
symmetryS S

Article

Quasi-Ordinarization Transform of a Numerical Semigroup

Maria Bras-Amorós * , Hebert Pérez-Rosés and José Miguel Serradilla-Merinero

����������
�������

Citation: Bras-Amorós, M.;

Pérez-Rosés, H.; Serradilla-Merinero,

J.M. Quasi-Ordinarization Transform

of a Numerical Semigroup. Symmetry

2021, 13, 1084. https://doi.org/

10.3390/sym13061084

Academic Editor: Michel Planat

Received: 9 February 2021

Accepted: 4 June 2021

Published: 17 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
hebert.perez@urv.cat (H.P.-R.); josemiguel.serradilla@estudiants.urv.cat (J.M.S.-M.)
* Correspondence: maria.bras@urv.cat

Abstract: In this study, we present the notion of the quasi-ordinarization transform of a numerical
semigroup. The set of all semigroups of a fixed genus can be organized in a forest whose roots
are all the quasi-ordinary semigroups of the same genus. This way, we approach the conjecture
on the increasingness of the cardinalities of the sets of numerical semigroups of each given genus.
We analyze the number of nodes at each depth in the forest and propose new conjectures. Some
properties of the quasi-ordinarization transform are presented, as well as some relations between the
ordinarization and quasi-ordinarization transforms.
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1. Introduction

A numerical semigroup is a cofinite submonoid of N0 under addition, where N0 is the
set of nonnegative integers.

While the symmetry of structures has traditionally been studied with the aid of
groups, it is also possible to relax the definition of symmetry, so as to describe some forms
of symmetry that arise in quasicrystals, fractals, and other natural phenomena, with the aid
of semigroups or monoids, rather than groups. For example, Rosenfeld and Nordahl [1]
lay the groundwork for such a theory of symmetry based on semigroups and monoids,
and they cite some applications in chemistry.

Suppose that Λ is a numerical semigroup. The elements in the complement N0 \Λ
are called the gaps of the semigroup and the number of gaps is its genus. The Frobenius
number is the largest gap and the conductor is the non-gap that equals the Frobenius number
plus one. The first non-zero non-gap of a numerical semigroup (usually denoted by m) is
called its multiplicity. An ordinary semigroup is a numerical semigroup different from N0
in which all gaps are in a row. The non-zero non-gaps of a numerical semigroup that are
not the result of the sum of two smaller non-gaps are called the generators of the numerical
semigroup. It is easy to deduce that the set of generators of a numerical semigroup must
be co-prime. One general reference for numerical semigroups is [2].

To illustrate all these definitions, consider the well-tempered harmonic semigroup
H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, . . . }, where we use ” . . . ” to in-
dicate that the semigroup consecutively contains all the integers from the number that
precedes the ellipsis. The semigroup H arises in the mathematical theory of music [3]. It is
obviously cofinite and it contains zero. One can also check that it is closed under addition.
Hence, it is a numerical semigroup. Its Frobenius number is 44, its conductor is 45, its
genus is 33, and its multiplicity is 12. Its generators are {12, 19, 28, 34, 42, 45, 49, 51}.

The number of numerical semigroups of genus g is denoted ng. It was conjectured in [4]
that the sequence ng asymptotically behaves as the Fibonacci numbers. In particular, it was
conjectured that each term in the sequence is larger than the sum of the two previous terms,
that is, ng > ng−1 + ng−2 for g > 2, with each term being increasingly similar to the sum
of the two previous terms as g approaches infinity, more precisely limg→∞

ng
ng−1+ng−2

= 1

and, equivalently, limg→∞
ng

ng−1
= φ = 1+

√
5

2 . A number of papers deal with the sequence

Symmetry 2021, 13, 1084. https://doi.org/10.3390/sym13061084 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-3481-004X
https://orcid.org/0000-0002-3569-3885
https://orcid.org/0000-0002-8140-1169
https://doi.org/10.3390/sym13061084
https://doi.org/10.3390/sym13061084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13061084
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13061084?type=check_update&version=2


Symmetry 2021, 13, 1084 2 of 17

ng [5–20]. Alex Zhai proved the asymptotic Fibonacci-like behavior of ng [21]. However,
it remains unproven that ng is increasing. This was already conjectured by Bras-Amorós
in [22]. More information on ng, as well as the list of the first 73 terms can be found in entry
A007323 of The On-Line Encyclopedia of Integer Sequences [23].

It is well known that all numerical semigroups can be organized in an infinite tree T

whose root is the semigroup N0 and in which the parent of a numerical semigroup Λ is the
numerical semigroup Λ′ obtained by adjoining to Λ its Frobenius number. For instance,
the parent of the semigroup H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, . . . }
is the semigroup H′ = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, . . . }. In turn,
the children of a numerical semigroup are the semigroups we obtain by taking away the
generators one by one that are larger than or equal to the conductor of the semigroup. The
parent of a numerical semigroup of genus g has genus g− 1 and all numerical semigroups
are in T, at a depth equal to its genus. In particular, ng is the number of nodes of T at depth
g. This construction was already considered in [24]. Figure 1 shows the tree up to depth 7.
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Figure 1. The tree T up to depth 7. White dots refer to the gaps, dark gray dots to the generators and
the light gray ones to the elements of the semigroups that are not generators.
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Figure 1. The tree T up to depth 7. White dots refer to the gaps, dark gray dots to the generators and the light gray ones to
the elements of the semigroups that are not generators.

In [9], a new tree construction is introduced as follows. The ordinarization trans-
form of a non-ordinary semigroup Λ with Frobenius number F and multiplicity m is
the set Λ′ = Λ \ {m} ∪ {F}. For instance, the ordinarization transform of the semi-
group H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, . . . } is the semigroup
H′ = {0, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, . . . } The ordinarization trans-
form of an ordinary semigroup is then defined to be itself. Note that the genus of the
ordinarization transform of a semigroup is the genus of the semigroup.

