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Abstract: Reversible data hiding in the encrypted domain (RDH-ED) is a technique that protects
the privacy of multimedia in the cloud service. In order to manage three-dimensional (3D) models,
a novel RDH-ED based on prediction error expansion (PEE) is proposed. First, the homomorphic
Paillier cryptosystem is utilized to encrypt the 3D model for transmission to the cloud. In the
data hiding, a greedy algorithm is employed to classify vertices of 3D models into reference and
embedded sets in order to increase the embedding capacity. The prediction value of the embedded
vertex is computed by using the reference vertex, and then the module length of the prediction
error is expanded to embed data. In the receiving side, the data extraction is symmetric to the data
embedding, and the range of the module length is compared to extract the secret data. Meanwhile,
the original 3D model can be recovered with the help of the reference vertex. The experimental
results show that the proposed method can achieve greater embedding capacity compared with the
existing RDH-ED methods.

Keywords: 3D model; RDH-ED; homomorphic encryption; greedy algorithm; prediction error ex-
pansion

1. Introduction

Since three-dimensional (3D) models can intuitively display stereoscopic information
about the real world, there are potential scenes in many applications, such as human,
architectural, organ models, etc. [1–3]. With the increasing popularity of cloud-based
storage, users often store their 3D models in a third party; thus, they can conveniently
access the data. To manage the uploaded 3D model, the cloud administrator may embed
additional information for media notation, content verification, and so on [4,5]. Moreover,
the cloud administrator is not required to change the 3D models permanently when
embedding data [6]. Since reversible data hiding (RDH) can completely recover the original
media after the secret data are extracted, the RDH method has received much attention
from researchers.

The reversible data hiding (RDH) method can be classified into three types: lossless
compression [7], difference expansion (DE) [8], and histogram shifting (HS) [9]. Using
lossless compression-based RDH, Fridrich et al. compressed an original image to empty
the space in order to embed data [7], but the corresponding embedding capacity was small
due to the low compression. Using DE-based RDH, Tian expanded the difference between
two adjacent pixels to embed data [8]. However, two adjacent pixels sometimes are not
close when they are located at the edges, and this leads to high image distortion. Using the
histogram shifting-based RDH, Ni et al. built a pixel histogram, and then used the peak
to embed data [9]. The pixel histogram is often the mean distribution and the peak is not
sharp, so that the embedding performance is not satisfactory. As an extension of DE, Thodi
presented a prediction error expansion (PEE)-based RDH method [10], which is effective.

Symmetry 2021, 13, 1090. https://doi.org/10.3390/sym13061090 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-1762-148X
https://doi.org/10.3390/sym13061090
https://doi.org/10.3390/sym13061090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13061090
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13061090?type=check_update&version=1


Symmetry 2021, 13, 1090 2 of 15

In the following, many improvements are presented for the PEE-based RDH method, such
as prediction accuracy, pairwise PEE, sorting, and so on [11–13].

The abovementioned RDH methods were designed for images and cannot be directly
used for 3D models since the structures of the 3D model and the image are different.
Dittmann et al. firstly presented an RDH method for authenticating a 3D model, wherein
the concept of a distortion-free 3D model is introduced [14]. Wu et al. embedded secret
data by modulating the distances between the face and the 3D model center, so that
authentication can be obtained via extracting the data [15]. Moreover, the modulation
information is stored in the Stego 3D model; thus, reversibility can be achieved. Jhou et al.
selected the last few digits of the vertex coordinate value to embed data, and the original
model can be perfectly recovered if it is intact [16]. Sun et al. and Lu et al. embedded data
in a predictive vector quantization (PVQ) compressed domain by modifying the prediction
mechanism during the compression process [17,18]. Wu et al. designed an RDH method
based on DE, which modified differences between the adjacent vertex coordinates to embed
data in order to keep the mesh topology unchanged [19]. Wu et al. predicted the vertex
position by calculating the centroid of its traversed neighbors and then used PEE to embed
data [20]. However, although their method has a large embedding capacity, the 3D model
distortion is obvious. Jiang et al. built a three-dimensional prediction error histogram by
using recursive construction coding due to the similarities between adjacent vertices, and
they then modified the histogram to embed data [21]. Zhang et al. presented an RDH
for 3D models based on hybrid prediction, which exploited vertex–vertex correlations to
obtain high prediction accuracy to improve the data embedding performance [22].

In reality, before the media is transmitted into the cloud service, it will be encrypted in order
to prohibit the cloud administrator from accessing the content of the 3D model [23]. Therefore,
the RDH in the encrypted domain (RDH-ED) is more popular in real applications [24,25].

In this paper, an RDH-ED based on PEE is presented for managing the 3D model in the
cloud service. Firstly, the user encrypts the 3D model by using the homomorphic Paillier
cryptosystem for transmission to the cloud service. Secondly, for embedding data, a greedy
algorithm is used to divide the vertices of the 3D model into reference and embedded sets
in order to increase the embedding capacity. The reference vertex is employed to compute
the prediction error for the embedded vertex, and the module length of the prediction error
is expanded to embed data. In parallel with the data embedding, the data extraction in at
the receiving end uses the range of the module length to be compared for extracting the
secret data; meanwhile, the original 3D model is recovered by using the reference vertex
completely. The experimental results show that the proposed method is superior to the
existing method in relation to the embedding capacity. The main contributions of the paper
are listed as follows.

1. A greedy algorithm is employed to classify the vertex into the embedded set and the
reference set to increase the embedding capacity.

