtain the following:

|v(t)| =
∣∣λ(Tv

)
(t)
∣∣

=

∣∣∣∣∣λ b

∑
s=a+1

G(t, s) f (s, v(s))

∣∣∣∣∣
≤ λ

b

∑
s=a+1

|G(t, s)|| f (s, v(s))|

≤ λ
b

∑
s=a+1

|G(t, s)|σ(s)ψ(|v(s)|)

≤ λ‖σ‖ψ(‖v‖)
b

∑
s=a+1

Ḡ(s)

< K‖σ‖ψ(‖v‖).

So, we deduce the following:

R = ‖v‖ < K‖σ‖ψ(‖v‖).

Thus,
R

K‖σ‖ψ(R)
< 1.

This is a contradiction to (18).
Hence, by Theorem 6, the boundary value problem (1) has a solution in KR. The proof

is complete.

Remark 2. Note that since we have that

max
t∈Nb

a

G0(t, s) < Λ

we can set the following:

K =
Λ

1− gΩ
(b− a) >

b

∑
s=a+1

G(s) = K.

Thus, we can use K instead of K everywhere and we do not need to calculate the Green’s function
at all.

Indeed, in (A5), if we have 0 < LK < 1, this implies that 0 < L K < 1.
In Theorem 4.2, if we choose R ≥ MK

1−LK
, then we will also have that R ≥ MK

1−LK since
MK

1−LK
≥ MK

1−LK .

Finally, in Theorem 4.4, if we choose R
K‖σ‖ψ(R)

≥ 1, then we will also have that R
K‖σ‖ψ(R) ≥ 1

since R
K‖σ‖ψ(R) ≥

R
K‖σ‖ψ(R)

.

5. Examples

In the section, we present some examples to illustrate the applicability of our main results.
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Problem 1. Consider the following nabla fractional boundary value problem:

−
(
∇1/2

0
(
∇u
))

(t) + e−t

10 u(t) = 1
200 sin(u(t) + t), t ∈ N6

2,

u(0) = u(6) = 0.
(19)

Here, α = 1, β = 1, γ = 1 and δ = 0, a = 0, b = 6 and ν = 3/2.
In addition, g(t) = e−t/10 and f (t, u) = (sin(u + t))/200. Clearly, g : N6

0 → R;
f : N6

0 ×R→ R is continuous and satisfies Lipschitz condition with respect to u on N6
0 ×R with

Lipschitz constant L = 0.005.
We have ξ = H0.5(6, 0) ≈ 2.7071, Λ = H0.5(6, 0) ≈ 2.7071, Ω = H2(6, 1) = 3 and

ḡ = 0.1 so that |g(t)| ≤ ḡ < 1
Ω . Further,

K =
Λ

1− gΩ
(b− a)≈23.2037.

Observe that 0 < LK̄ ≈ 0.116 < 1. Additionally,

M = max
t∈N6

0

| f (t, 0)| = max
t∈N6

0

∣∣∣∣ sin t
200

∣∣∣∣ ≈ 0.00479462137.

If we choose

R ≥ MK
1− LK

≈ 0.12585176,

then by Theorem 5 and Remark 2, the boundary value problem (19) has a solution in KR.

Problem 2. Consider the following nabla fractional boundary value problem:

−
(
∇1/2

0
(
∇u
))

(t) + 1
20(t+1)u(t) = u2(t)

10(t2+10) , t ∈ N9
2,

u(0) + u(1) = 0,
u(8) + u(9) = 0.

(20)

Here, α = 2, β = 1, γ = 2 and δ = −1 such that α2 + β2 > 0 and γ2 + δ2 > 0, a = 0, b = 9
and ν = 3/2.

In addition, g(t) = 1
20(t+1) and f (t, u) = u2(t)

10(t2+10) . Clearly, g : N9
0 → R and f : N9

0×R→
R are continuous.

We have ξ ≈ 10.9616, Λ ≈ 2.9403, Ω = 15.8396 and ḡ ≈ 0.05 so that |g(t)| ≤ ḡ <
1
Ω . Further,

K =
Λ

1− gΩ
(b− a) ≈ 127.2245.

In addition,
| f (t, u)| ≤ σ(t)ψ(|u|), (t, u) ∈ N9

0 ×R,

where σ(t) = 1
10(t2+10) and ψ(x) = x2. Observe that σ : N9

0 → R+ is continuous and ψ : R+ →
R+ is continuous non-decreasing with

‖σ‖ = max
t∈N9

0

|σ(t)| = 0.001.

If we choose
R

K‖σ‖ψ(R)
≥ 1,

that is, R ≤ 7.8616, then by Theorem 7 and Remark 2, the boundary value problem (19) has a
solution in KR.
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