The definition of the ordinarization transform of a numerical semigroup allows the
construction of a tree Tg on the set of all numerical semigroups of a given genus rooted
at the unique ordinary semigroup of this genus, where the parent of a semigroup is its
ordinarization transform and the children of a semigroup are the semigroups obtained
by taking away the generators one by one that are larger than the Frobenius number
and adding a new non-gap smaller than the multiplicity in a licit place. To illustrate this
construction with an example in Figure 2, we depicted T7.

http://oeis.org/A007323
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Figure 2. The whole tree T7.

One significant difference between Tg and T is that the first one has only a finite
number of nodes. In fact, it has ng nodes, while T is an infinite tree. It was conjectured in [9]
that the number of numerical semigroups in Tg at a given depth is at most the number of
numerical semigroups in Tg+1 at the same depth. This was proved in the same reference
for the lowest and largest depths. This conjecture would prove that ng+1 > ng.

In Section 2, we will construct the quasi-ordinarization transform of a general semi-
group, paralleling the ordinarization transform. If the quasi-ordinarization transform is
applied repeatedly to a numerical semigroup, it ends up in a quasi-ordinary semigroup.
In Section 3, we define the quasi-ordinarization number of a semigroup as the number of
successive quasi-ordinarization transforms of the semigroup that give a quasi-ordinary
semigroup. Section 4 analyzes the number of numerical semigroups of a given genus
and a given quasi-ordinarization number in terms of the given parameters. We present
the conjecture that the number of numerical semigroups of a given genus and a fixed
quasi-ordinarization number increases with the genus and we prove it for the largest quasi-
ordinarization numbers. In Section 5, we present the forest of semigroups of a given genus
that is obtained when connecting each semigroup to its quasi-ordinarization transform.
The forest corresponding to genus g is denoted Fg. Section 6 analyzes the relationships
between T, Tg, and Fg.

From the perspective of the forests of numerical semigroups here presented, the
conjecture in Section 4 translates to the conjecture that the number of numerical semigroups
in Fg at a given depth is at most the number of numerical semigroups in Fg+1 at the same
depth. The results in Section 4 provide a proof of the conjecture for the largest depths.
Proving this conjecture for all depths, would prove that ng+1 > ng. Hence, we expect
our work to contribute to the proof of the conjectured increasingness of the sequence
ng (A007323).

2. Quasi-Ordinary Semigroups and Quasi-Ordinarization Transform

Quasi-ordinary semigroups are those semigroups for which m = g and so, there is a
unique gap larger than m. The sub-Frobenius number of a non-ordinary semigroup Λ with
Frobenius number F is the Frobenius number of Λ ∪ {F}.

The subconductor of a semigroup with Frobenius number F is the smallest nongap in
the interval of nongaps immediatelly previous to F. For instance, the subconductor of the
above example, H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, . . . }, is 42.

http://oeis.org/A007323
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Lemma 1. Let Λ be a non-ordinary and non quasi-ordinary semigroup, with multiplicity m, genus
g, and sub-Frobenius number f . Then, Λ ∪ { f } \ {m} is another numerical semigroup of the same
genus g.

Proof. Since Λ is already a numerical semigroup, it is enough to see that F− f is not in
Λ ∪ { f } \ {m}, where F is the Frobenius number of Λ. Notice that for a non-ordinary
numerical semigroup, the difference between its Frobenius number and its sub-Frobenius
number needs to be less than the multiplicity of the semigroup; hence, F− f 6∈ Λ. So, the
only option for F − f to be in Λ ∪ { f } \ {m} is that F − f = f . In this case, any integer
between 1 and f − 1 must be a gap, since the integers between F − 1 and F − f + 1 are
nongaps. In this case, Λ would be quasi-ordinary, contradicting the hypotheses.

Definition 1. The quasi-ordinarization transform of a non-ordinary and non quasi-ordinary
numerical semigroup Λ, with multiplicity m, genus g and sub-Frobenius number f , is the numerical
semigroup Λ ∪ { f } \ {m}.

The quasi-ordinarization of either an ordinary or quasi-ordinary semigroup is defined to
be itself.

As an example, the quasi-ordinarization of the well-tempered harmonic semigroup
H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, . . . } used in the previous exam-
ples is H′ = {0, 19, 24, 28, 31, 34, 36, 38, 40, 41, 42, 43, 45, 46, 47, 48, . . . }.

Remark 1. In the ordinarization and quasi-ordinarization transform process, we replace the multi-
plicity by the largest and second largest gap, respectively, and we obtain numerical semigroups. In
general, if we replace the multiplicity by the third largest gap, we do not obtain a numerical semigroup.

See for instance {0, 2, 4, 6, 8, 10, 11, . . . }. Replacing 2 by 5, we obtain {0, 4, 5, 6, 8, 10, 11, . . . },
which is not a numerical semigroup since 9 = 4 + 5 is not in the set.

3. Quasi-Ordinarization Number

Next, lemma explicits that there is only one quasi-ordinary semigroup with genus g
and conductor c where c 6 2g.

Lemma 2. For each of the positive integers g and c with c 6 2g, the semigroup {0, g, g+ 1, . . . , c−
2, c, c + 1 . . . } is the unique quasi-ordinary semigroup of genus g and conductor c.

The quasi-ordinarization transform of a non-ordinary semigroup of genus g and
conductor c can be applied subsequently and at some step, we will attain the quasi-
ordinary semigroup of that genus and conductor, that is, the numerical semigroup {0, g, g +
1, . . . , c− 2, c, c + 1, . . . }. The number of such steps is defined to be the quasi-ordinarization
number of Λ.

We denote by $g,q, the number of numerical semigroups of genus g and quasi-
ordinarization number q. In Table 1, one can see the values of $g,q for genus up to 45.
It has been computed by an exhaustive exploration of the semigroup tree using the RGD
algorithm [12].

Lemma 3. The quasi-ordinarization number of a non-ordinary numerical semigroup of genus g
coincides with the number of non-zero non-gaps of the semigroup that are smaller than or equal
to g− 1.