2. The module length of the prediction error is expanded to embed data in the encryption
domain.

3. The embedding capacity of the proposed method is superior to that of the existing
RDH-ED methods.

The rest of this article is organized as follows. The Paillier cryptosystem is briefly
introduced in Section 2. The proposed method is described in detail in Section 3. Section 4
presents the experimental results. Section 5 provides the conclusions.

2. Related Work

In this section, we introduce the encryption technique and review related RDH-ED
methods. Commonly used encryption algorithms include stream bit encryption and Paillier
encryption. Stream bit encryption uses a stream ciphertext to encrypt the image, which has
low complexity and no pixel overflow [26]. Since homomorphic encryption can directly
process data in the encryption domain and there is no need to decrypt the cipher-texts
before operating them, the Paillier cryptosystem is more practical [27,28]. For example,
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Chen et al. encrypted an image through the Paillier cryptosystem and used the additive
homomorphism of the Paillier encryption system to embed the secret data [29].

The RDH-ED method can be divided into two categories. The first category is reserving
room before encryption (RRBE), in which the room for data embedding is created before
encrypting the original image [30–32]. Zhang et al. embedded one bit into each encrypted
image block by flipping three least significant bits (LSB), and the data were extracted
through the texture evaluation [33]. On the basis of Zhang’s study, Hong et al. increased the
embedding capacity by using a public key modulation mechanism [34]. However, in these
two methods, the image needs to be decrypted before data extraction. Zhang compressed
the LSBs of the encrypted image to provide embedding room, and they separated data
extraction and image recovery [35]. Xiang et al. designed an RDH-ED method using the
properties of the Paillier cryptosystem [36], where data can be extracted from the decrypted
domain and the encrypted domain, respectively. In summary, the RRBE method requires a
great deal of work before encryption, and reliable interaction with the cloud administrator
must be established.

Compared with RRBE, vacating room after encryption (VRAE) as the second category
is more practical [37,38]. Xiang et al. selected two pixels as a group for encryption, and
data were embedded by shifting the histogram of the absolute difference between pairs
of pixels [39]. However, the embedding capacity was insufficient. Xiong et al. embedded
two bits into groups of three pixels to increase the embedding capacity [40]. However,
these RDH-ED methods are designed for images; to date, only a few RDH-ED methods
have been studied for 3D models. Jiang et al. proposed an RDH-ED based on stream bit
encryption, and they embedded data by flipping several LSBs of vertex coordinates [41].
With the help of spatial correlation of the 3D model, the receiver extracted data by using
the smooth function. Li et al. divided the 3D model into non-overlapping patches, and the
vertex in each patch was encrypted using the Paillier cryptosystem [42]. In this method,
three directions of each patch are computed to build the corresponding histogram for
embedding data. However, each patch only can hold one bit, and the embedding capacity
cannot be increased further. Moreover, the cipher mapping table should be transmitted
to the receiver for data decryption. In order to increase the embedding capacity, Li et al.
encrypted the 3D model using the Paillier cryptosystem and used the dyeing algorithm to
classify vertices into the embedded set and the reference set for data embedding [43]. To
embed more than one bit into the embedded vertex, each bit is mapped to the direction
of the vertex, which should be recorded in a mapping table. However, after the dyeing
algorithm, the number of embedded vertices is low, which affects the embedding capacity.
Furthermore, the mapping table as the additional information should be transmitted for
data extraction.

Finally, to better distinguish the proposed method from some related methods, some
differences are listed in Table 1. Similar to Jiang’s [41] and Li’s [43] methods, the vertex is
classified, but the proposed method uses a greedy algorithm to improve the embedding
capacity. Similarly to Li’s [43] method, the proposed method uses PEE but expands the
module length of the prediction error to embed data. Compared with Jiang’s [41] and
Li’s [42] methods, the proposed method embeds more than one bit for one vertex. Moreover,
the proposed method only transmits secret keys as the additional information for data
extraction and uses the Paillier cryptosystem to encrypt the 3D model.

Table 1. Differences among related RDH-ED methods.

Jiang [41] Li [42] Li [43] Proposed

Vertex Classification Yes No Yes (Dyeing algorithm) Yes (Greedy algorithm)
PEE No No Yes (Angle) Yes (Module length)

Embedded bits in one vertex One Less than one More than one More than one
Side information Small Huge Huge Small

Encryption Stream bit encryption Paillier Paillier Paillier
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3. Background

The Paillier cryptosystem is an additive homomorphic encryption method [27] that
is often used to process ciphertext in the encrypted domain. Its homomorphism shows
that the ciphertext can be arithmetically operated after encryption and the operation result
is consistent with the corresponding operation result in the plaintext field. The Paillier
cryptosystem mainly includes key generation, encryption, and decryption, which are
depicted here in detail.

Key generation is used to select two large primes, a1 and a2, randomly at first. Then, N
= a1 × a2 and γ = f 1(a1, a2), where f 1(•) returns the smallest common multiple. Afterwards,
we select an integer g ∈ Z∗N2 , where ZN2 =

{
0, 1, 2, . . . , N2 − 1

}
and Z∗N2 are the numbers

in ZN2 , which are prime with N2. Moreover, g satisfies:

f2

(
f3

(
mod

(
gγ, N2

)))
= 1, (1)

where f 2(•) returns the greatest common divisor, mod(•) returns the remainder after
division, and f 3(x) = (x − 1)/N. Finally, we obtain the public key (N,g) and the private
key γ.