Proof. A non-ordinary numerical semigroup of genus g is non-quasi-ordinary if and only
if its multiplicity is at most g − 1. Consequently, we can repeatedly apply the quasi-
ordinarization transform to a numerical semigroup while its multiplicity is at most g− 1.
Furthermore, the number of consecutive transforms that we can apply before obtaining the
quasi-ordinary semigroup is hence the number of its non-zero non-gaps that are at most
the genus minus one.
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Table 1. Number of semigroups of each genus and quasi-ordinarization number.

$g,q g = 1 g = 2 g = 3 g = 4 g = 5 g = 6 g = 7 g = 8 g = 9 g = 10

q = 0 1 2 3 4 5 6 7 8 9 10
q = 1 1 3 6 15 24 42 61 93
q = 2 1 2 7 16 43 89
q = 3 1 1 4 11
q = 4 1 1

sum= 1 2 4 7 12 23 39 67 118 204

$g,q g = 11 g = 12 g = 13 g = 14 g = 15 g = 16 g = 17 g = 18 g = 19 g = 20

q = 0 11 12 13 14 15 16 17 18 19 20
q = 1 123 174 219 291 355 453 537 666 774 936
q = 2 176 327 538 903 1379 2127 3022 4441 5979 8417
q = 3 30 75 209 448 990 1894 3575 6367 10,796 17,960
q = 4 2 3 19 34 106 295 829 1847 4447 9019
q = 5 1 1 2 2 9 18 55 116 403 986
q = 6 1 1 2 2 7 9 36 48
q = 7 1 1 2 2 7 7
q = 8 1 1 2 2
q = 9 1 1

sum= 343 592 1001 1693 2857 4806 8045 13,467 22,464 37,396

$g,q g = 21 g = 22 g = 23 g = 24 g = 25 g = 26 g = 27 g = 28 g = 29 g = 30

q = 0 21 22 23 24 25 26 27 28 29 30
q = 1 1072 1272 1437 1680 1878 2166 2401 2739 3012 3405
q = 2 10,966 14,826 18,774 24,770 30,539 39,321 47,697 60,083 71,711 88,938
q = 3 28,265 44,272 66,046 99,525 140,960 204,611 281,077 394,617 525,838 720,977
q = 4 18,673 35,178 65,533 115,252 197,836 329,568 533,479 848,091 1,304,275 2,001,344
q = 5 2981 7165 17,640 37,770 84,075 166,465 331,872 615,860 1,135,074 1,989,842
q = 6 181 464 1383 3603 11,141 26,864 67,991 153,882 352,322 727,680
q = 7 25 37 94 170 652 1679 5300 14,899 42738 107,050
q = 8 7 7 23 24 85 99 321 715 2506 7073
q = 9 2 2 7 7 23 23 69 83 233 331
q = 10 1 1 2 2 7 7 23 23 68 70
q = 11 1 1 2 2 7 7 23 23
q = 12 1 1 2 2 7 7
q = 13 1 1 2 2
q = 14 1 1

sum= 62,194 103,246 170,963 282,828 467,224 770,832 1,270,267 2,091,030 3,437,839 5,646,773

For a numerical semigroup Λ, we will consider its enumeration λ, that is, the unique
increasing bijective map between N0 and Λ. The element λ(i) is then denoted λi. As a
consequence of the previous lemma, for a numerical semigroup Λ with quasi-ordinarization
number equal to q, the non-gaps that are at most g− 1 are exactly λ0 = 0, λ1, . . . , λq.

Lemma 4. The maximum quasi-ordinarization number of a non-ordinary semigroup of genus g
is b g−1

2 c.
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Proof. Let Λ be a numerical semigroup with quasi-ordinarization number equal to q. Since
the Frobenius number F is at most 2g− 1, the total number of gaps from 1 to 2g− 1 is g,
and so the number of non-gaps from 1 to 2g− 1 is g− 1. The number of those non-gaps
that are larger than g − 1 is g − 1− q. On the other hand, λq + λ1, λq + λ2, . . . , 2λq are
different non-gaps between g and 2g− 1. So, the number of non-gaps between g and 2g− 1
is at least q. All these results imply that g− 1− q > q and so, q 6 g−1

2 .
On the other hand, the bound stated in the lemma is attained by the hyperelliptic

numerical semigroup

{0, 2, 4, . . . , 2
⌊

g− 1
2

⌋
, 2
(⌊

g− 1
2

⌋
+ 1
)

, . . . , 2g, 2g + 1, 2g + 2, . . . }. (1)

We will next see that the maximum ordinarization number stated in the previous
lemma is attained uniquely by the numerical semigroup in (1). To prove this result, we
will need the next lemma. Let us recall that A + B = {a + b : a ∈ A, b ∈ B} and that #A
denotes the cardinality of A.

Lemma 5. Consider a finite subset A = {a1 < · · · < an} ⊆ N0.

1. The set A + A contains at least 2n− 1 elements
2. If n > 1, the set A + A contains exactly 2n− 1 elements if and only if there exists a positive

integer α such that ai = a1 + (i− 1)α for all i 6 n.
3. If n > 4, the set A + A contains exactly 2n elements if and only if either

• there exists a positive integer α such that ai = a1 + α(i− 1) for all i with 1 6 i < n
and an = a1 + nα,

• there exists a positive integer α such that ai = a1 + iα for all i with 2 6 i 6 n.

Proof. The first item stems from the fact that if A = {a1, . . . , an}, then A + A must con-
tain at least 2a1, a1 + a2, a1 + a3, . . . , a1 + an, a2 + an, a3 + an, . . . , an−1 + an, 2an, which are
all different.

The second item easily follows from the fact that if A+ A has 2n− 1 elements, then A+
A must be exactly the set 2a1, a1 + a2, a1 + a3, . . . , a1 + an, a2 + an, a3 + an, . . . , an−1 + an, 2an.
Indeed, in this case, the increasing set {a1 + a3, . . . , a1 + an, a2 + an, a3 + an, . . . , an−1 +
an, 2an}must coincide with the increasing set {2a2, a2 + a3, a2 + a4, . . . , a2 + an, a3 + an, . . . ,
an−1 + an, 2an}, having as a consequence that 2a2 = a1 + a3 and so, a2 = a1+a3

2 = a1 +
a3−a1

2 ,
and a3 = 2a2 − a1 = a1 + 2 a3−a1

2 . Hence,

a2 = a1 +
a3 − a1

2

a3 = a1 + 2
a3 − a1

2

Similarly, one can show that 2a3 = a2 + a4 and, so, a4 = 2a3 − a2 = 2a1 + 4 a3−a1
2 −

a1 − a3−a1
2 = a1 + 3 a3−a1

2 . It equally follows that

a4 = a1 + 3
a3 − a1

2

a5 = a1 + 4
a3 − a1

2
...

For the third item, one direction of the proof is obvious, so we just need to prove the
other one, that is, if the sum contains 2n elements, then a1, . . . , an must be as stated.
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We will proceed by induction. Suppose that n = 4 and that the set A + A contains
exactly 8 elements. Since the ordered sequence

2a1 < a1 + a2 < 2a2 < a2 + a3 < 2a3 < a3 + a4 < 2a4 (2)

already contains 7 elements, then necessarily two of the elements a1 + a3, a1 + a4, a2 + a4
coincide with one element in (2) and the third one is not in (2). So, at least one of a1 + a3
and a2 + a4 must be in (2).

Suppose first that a1 + a3 is in (2). Then, necessarily a1 + a3 = 2a2, which means that
a2 − a1 = a3 − a2. Hence, there exists α (in fact, α = a2 − a1) such that a2 = a1 + α and
a3 = a1 + 2α. Now, the elements

2a1 < a1 + a2 < 2a2 < a2 + a3 < 2a3 (3)

are equally separated by the same separation α. That is,

(a1 + a2)− (2a1) = α

(2a2)− (a1 + a2) = α

(a2 + a3)− (2a2) = α

(2a3)− (a2 + a3) = α.

Additionally, the elements

a4 + a1 < a4 + a2 < a4 + a3 (4)

are equally separated by the same separation α. That is,

(a4 + a3)− (a4 + a2) = α

(a4 + a2)− (a4 + a1) = α.

Furthermore, A + A must contain all the elements in (3) and (4) as well as the element
2a4, which is not in (3), nor in (4). Since #(A + A) = 8, this means that there must be exatly
one element that is both in (3) and (4). The only way for this to happen is that 2a3 = a4 + a1.
Consequently, a4 + a1 = 2a1 + 4α, and so, a4 = a1 + 4α. This proves the result in the
first case.

For the case in which a2 + a4 is in (2), it is necessary that a2 + a4 = 2a3, which means
that a3 − a2 = a4 − a3. Hence, there exists β (in fact, β = a3 − a2) such that a3 = a2 + β and
a4 = a2 + 2β. Now, the elements

2a2 < a2 + a3 < 2a3 < a3 + a4 < 2a4 (5)

are equally separated by the same separation β. That is,

(a2 + a3)− (2a2) = β

(2a3)− (a2 + a3) = β

(a3 + a4)− (2a3) = β

(2a4)− (a3 + a4) = β.

Additionally, the elements

a1 + a2 < a1 + a3 < a1 + a4 (6)

are equally separated by the same separation β. That is,
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(a1 + a3)− (a1 + a2) = β

(a1 + a4)− (a1 + a3) = β.

Now, A + A must contain all the elements in (5) and (6), as well as the element 2a1,
which is not in (5), nor in (6). Since #(A + A) = 8, this means that there must be exactly one
element that is both in (5) and in (6). The only way for this to happen is that a1 + a4 = 2a2.
Consequently, a1 + a4 = 2a1 + 4α, and so, a4 = a1 + 4α. Hence, a2 = a1 + 2β, a3 = a1 + 3β,
a4 = a1 + 4β. This proves the result in the second case and concludes the proof for n = 4.

Now, let us prove the result for a general n > 4. We will denote An the set {a1, . . . , an}.
Notice that A1 + A1 = {2a1}while, if i > 1, then {ai−1 + ai, 2ai} ⊆ (Ai + Ai) \ (Ai−1 +

Ai−1), hence, #((Ai + Ai) \ (Ai−1 + Ai−1)) > 2. Consequently, if #(An + An) = 2n, we
can affirm that there exists exactly one integer s such that #(Ar + Ar) = 2r− 1, for all r < s
and #(Ar + Ar) = 2r for all r > s.

If s = n, then we already have, by the second item of the lemma, that ai = a1 +(i− 1)γ
for a given positive integer γ for all i < n.

On one hand,

An−1 + An−1 = {2a1, 2a1 + γ, 2a1 + 2γ, 2a1 + 3γ, . . . , 2a1 + (2n− 4)γ}, (7)

which has 2n− 3 elements. On the other hand,

An−1 + an = {(a1 + an), (a1 + an) + γ, (a1 + an) + 2γ, (a1 + an) + 3γ, . . . , (a1 + an) + (n− 2)γ}, (8)

has n− 1 elements.
Now, A + A = (An−1 + An−1) ∪ (An−1 + an) ∪ (2an). By the inclusion–exclusion

principle, and since 2an is not in (An−1 + An−1) ∪ (An−1 + an),

#((An−1 + An−1) ∩ (An−1 + an)) = #(An−1 + An−1) + #(An−1 + an) + 1− #(A + A)

= (2n− 3) + (n− 1) + 1− 2n

= n− 3

By (7) and (8), we conclude that (a1 + an) + (n − 4)γ = 2a1 + (2n − 4)γ, that is,
an = a1 + nγ. Hence, the result follows with α = γ.

On the contrary, if s < n, then, since #(An−1 + An−1) = 2(n− 1), we can apply the
induction hypothesis and affirm that either one of the following cases, (a) or (b), holds.

(a) There exists a positive integer αn−1 such that ai = a1 + αn−1(i − 1) for all i with
1 6 i < n− 1 and an−1 = a1 + (n− 1)α;

(b) There exists a positive integer α such that ai = a1 + iαn−1 for all i with 2 6 i 6 n− 1.