In the process of encryption, we select an integer t ∈ Z∗N2 randomly, and the plaintext
s ∈ ZN2 is encrypted with the public key (N, g) using Equation (2):

c = En(s, t) = mod
(

gs × tN , N2
)

, (2)

where En(•) denotes the encryption function, and c is the ciphertext. Owing to the nature
of the Paillier cryptosystem, it ensures the security of the ciphertext. Specifically, different
ciphertexts are computed with different t for the same s, and, after decryption, different
ciphertexts can be restored to the same s with the secret key γ:

s = De(c) = mod

(
f3
(
mod

(
cγ, N2))

f3(mod(gγ, N2))
, N

)
, (3)

where De(•) denotes the decryption function. In the following, homomorphism and
homomorphic extension of subtraction are described for the Paillier cryptosystem. For the
homomorphism, let two plaintexts be s1 and s2, respectively, and ∀t1, t2 ∈ Z∗N2 . The two
ciphertexts are computed as:

c1 = En(s1, t1),
c2 = En(s2, t2).

(4)

The original Paillier cryptosystem has addition homomorphism and multiplication
homomorphism:

c1 × c2 = En(s1, t1)× En(s2, t2) = mod
(

gs1+s2 × (t1 × t2)
N , N2

)
, (5)

De(c1 × c2) = De
(

mod
(

En(s1, t1)× En(s2, t2), N2
))

= mod(m1 + m2, N). (6)

The subtraction homomorphism can be obtained through modular multiplication
inverse (MMI). In order to compute s1 − s2 in the Paillier cryptosystem, first, the negative
number –s2 is represented by N–s2. Then, the Euclidean technique is used to compute
the ciphertext of N–s2. Suppose that En(s2)−1 is the cipertext of N–m2; thus, in the Paillier
cryptosystem, s1+(−s2) is computed using mod(En(s1, t1)× En(s2, t2)

−1, N2).

4. The Proposed Method

Using the Paillier cryptosystem, the 3D model is encrypted and then uploaded to
the cloud service. In the cloud service, the corresponding administrator embeds data into
the encrypted domain, as illustrated in Figure 1. First, the vertices are preprocessed for
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the Paillier cryptosystem, and then the greedy algorithm is used to classify the vertices
into reference vertices and embedded vertices in order to increase the embedding capacity.
Then, the prediction error is computed for each embedded vertex, and data are embedded
using PEE. On the receiver side, the data can be extracted and the original 3D model can be
restored by comparing the module length range of the prediction error, which is symmetric
to the data embedding. In the following, the preprocessing, encryption, data embedding,
and data extraction are depicted in detail.
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4.1. Preprocessing and Encryption

Generally, uncompressed vertices of the 3D model are 32-bit floating point numbers.
However, the Paillier cryptosystem requires positive integers for the input; thus, the vertex
coordinates are required to be converted from the decimal to the positive integer.

The 3D model mainly consists of vertex data and face data. The vertex data include
coordinates of each vertex, and the face data supply the topological information that
reflects the connection between vertices. Let {vi}Nv

i=0 represent the sequence of vertices after
scanning a 3D model, where Nv is the number of vertices and vi = {vi,x, vi,y, vi,z} as shown
in Table 2. Note that each coordinate of the vertex

∣∣vi,j
∣∣ < 1, j ∈ {x, y, z} and its significant

digit is 6.

Table 2. File format of the 3D model.

Vertex List Face Information

Index of Vertex X-Axis Y-Axis Z-Axis Index of Face Elements in Each Face

1 v1,x v1,y v1,z 1 (2, 3, 1)
2 v2,x v2,y v2,z 2 (5, 1, 4)
3 v3,x v3,y v3,z 3 (3, 6, 7)
4 v4,x v4,y v4,z 4 (5, 2, 1)
5 v5,x v5,y v5,z 5 (3, 10, 7)
... ... ... ... ... ...

Since the 3D model can be accurately represented by the first four significant digits
of the vertex coordinates, the vertex coordinates are converted into an integer with four
significant digits by using the following formula:

v′i,j =
⌊

vi,j × 104
⌋

. (7)

Then, all coordinates of the vertices are changed to the positive integer:

v′i,j = v′i,j + 104. (8)
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After preprocessing, v′i,j is encrypted as

ci,j = En
(

v′i,j, ti,j

)
= mod

(
gv′i,j × ti,j

N , N2
)

, (9)

where ti,j is a small random integer for v′i,j, and it is less than N.

4.2. Processes of Data Hiding

After encryption, data are embedded to manage the encrypted 3D model. Firstly, the
vertex is classified into the embedded vertex set and reference vertex set using the greedy
algorithm. Then, the prediction error of the embedded vertex is calculated by using the
reference vertex. Finally, the module length of the prediction error is expanded to embed
the secret data in the encrypted domain.

When the 3D model is encrypted and uploaded to the cloud, the cloud administrator
still can embed the secret data without knowing the original content. Some vertices are
chosen to embed data and their adjacent vertices are unmodified as references for prediction.
In the following, vertex classification, prediction error computation, data embedding, and
the parameter d are described in detail.

4.2.1. Vertex Classification

First, the 1-ring neighborhood and 2-ring neighborhood of a vertex are defined. For
two vertices vi and vp, where i,p ∈ {1,2, . . . ,Nv}, if they are connected by an edge, vi is an
adjacent neighbor of vp. All adjacent neighbors of vi constitute the 1-ring neighborhood,
and the neighbors of all 1-ring neighborhoods constitute its 2-ring neighborhood. Vertices
are classified into the embedded set and the reference set, which are used for embedding
data and predicting data, respectively. Specifically, one vertex in the embedded set is
utilized to embed data, and its 1-ring neighborhood is not changed for prediction. Let the
embedded set and the referenced set be Se and Sr, respectively. In order to increase the
embedding capacity, the maximum of Se must be reached.