In case (a), we will have

An−1 + An−1 = {2a1, 2a1 + αn−1, 2a1 + 2αn−1, . . .
. . . , 2a1 + (2n− 4)αn−1, 2a1 + (2n− 2)αn−1},

and
An−1 + an = {(a1 + an), (a1 + an) + αn−1, (a1 + an) + 2αn−1, . . .

. . . , (a1 + an) + (n− 3)αn−1, (a1 + an) + (n− 1)αn−1},
In case (b), we will have

An−1 + An−1 = {2a1, 2a1 + 2αn−1, 2a1 + 3αn−1, . . .
. . . , 2a1 + (2n− 3)αn−1, 2a1 + (2n− 2)αn−1},

and
An−1 + an = {(a1 + an), (a1 + an) + 2αn−1, (a1 + an) + 3αn−1, . . .

. . . , (a1 + an) + (n− 1)αn−1},
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Now,

#((An−1 + An−1) ∩ (An−1 + an)) = #(An−1 + An−1) + #(An−1 + an) + 1− #(A + A)

= #(An−1 + An−1)− n

= n− 2.

This is only possible in case (b) with

(An−1 + An−1) ∩ (An−1 + an) = {(a1 + a2), (a1 + an) + 2αn−1, (a1 + an) + 3αn−1, . . .
. . . , (a1 + an) + (n− 2)αn−1},

and, hence, with (a1 + an) + (n− 2)αn−1 = 2a1 + (2n− 2)αn−1, that is, an = a1 + nαn−1,
hence yielding the result with α = αn−1.

Lemma 6. Let g > 2 and g 6= 4, g 6= 6. The unique non-quasi-ordinary numerical semigroup of
genus g and quasi-ordinarization number b g−1

2 c is {0, 2, 4, . . . , 2g, 2g + 2, 2g + 3 . . . }.

Proof. If g = 3, there is only one numerical semigroup non-ordinary and non-quasi-
ordinary as we can observe in Figure 1, and it is exactly {0, 2, 4, 6, . . . }, which indeed, has a
quasi-ordinarization number b g−1

2 c and it is of the form {0, 2, 4, . . . , 2g, 2g + 1, 2g + 2, . . . }.
The case g = 4 and g = 6 are excluded from the statement (and analyzed in Remark 2). So,
we can assume that either g = 5 or g > 6.

Suppose that the quasi-ordinarization number of Λ is b g−1
2 c. Since λb g−1

2 c
6 g− 1, we

know that the set of all non-gaps between 0 and 2g− 2 must contain all the sums

Σ = {λi + λj : 0 6 i, j 6 b g− 1
2
c}.

However, the number of non-gaps between 0 and 2g− 2 is either g− 1 or g depend-
ing on whether 2g − 1 is a gap or not. So, #Σ 6 g. On the other hand, by Lemma 5,
#Σ > 2b g−1

2 c+ 1.
If g is odd, we get that 2b g−1

2 c+ 1 = g and so, #Σ = g. Then, by the second item in
Lemma 5, we get that λi = iλ1 for i 6 g−1

2 . Now, λ g−1
2

= g−1
2 λ1 and, since λ g−1

2
6 g− 1,

one can deduce that λ1 6 2. If λ1 = 1 this contradicts g > 1. So, λi = 2i for 0 6 i 6 g−1
2

and the remaining non-gaps between g and 2g are necessarily λi = 2i for i = g−1
2 + 1 to

i = g.
If g is even, then g− 1 6 #Σ 6 g. If #Σ = g, then, since the number of summands in

the sum Σ is at least 4 (because we excluded the even genera 4 and 6), we can apply the
third item in Lemma 5. Then, we obtain λ g

2−1 = g
2 λ1. This, together with λ g

2−1 6 g− 1

implies that λ1 6 2 g−1
g < 2. So, λ1 = 1, contradicting g > 1. Hence, it must be Σ = g− 1. If

Σ = g− 1, then, by the second item in Lemma 5, we obtain λi = iλ1 for all i 6 g
2 − 1. Now,

λ g
2−1 = ( g

2 − 1)λ1 and, since λ g
2−1 6 g− 1, one can deduce that λ1 6 2 g−1

g−2 . However,

2 g−1
g−2 < 3 if g > 5. So, λ1 con only be 1 or 2. If λ1 = 1 this contradicts g > 1. So, λi = 2i for

0 6 i 6 g
2 − 1 and the remaining non-gaps between g and 2g are necessarily λi = 2i for

i = g
2 to i = g.

Remark 2. For g = 4, the maximum quasi-ordinarization number b g−1
2 c = 1 is, in fact, attained

by three of the 7 semigroups of genus 4. The semigroups whose quasi-ordinarization number is
maximum are {0, 3, 6, . . . }, {0, 2, 4, 6, 8, . . . }, {0, 3, 5, 6, 8, . . . }.

For g = 6, the maximum quasi-ordinarization number b g−1
2 c = 2 is, in fact, attained by two

of the 23 semigroups of genus 6. The semigroups whose quasi-ordinarization number is maximum
are {0, 2, 4, 6, 8, 10, 12, . . . }, {0, 4, 5, 8, 9, 10, 12, . . . }.
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Hence, g = 4 and g = 6 are exceptional cases.

4. Analysis of $g,q

Let us denote og,r, the number of numerical semigroups of genus g and ordinar-
ization number r and $g,q, the number of numerical semigroups of genus g and quasi-
ordinarization number r.

We can observe a behavior of $g,q very similar to the behavior of og,r introduced in [9].
Indeed, for odd g and large r, it holds $g,q = og,r and for even g and large q, it holds

$g,q = og,r+1. We will give a partial proof of these equalities at the end of this section.
It is conjcetured in [9] that, for each genus g ∈ N0 and each ordinarization number

r ∈ N0,
og,r 6 og+1,r.

We can write the new conjecture below paralleling this.

Conjecture 1. For each genus g ∈ N0 and each quasi-ordinarization number q ∈ N0,

$g,q 6 $g+1,q.

Now, we will provide some results on $g,q for high quasi-ordinarization numbers.
First, we will need Freı̆man’s Theorem [25,26] as formulated in [27].

Theorem 2 (Freı̆man). Let A be a set of integers such that #A = k > 3. If #(A + A) 6 3k− 4,
then A is a subset of an arithmetic progression of length #(A + A)− k + 1 6 2k− 3.

The next lemma is a consequence of Freı̆man’s Theorem. The lemma shows that the
first non-gaps of numerical semigroups of large quasi-ordinarization number must be even.

Lemma 7. If a semigroup Λ of genus g has quasi-ordinarization number q with g+1
3 6 q 6 b g−1

2 c
then all its non-gaps which are less than or equal to g− 1 are even.

Proof. Suppose that Λ is a semigroup of genus g and quasi-ordinarization number q > g+1
3 .

Since the quasi-ordinarization is q, this means that λ0 = 0, λ1, . . . , λq 6 g− 1 and
λq+1 > g, hence Λ ∩ [0, g− 1] = {λ0, λ1, . . . , λq}. Let A = Λ ∩ [0, g− 1]. By the previous
equality, #A = q + 1. We have that the elements in A + A are upper bounded by 2g− 2 and
so A + A ⊆ Λ ∩ [0, 2g− 2]. Then, #(A + A) 6 #(Λ ∩ [0, 2g− 2]) < #(Λ ∩ [0, 2g]). Since
the Frobenius number of Λ is at most 2g− 1, #(Λ ∩ [0, 2g]) = g + 1 and, so, #(A + A) 6 g.
Now, since q > g+1

3 , we have g 6 3q− 1 = 3(q + 1)− 4 = 3(#A)− 4 and we can apply
Theorem 2 with k = q + 1. Thus, we have that A is a subset of an arithmetic progression of
length at most g− k + 1 = g− q.

Let d(A) be the difference between consecutive terms of this arithmetic progression.
The number d(A) can not be larger than or equal to three since otherwise λq > q · d(A) >
3q > 3 g+1

3 > g, a contradiction with q being the quasi-ordinarization number.
If d(A) = 1, then A ⊆ [0, g − q − 1] and so Λ ∩ [g − q, g − 1] = ∅. We claim that

in this case A ⊆ {0} ∪ [d g
2 e, g− q− 1]. Indeed, suppose that x ∈ A. Then, 2x satisfies

either 2x 6 g− q− 1 or 2x > g. If the second inequality is satisfied, then it is obvious that
x ∈ {0} ∪ [d g

2 e, g− q− 1]. If the first inequality is satisfied, then we will prove that mx 6
g− q− 1 for all m > 2 by induction on m and this leads to x = 0. Indeed, if mx 6 g− q− 1,

then x 6 g−q−1
m 6 g− g+1

3 −1
m = 2g−4

3m < 2g
3m . Now, (m + 1)x < 2g(m+1)

3m = (2m+2)g
3m and since

m > 2, we have (m + 1)x < (2m+m)g
3m = g and so (m + 1)x 6 g− 1. Since (m + 1)x is in

Λ ∩ [0, g− 1] = A ⊆ [0, g− q− 1], this means that (m + 1)x 6 g− q− 1 and this proves
the claim.

Now, A ⊆ {0} ∪ [d g
2 e, g− q− 1] together with #A = q + 1 implies that q 6 g− q−

d g
2 e = b

g
2 c − q 6 g

2 −
g+1

3 = g−2
6 < q, a contradiction.
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So, we deduce that d(A) = 2, leading to the proof of the lemma.

The next lemma was proved in [9].

Lemma 8. Suppose that a numerical semigroup Λ has ω gaps between 1 and n − 1 and
n > 2ω + 2, then

1. n ∈ Λ,
2. the Frobenius number of Λ is smaller than n,
3. the genus of Λ is ω.

Let Λ be a numerical semigroup. As in [9], let us say that a set B ⊂ N0 is Λ-closed if
for any b ∈ B and any λ in Λ, the sum b + λ is either in B or it is larger than max(B). If
B is Λ-closed, so is B−min(B). Indeed, b−min(B) + λ = (b + λ)−min(B) is either in
B−min(B) or it is larger than max(B)−min(B) = max(B−min(B)). The new Λ-closed
set contains 0. We will denote by C(Λ, i), the Λ-closed sets of size i that contain 0.

Let Sγ be the set of numerical semigroups of genus γ. It was proved in [9] that, for r,
an integer with g+2

3 6 r 6 b g
2 c, it holds

og,r = ∑
Ω∈S

(b g
2 c−r)

#C(Ω,
⌊ g

2

⌋
− r + 1).

We will see now that, for q an integer with g+1
3 6 q 6 b g−1

2 c, it holds

$g,q = ∑
Ω∈S

(b g−1
2 c−q)

#C(Ω,
⌊

g− 1
2

⌋
− q + 1).

This proves that, for q, an integer with g+2
3 6 q 6 b g−1

2 c, we have

$g,q =

{
og,q if g is odd,
og,q+1 if g is even.

Theorem 3. Let g ∈ N0, g > 1, and let q be an integer with g+1
3 6 q 6 b g−1

2 c. Define
ω = b g−1

2 c − q

1. If Ω is a numerical semigroup of genus ω and B is an Ω-closed set of size ω + 1 and first
element equal to 0 then

{2j : j ∈ Ω} ∪ {2j− 2 max(B) + 2g + 1 : j ∈ B} ∪ (2g +N0)

is a numerical semigroup of genus g and quasi-ordinarization number equal to q.
2. All numerical semigroups of genus g and quasi-ordinarization number q can be uniquely

written as

{2j : j ∈ Ω} ∪ {2j− 2 max(B) + 2g + 1 : j ∈ B} ∪ (2g +N0)

for a unique numerical semigroup Ω of genus ω and a unique Ω-closed set B of size ω + 1
and first element equal to 0.

3. The number ρg,q of numerical semigroups of genus g and quasi-ordinarization number q
depends only on ω. It is exactly

∑
Ω∈Sω

#C(Ω, ω + 1).
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Proof.