Vertices of Se are not connected each other, and if the graph is bipartite, the polynomial
algorithm can identify the largest set of nonadjacent vertices. However, there are three
loops in the 3D model and the patch structure of the 3D model cannot be represented by
the bipartite graph. Thus, NP represents a significant challenge in obtaining the maximum
value of Se in the 3D model, and the greedy algorithm is employed to obtain embedded
vertices.

When a vertex is added to Se, the 1-ring neighborhood of this vertex is added to Sr.
According to the local optimal solution of the greedy algorithm, the values of Sr and Se
should be small and large, respectively, by selecting the vertex with the smallest number of
the 1-ring neighborhood to be added to Se. The specific steps of vertex classification are
listed as follows.

Step a-1. Compute the vertex number of the 1-ring neighborhood for all vertices in
the 3D model; we define it as the degree of each vertex.

Step a-2. Suppose that k is the minimum of all degrees and choose vertices with the
degree of k to form a set, denoted as Vk. For example, V3 consists of vertices with the
degree of 3.

Step a-3. One vertex of Vk is added to Se, and the 1-ring neighborhood of this vertex
is added to Sr.

Step a-4. Remove this vertex and its 1-ring neighborhood from the 3D model, and the
degrees of vertices in the 2-ring neighborhood are updated.

Step a-5. If all vertices of the 3D model are assigned to Se or Sr, the vertex classification
is finished. Otherwise, return to Step a-2 until all vertices are assigned.

In order to describe the processes clearly, an example is illustrated in Figure 2. First,
we scan v1, v2, . . . , v10 and v11 and compute their degrees. We obtain V2 = {v4, v6, v11},
Se = {v4}, and Sr = {v1,v5}. We remove these vertices from the 3D model and update
the degrees of corresponding vertices. At this time, the minimum degree is 1, V1 = {v2},
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Se = {v4} ∪ {v2} = {v4, v2} and Sr = {v1,v5} ∪ {v3} = {v1,v5,v3}. We update the degrees of
corresponding vertices after removing assigned vertices and then continue to classify the
remaining vertices. Lastly, Se = {v4, v2, v6, v10, v11} and Sr = {v1, v5, v3, v7, v9, v8}.

Symmetry 2021, 13, x FOR PEER REVIEW 7 of 15 
 

 

In order to describe the processes clearly, an example is illustrated in Figure 2. First, 
we scan v1, v2, …, v10 and v11 and compute their degrees. We obtain V2 = {v4, v6, v11}, Se = 
{v4}, and Sr = {v1,v5}. We remove these vertices from the 3D model and update the degrees 
of corresponding vertices. At this time, the minimum degree is 1, V1 = {v2}, Se = {v4} ∪ {v2} = 
{v4, v2} and Sr = {v1,v5} ∪ {v3} = {v1,v5,v3}. We update the degrees of corresponding vertices 
after removing assigned vertices and then continue to classify the remaining vertices. 
Lastly, Se = {v4, v2, v6, v10, v11} and Sr = {v1, v5, v3, v7, v9, v8}. 

4.2.2. Prediction Error Computation 
The 1-ring neighborhood is used to predict the current vertex in Se, and the predic-

tion value of v′i is computed as 𝑣పഥ = ଵே೔ ∑ 𝑣௟ᇱே೔௟ୀଵ , (10)

where v′l is the 1-ring neighborhood vertex of v′i from Sr, and Ni is the number of verti-
ces in the 1-ring neighborhood. In the spatial domain, 𝑣పഥ  is close to v′i and the prediction 
error is computed as: ∆𝑣௜ = 𝑣௜ᇱ − 𝑣పഥ . (11)∆𝑣௜ includes three directional values, and its module length is often small. Suppose 
that D is the maximum module length for all prediction errors, and |∆𝑣௜| satisfies: |∆𝑣௜| ∈ [0, 𝐷). (12)

 
Figure 2. Illustration of vertex classification. 

  

Figure 2. Illustration of vertex classification.

4.2.2. Prediction Error Computation

The 1-ring neighborhood is used to predict the current vertex in Se, and the prediction
value of v′i is computed as

vi =
1
Ni

∑Ni
l=1 v′l , (10)

where v′l is the 1-ring neighborhood vertex of v′i from Sr, and Ni is the number of vertices
in the 1-ring neighborhood. In the spatial domain, vi is close to v′i and the prediction error
is computed as:

∆vi = v′i − vi. (11)

∆vi includes three directional values, and its module length is often small. Suppose
that D is the maximum module length for all prediction errors, and |∆vi| satisfies:

|∆vi| ∈ [0, D). (12)

4.2.3. Data Embedding

Before data embedding, the secret data are divided evenly into several groups; suppose
that w0, w1, . . . , wn-1 are bits in each group, where n is the number of bits. The weight of
each bit is computed as:

sw = ∑n−1
i=0 wi × 2i, sw ∈ [0, 2n − 1]. (13)
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v′i is modified to embed data:

v′′i = v′i + sw × d×
→
b =

(
v′i,x + sw × d, v′i,y + sw × d, v′i,z + sw × d

)
, (14)

where d is the secret key for data embedding,
→
b = (1, 1, 1), and the corresponding module

length of ∆vi is changed. In the encryption domain, data are embedded as:

c′i,j = ci,j × csw = mod
(

En
(

v′i,j, ri,j

)
·En(sw × d, rsw), N2

)
, (15)

where rsw is the random integer, and csw is the encrypted ciphertext of sw·d.
After embedding data, the prediction error is modified as:

∆v′i = ∆vi + sw × d×
→
b . (16)

When the directions of ∆vi and
→
b are the same, the module length

∣∣∆v′i
∣∣ is the maxi-

mum. If the directions of ∆vi and
→
b are opposite,

∣∣∆v′i
∣∣ is the minimum, which is

∣∣∆v′i
∣∣
max = sw ×

√
3d + |∆vi|, i f ∆vi =

|∆vi |√
3
×
→
b∣∣∆v′i

∣∣
min = sw ×

√
3d− |∆vi|, i f ∆vi = − |∆vi |√

3
×
→
b

. (17)

From Equation (17), it can be concluded that the value of
∣∣∆v′i

∣∣ is the range of sw ×√
3d−

∣∣∆v′i
∣∣ to sw ×

√
3d +

∣∣∆v′i
∣∣.