1. Suppose that Ω is a numerical semigroup of genus ω and B is an Ω-closed set of size
ω + 1 and first element equal to 0. Let X = {2j : j ∈ Ω}, Y = {2j− 2 max(B)+ 2g+ 1 :
j ∈ B}, and Z = (2g +N0).
First of all, let us see that the complement N0 \ (X ∪ Y ∪ Z) has g elements. Notice
that all elements in X are even while all elements in Y are odd. So, X and Y do not
intersect. Additionally, the unique element in Y ∩ Z is 2g+ 1. The number of elements
in the complement will be

#N0 \ (X ∪Y ∪ Z) = 2g− #{x ∈ X : x < 2g} − #Y + 1

= 2g− #{s ∈ Ω : s < g} − #B + 1

= 2g−ω− #{s ∈ Ω : s < g}.

We know that all gaps of Ω are at most 2ω− 1 = 2(b g−1
2 c − q)− 1 6 g− 1− 2q− 1 <

g. So, #{s ∈ Ω : s < g} = g−ω and we conclude that #N0 \ (X ∪Y ∪ Z) = g.
Before proving that X ∪Y ∪ Z is a numerical semigroup, let us prove that the number
of non-zero elements in X ∪Y ∪ Z, which are smaller than or equal to g− 1 is q. Once
we prove that X ∪Y ∪ Z is a numerical semigroup, this will mean, by Lemma 3, that it
has quasi-ordinarization number q. On the one hand, all elements in Y are larger than
g− 1. Indeed, if λ is the enumeration of Ω (i.e., Ω = {λ0, λ1, . . . } with λi < λi+1),
then max(B) 6 λω 6 2ω = 2b g−1

2 c − 2q 6 g− 1− 2 g+1
3 < g

3 . Now, for any j ∈ B,
2j− 2 max(B) + 2g + 1 > 2g− 2 max(B) > g. On the other hand, all gaps of Ω are at
most 2ω− 1 = 2b g−1

2 c − 2q− 1 < g− 2(g+1)
3 − 1 < g

3 − 1 and so all the even integers
not belonging to X are less than g. So, the number of non-zero non-gaps of X ∪Y ∪ Z
smaller than or equal to g− 1 is b g−1

2 c −ω = q.
To see that X ∪Y ∪ Z is a numerical semigroup, we only need to see that it is closed
under addition. It is obvious that X + Z ⊆ Z, Y + Z ⊆ Z, Z + Z ⊆ Z. It is also
obvious that X + X ⊆ X since Ω is a numerical semigroup and that Y + Y ⊆ Z since,
as we proved before, all elements in Y are larger than g.
It remains to see that X + Y ⊆ X ∪ Y ∪ Z. Suppose that x ∈ X and y ∈ Y. Then,
x = 2i for some i ∈ Ω and y = 2j − 2 max(B) + 2g + 1 for some j ∈ B. Then,
x+ y = 2(i+ j)− 2 max(B)+ 2g+ 1. Since B is Ω-closed, we have that either i+ j ∈ B
and so x + y ∈ Y or i + j > max(B). In this case, x + y ∈ Z. So, X + Y ⊆ Y ∪ Z.

2. First of all notice that, since the Frobenius number of a semigroup Λ of genus g is
smaller than 2g, it holds

Λ ∩ (2g +N0) = (2g +N0).

For any numerical semigroup Λ, the set Ω = { j
2 : j ∈ Λ ∩ (2N0)} is a numerical

semigroup. If Λ has a quazi-ordinarization number q > g+1
3 then, by Lemma 7,

Λ ∩ [0, g− 1] = (2Ω) ∩ [0, g− 1].

The semigroup Ω has exactly q+ 1 non-gaps between 0 and b g−1
2 c and ω = b g−1

2 c− q
gaps between 0 and b g−1

2 c. We can use Lemma 8 with n = b g+1
2 c since

2ω + 2 = 2
⌊

g− 1
2

⌋
− 2q + 2 6 g− 1− 2(g + 1)

3
+ 2 =

g + 1
3

,

which implies 2ω + 2 6 g+1
3 6 b g+1

2 c = n. Then, the genus of Ω is ω and the
Frobenius number of Ω is at most b g+1

2 c. This means that all even integers larger than
g− 1 belong to Λ.
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Define D = (Λ ∩ [0, 2g]) \ 2Ω. That is, D is the set of odd non-gaps of Λ smaller than
2g. We claim that B̄ = { j−1

2 : j ∈ D ∪ {2g + 1}} is a Ω-closed set of size ω + 1. The
size follows from the fact that the number of non-gaps of Λ between g and 2g is g− q
and that the number of even integers in the same interval is d g+1

2 e. Suppose that

λ ∈ Ω and b ∈ B̄. Then, b = j−1
2 for some j in D ∪ {2g + 1} and b + λ = (j+2λ)−1

2 .

If (j+2λ)−1
2 > max(B̄) = (2g+1)−1

2 , we are done. Otherwise, we have j + 2λ 6 2g.
Since Λ is a numerical semigroup and both j, 2λ ∈ Λ, it holds j + 2λ ∈ Λ ∩ [0, 2g].
Furthermore, j + 2λ is odd since j is also. So, b + λ is either larger than max(B̄) or it
is in B̄. Then, B = B̄−min(B̄) is a Λ-closed set of size ω + 1 and first element zero.

3. The previous two points define a bijection between the set of numerical semigroups
in Sg of quasi-ordinarization number q and the set {C(Ω, ω + 1) : Ω ∈ Sω}. Hence,
ρg,q = ∑Ω∈Sω

#C(Ω, ω + 1).

Corollary 1. Suppose that g+2
3 6 q 6 b g−1

2 c. Then,

$g,q =

{
og,q if g is odd,
og,q+1 if g is even.

Define, as in [9], the sequence fω by fω = ∑Ω∈Sω
#C(Ω, ω + 1). The first elements in

the sequence, from f0 to f15 are

ω 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fω 1 2 7 23 68 200 615 1764 5060 14,626 41,785 117,573 332475 933,891 2,609,832 7,278,512

We remark that this sequence appears in [5], where Bernardini and Torres proved
that the number of numerical semigroups of genus 3ω whose number of even gaps is ω is
exactly fω. It corresponds to the entry A210581 of The On-Line Encyclopedia of Integer
Sequences [23].

We can deduce the values $g,q using the values in the previous table together with
Theorem 3 for any g, whenever q > max( g+2

3 , b g−1
2 c − 15).

The next corollary is a consequence of the fact that the sequence fω is increasing for ω
between 0 and 15.

Corollary 2. For any g ∈ N and any q > max( g
3 + 1, b g

2 c − 15), it holds $g,q > $g+1,q.

If we proved that fω 6 fω+1 for any ω, this would imply $g,q 6 $g+1,q for any q > g
3 .

5. The Forest Fg

Fix a genus g. We can define a graph in which the nodes are all semigroups of that
genus and whose edges connect each semigroup to its quasi-ordinarization transform, if it
is not itself. The graph is a forest Fg rooted at all ordinary and quasi-ordinary semigroups
of genus g. In particular, the quasi-ordinarization transform defines, for each fixed genus
and conductor, a tree rooted at the unique quasi-ordinary semigroup of that genus and
conductor, given in Lemma 2. See F4 in Figure 3, F6 in Figure 4, and F7 in Figure 5.

In the forest Fg, we know that the parent of a numerical semigroup that is not a root is
its quasi-ordinarization transform. Let us analyze now, what the children of a numerical
semigroup are. The next result is well known and can be found, for instance, in [2]. We use
Λ∗ to denote Λ \ {0}.

Lemma 9. Suppose that Λ is a numerical semigroup and that a ∈ N0 \ Λ. The set a ∪ Λ is a
numerical semigroup if and only if

• a + Λ∗ ⊆ Λ∗,
• 2a ∈ Λ,

http://oeis.org/A210581
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• 3a ∈ Λ.

The elements a ∈ N0 \Λ such that a + Λ ⊆ Λ, are denoted pseudo-Frobenius numbers
of Λ. The elements a ∈ N0 \Λ such that {2a, 3a} ⊆ Λ, are denoted fundamental gaps of Λ.
The elements satisfying the three conditions will be called candidates.

Suppose that a numerical semigroup Λ with Frobenius number F has children in Fg.
Let e1, . . . , er be the generators of Λ between the subconductor and F− 1. For i = 1, . . . , r,
let ci

1, . . . , ci
ki

be the candidates of Λ \ {ei}. The children of Λ in Fg are the semigroups of
the form Λ \ {ei} ∪ {ci

j}, for i = 1, . . . , r and j = 1, . . . , ki.
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6. Relating Fg , Tg , and T

Now, we analyze the relation between the kinship of different nodes in Fg, Tg, and T.
If two semigroups are children of the same semigroup Λ, then they are called siblings. If Λ1
and Λ2 are siblings, and Λ3 is a child of Λ2, then we say that Λ3 is a niece/nephew of Λ1.

Let q(Λ) denote the quasi-ordinarization of Λ. The next lemmas are quite immediate
from the definitions.

Lemma 10. If Λ1 is a child of Λ2 in T, then q(Λ1) is a niece/nephew of q(Λ2) in T.

As an example, Λ1 = {0, 4, 5, 8, 9, 10, 12, . . . } is a child of Λ2 = {0, 4, 5, 8, . . . } in T,
while q(Λ1) = {0, 5, 7, 8, 9, 10, 12, . . . } is a niece of q(Λ2) = {0, 5, 6, 8, . . . } in T.

Lemma 11. If Λ1 and Λ2 are siblings in T, then they are siblings in Tg but not in Fg.

As an example, Λ1 = {0, 5, 7, 9, 10, 11, 12, 14, . . . } and Λ2 = {0, 5, 7, 9, 10, 12, . . . } are
siblings in T and in T7 (see Figure 2), but they are not siblings in F7 (see Figure 5).

Lemma 12. If Λ1 and Λ2 are siblings in Tg, then q(Λ1) and q(Λ2) are siblings in T.
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As an example, Λ1 = {0, 3, 6, 9, 10, 12, . . . } and Λ2 = {0, 5, 6, 10, . . . } are siblings in T7
(see Figure 2), and q(Λ1) = {0, 6, 8, 9, 10, 12, . . . } and q(Λ2) = {0, 6, 8, 10, . . . } are siblings
in T.

As a consequence of the previous two lemmas, we obtain this final lemma.

Lemma 13. If Λ1 and Λ2 are siblings in T, then q(Λ1) and q(Λ2) are siblings in T.

As an example, Λ1 = {0, 5, 7, 9, 10, 11, 12, 14, . . . } and Λ2 = {0, 5, 7, 9, 10, 12, . . . } are
siblings in T and q(Λ1) = {0, 7, 8, 9, 10, 11, 12, 14, . . . } and q(Λ2) = {0, 7, 8, 9, 10, 12, . . . }
are siblings in T.

7. Conclusions

Quasi-ordinary semigroups are those semigroups that have all gaps except one in a
row, while ordinary semigroups have all gaps in a row.

We defined a quasi-ordinarization transform that, applied repeatedly to a non-ordinary
numerical semigroup stabilizes in a quasi-ordinary semigroup of the same genus.

From this transform, fixing a genus g, we can define a forest Fg whose nodes are all
semigroups of genus g, whose roots are all ordinary and quasi-ordinary semigroups of that
genus, and whose edges connect each non-ordinary and non-quasi-ordinary numerical
semigroup to its quasi-ordinarization transform.

We conjectured that the number of numerical semigroups in Fg at a given depth is
at most the number of numerical semigroups in Fg+1 at the same depth. We provided a
proof of the conjecture for the largest possible depths. Proving this conjecture for all depths
would prove the conjecture that ng+1 > ng. Hence, we expect our work to be a step toward
the proof of the conjectured increasingness of the sequence ng.
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