4.2.4. Parameter d

In order to increase the correctness of data extraction, their ranges of module lengths
should not be overlapped after embedding the secret data. After embedding sw + 1,
its minimum module length should be greater than the maximum module length after
embedding sw; that is,

(sw + 1)×
√

3d− |∆vi| ≥ sw ×
√

3d + |∆vi|. (18)

From Equation (18), we can obtain d ≥ 2× |∆vi|/
√

3. If d = 2×D/
√

3. The ranges of
module lengths are not overlapped for different sw, and

∣∣∆v′i
∣∣ ∈ [0,

√
3d/2

)
. After data

embedding, the range of
∣∣∆v′i

∣∣ is defined as:∣∣∆v′i
∣∣ ∈ [(sw − 0.5)×

√
3d, (sw + 0.5)×

√
3d
)

, i f sw ∈ [1, 2n − 1]∣∣∆v′i
∣∣ ∈ [0,

√
3

2 d
]
, i f sw = 0

(19)

Figure 3 shows the value of
∣∣∆v′i

∣∣ after ‘0’ or ‘1’ is embedded, and, obviously, the
module length of embedding ‘1’ is greater than that of embedding ‘0’.
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4.3. Data Extraction and Model Recovery

In the receiving side, when the Stego and encrypted 3D model is received, it can be
decrypted via the private key γ. The decrypted vertex is computed as:

v′′i,j = De
(

c′i,j
)
= mod

 f3

(
mod

(
c′i,j

γ, N2
))

f3(mod(gγ, N2))
, N

. (20)

Since the coordinates of a few vertices are modified, the decrypted 3D model is similar
to the original 3D model. After decryption, the data extraction and 3D model recovery are
processed:

- Step b-1. All vertices are classified into the embedded set and the reference set
according to the greedy algorithm.

- Step b-2. The prediction error ∆v′i of vi” is computed.
- Step b-3. Equation (21) is used to obtain the range of sw:∣∣∆v′i

∣∣
√

3d
− 0.5 < sw <

∣∣∆v′i
∣∣

√
3d

+ 0.5. (21)

From Equation (21), only one integer is in the range, and sw can be extracted correctly.
sw is converted to the binary bits as:

wi = mod
(⌊ sw

2i , 2
⌋)

. (22)

- Step b-4. Via d and sw, the original 3D model is recovered as:

v′i = v′′i − sw × d×
→
b . (23)

5. Experimental Results and Discussion

The experiments were implemented in MATLAB R2016b under Windows 7 Pro. To
demonstrate the effectiveness of the proposed method, one hundred 3D models were used
for testing, and six 3D models are illustrated in Figure 4.

The SNR was used to evaluate the quality of the Stego 3D model.

SNR = 10lg
∑Nv

i=1

(
(vi,x − vx)

2 +
(
vi,y − vy

)2
+ (vi,z − vz)

2
)

∑Nv
i=1

(
(gi,x − vi,x)

2 +
(

gi,y − vi,y
)2

+ (gi,z − vi,z)
2
) , (24)
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where Nv is the number of vertices, vi,x, vi,y, and vi,z are the vertex coordinates of the
original 3D model, gi,x, gi,y, and gi,z are the vertex coordinates of the Stego 3D model, and
vx, vx, and vx are the mean of vi,x, vi,y, and vi,z, respectively.

Suppose that SNRD is the SNR of the decrypted 3D model, and SNRR is the SNR of
the recovered 3D model. BER is used to evaluate the correctness of the data extraction. For
the parameter D, we compute the maximum module lengths for the 3D models, and it is
concluded that D < 250 [43].
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5.1. Discussion of Parameters d and n

In order to show the feasibility of the proposed data hiding method, 1024 bits were
embedded in the 3D models, and the data could be extracted completely. Taking ‘Solider’
as an example, the ‘solider’ encrypted using the Paillier cryptosystem cannot be recognized,
as illustrated in Figure 5b. Without data extraction, the 3D model can be decrypted as
illustrated in Figure 5d, and the decrypted 3D model is similar to the original 3D model.
The 3D model can be recovered completely and data can be extracted without any error, as
illustrated in Figure 5e,f, respectively.



Symmetry 2021, 13, 1090 11 of 15Symmetry 2021, 13, x FOR PEER REVIEW 11 of 15 
 

 

 

  

(a) (b) (c) 

  

 

(d) (e) (f) 

Figure 5. Data embedding and extraction of ‘Solider’. (a) Original 3D model, (b) encrypted 3D model, (c) Stego and encrypted 
3D model, (d) decrypted and Stego 3D model, (e) recovered 3D model (SNR = +∞), (f) BER of extracted data (BER = 0). 

   

(a) (b) (c) 

Figure 6. The data hiding performance versus different values of d. (a) Average BER, (b) average SNRD, (c) average SNRR. 

    
(a) (b) (c) (d) 

Figure 5. Data embedding and extraction of ‘Solider’. (a) Original 3D model, (b) encrypted 3D model, (c) Stego and
encrypted 3D model, (d) decrypted and Stego 3D model, (e) recovered 3D model (SNR = +∞), (f) BER of extracted data
(BER = 0).

The parameters d and n are related to the 3D model’s quality and the correctness of
the data extraction. When d is low, BER is increased and the 3D model distortion is small,
as illustrated in Figure 6a. If d is high, BER is decreased and the distortion of the 3D model
is increased.
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If n is large, sw is large, and the embedding capacity and the corresponding model
distortion are increased, as illustrated in Figure 6. For instance, when n = 1 and d = 110, the
corresponding BER = 2.89%, SNRD = 15.34 dB, and SNRR = 33.89 dB. From the experiments,
we can conclude that when d = 150 and n = 3, the model distortion is small and BER is
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small as well. Figure 7 shows the visual quality of the 3D models for different values of d
when n = 3, and Figure 8 shows the visual quality of the decrypted 3D models for different
values of n when d = 150. It was also found that the decrypted 3D model was similar to the
original 3D model.
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5.2. Vertex Classification Comparison

In order to show the effectiveness of the proposed method for classifying the vertex
into the embedded set and the reference set using the greedy algorithm, Jiang’s [41] and
Li’s methods were used for comparison, as shown in Table 3. In Jiang’s [41] method,
the number of vertices in Se is large, but some vertices are connected, which will lead to
high BER of data extraction. The proposed method classifies the vertices more efficiently
by using the greedy algorithm compared with Jiang’s [41] method since the number of
connected vertices is 0. The number of vertices in Se is greater than in Li’s [43] method,
which indicates that the proposed method can embed more bits.

Table 3. Comparisons of the vertex number in Se.

3D
Model

Nv

Proposed Jiang [41] Li [43]

Se
Connected

Vertex Se
Connected

Vertex Se
Connected

Vertex

Fairy 4252 1389 0 1356 312 1086 0
Boss 10,663 3412 0 3515 948 2498 0
Devil 27,872 8640 0 8357 2146 6944 0
Thing 110,812 34,905 0 35,820 9420 23,368 0
Lord 250,343 80,109 0 81,521 21,321 53,548 0
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5.3. Performance Comparison

In order to show the effectiveness of the proposed method, Li’s [43] method was first
used for comparison. We embedded one bit in each vertex, and, as shown in Table 4, the
proposed method performed better than Li’s [43] in relation to the embedding capacity and
the 3D model quality. This is mainly because the greedy algorithm for vertex classification
is superior to the dyeing algorithm. This also shows that the proposed method successfully
achieves low embedding capacity.

Table 4. Performance comparison with Li’s [43] method.

SNRD SNRR Embedding Capacity (.bpp)

Proposed 16.65 ∞ 0.324
Li’s [43] 15.24 ∞ 0.242

In Table 5, Jiang’s [41] and Li’s [42] methods are used for comparison. Compared
with Jiang’s [41] method, the embedding capacity of the proposed method is nearly three
times higher, at 0.972 bpp, as shown in Table 5. The corresponding BER is also lower than
that of Jiang’s method and the quality is also higher. Compared with Li’s [42] method,
although the image quality is slightly lower, the embedding capacity is still much higher.
Moreover, when d is adjusted to 289, the image quality of the proposed method can be
increased significantly. Thus, in summary, the proposed method is superior to the other
two methods, with proven effectiveness.

Table 5. Performance comparison with Jiang’s [41] and Li’s [42] methods.

BER SNRR Embedding Capacity (.bpp)

Proposed (d = 150) 3.34% 34.14 0.972
Proposed (d = 289) 0 ∞ 0.972

Jiang [41] 4.22% 31.97 0.369
Li [42] 0 ∞ 0.396

6. Conclusions

In this paper, a reversible data hiding in encrypted domain (RDH-ED) based on
prediction error expansion (PEE) has been presented. Before being sent to the cloud for
storage, the 3D model is encrypted using the homomorphic Paillier cryptosystem so that
the content cannot be accessed by the cloud administrator. In the cloud service, data are
embedded into the encrypted domain for management of the 3D model. Specifically, the
vertices of the 3D models are divided into embedded and reference sets using the greedy
algorithm, and the maximum vertex number is obtained for the embedded set in order to
increase the embedding capacity. The reference vertex is used to compute the prediction
value of the embedded vertex, and the corresponding prediction error is calculated and
expanded to embed data. On the receiving side, the secret data are extracted by comparing
the module length of the prediction error, and the original 3D model can be reconstructed.
The experimental results show that the proposed method is superior to the existing RDH-
ED methods. However, when the embedding capacity is high, the visual quality is reduced
significantly; we will attempt to resolve this in future studies.

Author Contributions: The conceptualization and funding acquisition are credited to L.L. The
writing—review and editing are credited to T.L. The methodology and experiments are credited to
S.W. The conceptualization and supervision are credited to S.Z. and W.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Natural Science Foundation of China
(No. 61971247, No. 61370218) and the Public Welfare Technology and Industry Project of Zhejiang
Provincial Science Technology Department (No. LGG19F020016).y.



Symmetry 2021, 13, 1090 14 of 15

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors are very thankful to the editor and referees for their valuable
comments and suggestions for improving the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, X.W.; Huang, T.T.; Bai, S.; Bai, X. View N-Gram network for 3D object retrieval. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 7515–7524.
2. Gao, Z.; Li, T.M.; Wan, S.H. Exploring deep learning for view-based 3D model retrieval. ACM Transactions on Multimedia

Computing. Commun. Appl. 2020, 16, 1–21.
3. Zhang, Q.; Im, J.; Park, M.; Choi, M.; Kim, C.H.; Shim, Y. Shrubbery-shell inspired 3D model stylization. Comput. Graph. 2019, 82,

13–21. [CrossRef]
4. Lee, C.F.; Shen, J.J.; Agrawal, S.; Li, Y.H. High-capacity embedding method based on double-layer octagon-shaped shell matrix.

Symmetry 2021, 13, 583. [CrossRef]
5. Zafeiriou, S.; Tefas, A.; Pitas, I. Blind robust data hiding schemes for copyright protection of 3D mesh objects. IEEE Trans. Vis.

Comput. Graph. 2005, 11, 596–607. [CrossRef] [PubMed]
6. Bhardwaj, R.; Aggarwal, A. Hiding clinical information in medical images: An encrypted dual-image reversible data hiding

algorithm with base-3 numeral framework. Optik 2019, 181, 1099–1112. [CrossRef]
7. Fridrich, J.; Goljan, M.; Du, R. Lossless data embedding for all image formats. In Proceedings of the SPIE 4675, Security and

Watermarking of Multimedia Contents IV, San Jose, CA, USA, 19–23 January 2002; pp. 572–583.
8. Tian, J. Reversible Data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 890–896.

[CrossRef]
9. Ni, Z.; Shi, Y.; Ansari, N.; Su, W. Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 2006, 16, 354–362.
10. Thodi, D.M.; Rodríguez, J.J. Expansion embedding techniques for reversible data hiding. IEEE Trans. Image Process. 2007, 16,

721–730. [CrossRef] [PubMed]
11. Luo, T.; Jiang, G.; Yu, M.; Zhong, C.; Xu, H.; Pan, Z. Convolutional neural networks-based stereo image reversible data hiding

method. J. Vis. Commun. Image Represent. 2019, 61, 61–73. [CrossRef]
12. Ou, B.; Li, X.; Zhao, Y.; Ni, R.; Shi, Y.Q. Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans. Image

Process. 2018, 22, 5010–5021. [CrossRef] [PubMed]
13. Qin, J.; Huang, F. Reversible data hiding based on multiple two-dimensional histograms modification. IEEE Signal Process. Lett.

2019, 26, 843–847. [CrossRef]
14. Dittmann, J.; Benedens, O. Invertible authentication for 3D meshes. In Proceedings of the SPIE 5020, Security and Watermarking

of Multimedia Contents V, Santa Clara, CA, USA, 20–24 January 2003; pp. 653–664.
15. Wu, H.; Ming, Y. A Reversible Data Hiding Approach to Mesh Authentication. In Proceedings of the IEEE/WIC/ACM

International Conference on Web Intelligence, Compiegne, France, 19–22 September 2005; pp. 774–777.
16. Jhou, C.; Pan, J.; Chou, D. Reversible data hiding base on histogram shift for 3D vertex. In Proceedings of the Third International

Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007), Kaohsiung, Taiwan, 26–28
November 2007; pp. 365–370.

17. Sun, Z.; Lu, Z.; Li, Z. Reversible data hiding for 3D meshes in the PVQ-compressed domain. In Proceedings of the IEEE
International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Pasadena, CA, USA, 18–20
December 2006; pp. 593–596.

18. Lu, Z.; Li, Z. High capacity reversible data hiding for 3D meshes in the PVQ domain. In Proceedings of the International
Workshop on Digital Data Hiding, Sana Barbara, CA, USA, 19–21 May 2008; pp. 233–243.

19. Wu, D.; Wang, G. A reversible watermarking scheme for 3D meshes. In Proceedings of the International Conference on Active
Media Technology, Beijing, China, 22–24 October 2009; pp. 513–521.

20. Wu, H.; Dugelay, J. Reversible watermarking of 3D mesh models by prediction-error expansion. In Proceedings of the IEEE 10th
Workshop on Multimedia Signal Processing, Queensland, Australia, 8–10 October 2008; pp. 797–802.

21. Jiang, R.; Zhang, W.; Hou, D.; Wang, H.; Yu, N. Reversible data hiding for 3D mesh models with three-dimensional prediction-error
histogram modification. Multimed. Tools Appl. 2018, 77, 5263–5280. [CrossRef]

22. Zhang, Q.; Song, X.; Wen, T.; Fu, C. Reversible data hiding for 3D mesh models with hybrid prediction and multilayer strategy.
Multimed. Tools Appl. 2019, 78, 29713–29729. [CrossRef]

23. Elsheh, E.; Hamza, A.B. Secret sharing approaches for 3D object encryption. Expert Syst. Appl. 2011, 38, 13906–13911. [CrossRef]
24. Huang, D.; Wang, J. High-capacity reversible data hiding in encrypted image based on specific encryption process. Signal Proces.

Image Commun. 2020, 80, 115632. [CrossRef]
25. Zhou, N.; Zhang, M.; Wang, H.; Ke, Y.; Di, F. Separable reversible data hiding scheme in homomorphic encrypted domain based

on ntru. IEEE Access 2020, 8, 81412–81424. [CrossRef]

http://doi.org/10.1016/j.cag.2019.05.003
http://doi.org/10.3390/sym13040583
http://doi.org/10.1109/TVCG.2005.71
http://www.ncbi.nlm.nih.gov/pubmed/16144256
http://doi.org/10.1016/j.ijleo.2018.12.130
http://doi.org/10.1109/TCSVT.2003.815962
http://doi.org/10.1109/TIP.2006.891046
http://www.ncbi.nlm.nih.gov/pubmed/17357732
http://doi.org/10.1016/j.jvcir.2019.03.017
http://doi.org/10.1109/TIP.2013.2281422
http://www.ncbi.nlm.nih.gov/pubmed/24043388
http://doi.org/10.1109/LSP.2019.2909080
http://doi.org/10.1007/s11042-017-4430-6
http://doi.org/10.1007/s11042-018-6219-7
http://doi.org/10.1016/j.eswa.2011.04.197
http://doi.org/10.1016/j.image.2019.115632
http://doi.org/10.1109/ACCESS.2020.2990903


Symmetry 2021, 13, 1090 15 of 15

26. Zhou, J.; Sun, W.; Dong, L.; Liu, X.; Au, O.C.; Tang, Y.Y. Secure reversible image data hiding over encrypted domain via key
modulation. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 441–452. [CrossRef]

27. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st ACM Symposium on Theory of
Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178.

28. Brakershi, Z.; Vaikuntanathan, V. Effificient fully homomorphic encryption from (standard) LWE. Siam J. Comput. 2014, 43,
831–871. [CrossRef]

29. Chen, B.; Wu, X.; Lu, W.; Ren, H. Reversible data hiding in encrypted images with additive and multiplicative public-key
homomorphism. Signal Process. 2019, 164, 48–57. [CrossRef]

30. Zhang, W.; Ma, K.; Yu, N. Reversibility improved data hiding in encrypted images. Signal Process. 2014, 94, 118–127. [CrossRef]
31. Shiu, C.W.; Chen, Y.C.; Hong, W. Encrypted image-based reversible data hiding with public key cryptography from difference

expansion. Signal Process. Image Commun. 2015, 39, 226–233. [CrossRef]
32. Cao, X.; Du, L.; Wei, X.; Meng, D. High capacity reversible data hiding in encrypted images by patch-level sparse representation.

IEEE Trans. Cybern. 2016, 46, 1132–1143. [CrossRef] [PubMed]
33. Zhang, X. Reversible data hiding in encrypted image. IEEE Signal Process. Lett. 2011, 18, 255–258. [CrossRef]
34. Hong, W.; Chen, T.S.; Wu, H. An improved reversible data hiding in encrypted images using side match. IEEE Signal Process. Lett.

2012, 19, 199–202. [CrossRef]
35. Zhang, X. Separable reversible data hiding in encrypted image. IEEE Trans. Inf. Forensics Secur. 2012, 16, 826–832. [CrossRef]
36. Xiang, S.; Luo, X. Reversible data hiding in homomorphic encrypted domain by mirroring ciphertext group. IEEE Trans. Circuits

Syst. Video Technol. 2017, 28, 3099–3110. [CrossRef]
37. Zhang, X.; Qian, Z.; Feng, G. Effificient reversible data hiding in encrypted images. J. Vis. Commun. Image Represent. 2014, 25,

322–328. [CrossRef]
38. Qian, Z.; Zhang, X. Reversible data hiding in encrypted image with distributed source encoding. IEEE Trans. Circuits Syst. Video

Technol. 2016, 26, 636–646. [CrossRef]
39. Xiang, S.; Luo, X. Efficient reversible data hiding in encrypted image with public key cryptosystem. Eurasip J. Adv. Signal Process.

2017, 2017, 59. [CrossRef]
40. Xiong, L.; Dong, D.; Xia, Z.; Chen, X. High-capacity reversible data hiding for encrypted multimedia data with somewhat

homomorphic encryption. IEEE Access 2018, 6, 60635–60644. [CrossRef]
41. Jiang, R.; Zhang, W.; Yu, N. Reversible data hiding in encrypted three-dimensional mesh models. IEEE Trans. Multimed. 2018, 20,

55–67. [CrossRef]
42. Li, L.; Wang, S.; Zhang, S.; Luo, T. Homomorphic encryption-based robust reversible data hiding for 3D model. Symmetry 2020,

12, 347. [CrossRef]
43. Li, L.; Wang, S.; Luo, T.; Chang, C.C.; Zhou, Q.; Li, H. Reversible Data Hiding for Encrypted 3D Model Based on Prediction Error

Expansion. J. Sens. 2020, 8851999. [CrossRef]

http://doi.org/10.1109/TCSVT.2015.2416591
http://doi.org/10.1137/120868669
http://doi.org/10.1016/j.sigpro.2019.05.036
http://doi.org/10.1016/j.sigpro.2013.06.023
http://doi.org/10.1016/j.image.2015.09.014
http://doi.org/10.1109/TCYB.2015.2423678
http://www.ncbi.nlm.nih.gov/pubmed/25955861
http://doi.org/10.1109/LSP.2011.2114651
http://doi.org/10.1109/LSP.2012.2187334
http://doi.org/10.1109/TIFS.2011.2176120
http://doi.org/10.1109/TCSVT.2017.2742023
http://doi.org/10.1016/j.jvcir.2013.11.001
http://doi.org/10.1109/TCSVT.2015.2418611
http://doi.org/10.1186/s13634-017-0496-6
http://doi.org/10.1109/ACCESS.2018.2876036
http://doi.org/10.1109/TMM.2017.2723244
http://doi.org/10.3390/sym12030347
http://doi.org/10.1155/2020/8851999

	Introduction 
	Related Work 
	Background 
	The Proposed Method 
	Preprocessing and Encryption 
	Processes of Data Hiding 
	Vertex Classification 
	Prediction Error Computation 
	Data Embedding 
	Parameter d 

	Data Extraction and Model Recovery 

	Experimental Results and Discussion 
	Discussion of Parameters d and n 
	Vertex Classification Comparison 
	Performance Comparison 

	Conclusions 
	References

