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Abstract: Risk and security are two symmetric descriptions of the uncertainty of the same system. If
the risk early warning is carried out in time, the security capability of the system can be improved. A
safety early warning model based on fuzzy c-means clustering (FCM) and back-propagation neural
network was established, and a genetic algorithm was introduced to optimize the connection weight
and other properties of the neural network, so as to construct the safety early warning system of coal
mining face. The system was applied in a coal face in Shandong, China, with 46 groups of data as
samples. Firstly, the original data were clustered by FCM, the input space was fuzzy divided, and
the samples were clustered into three categories. Then, the clustered data was used as the input of
the neural network for training and prediction. The back-propagation neural network and genetic
algorithm optimization neural network were trained and verified many times. The results show that
the early warning model can realize the prediction and early warning of the safety condition of the
working face, and the performance of the neural network model optimized by genetic algorithm is
better than the traditional back-propagation artificial neural network model, with higher prediction
accuracy and convergence speed. The established early warning model and method can provide
reference and basis for the prediction, early warning and risk management of coal mine production
safety, so as to discover the hidden danger of working face accident as soon as possible, eliminate the
hidden danger in time and reduce the accident probability to the maximum extent.

Keywords: coal face; early warning of safety; artificial neural network; FCM; genetic algorithm

1. Introduction

In recent years, although the safety situation of coal mines in China has improved,
serious accidents still occur from time to time. China’s coal mine mortality per million tons
is now about 0.156, down from previous years, whereas the mortality per million tons in
Australia, the United States and other coal-producing developed countries ranges from
0.03 to 0.04. Obviously, there is still a huge gap between them [1,2].

Coal mining has narrow and changeable working face space with much equipment,
loud noise, concentrated personnel and a complex environment. Additionally, there are
many uncertain risk factors, and mine accidents occur frequently. According to the statistics
of The State Bureau of Safe Production Supervision and Administration of China, 45% of all
coal mine accidents were attributed to coal mining faces or accidents induced by them [3].

Safety early warning system is an important means to prevent and control the occur-
rence of hidden dangers of coal mine accidents, which has been paid close attention by
scholars. From the late 1990s, some scholars started researching coal mine safety warnings.
According to Lei’s research, accidents from hidden dangers were derived from hazardous
and harmful factors, while inherent hazardous and harmful factors were the essential
attributes of hazard sources [4]. Safety early warning was to collect data of all kinds of
accident hidden dangers, evaluate, analyze and monitor safety production activities, and
issue different early warning signals at different stages [5]. In the process of coal mining, if
the hidden dangers are eliminated, the hazard sources can be controlled, and the occurrence
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of accidents can be avoided or reduced. The coal mine safety early warning is mainly
carried out by hidden trouble control, major hazard identification and safety evaluation,
safety monitoring index early warning, and so on. From the perspective of coal mine
hidden danger management, some scholars have carried out research on hidden danger
classification and investigation management, such as Tan Zhang-lu Tan Zhanglu et al. who
designed a closed-loop management system for safety early warning and inspection in two
links of risk source management and hidden danger management [6], and Wang applied an
LEC method to study hidden security classification of closed loop management [7]. Most of
these studies regarded the hidden danger data as static data and take the historical hidden
danger data as the research basis. It could provide some reference for the investigation of
hidden danger, but it didn’t conform to the characteristics of the dynamic change of hidden
danger [8], and it was difficult to provide real-time warning information or change trend
of hidden danger. The research on major hazard sources focused on the analysis and iden-
tification of hazard sources and the construction of risk assessment models. For example,
Chen et al. established a risk assessment model, which took geographical environment,
technical equipment, personal quality, safety training and management as variables [9].
Luo et al. carried out quantitative risk assessment on gas explosion risk [10]. Zhang and
Sui et al. proposed measures to prevent and control coal mine water hazard sources [11,12].
These studies established one kind of mine disaster, such as gas or a flood risk assessment
model, can be one kind of prevention and control of hazards occur, but accident factors
caused by coal mining area are very complicated, and can include several categories of
hazards, and also people’s unsafe behavior and unsafe state related factors [13]. In order
to comprehensively identify the hazard source and objectively evaluate the mine safety
situation, attention should be paid to the human, machine, environment and pipe, etc.
aspects. As for the research on the early warning of safety monitoring indicators, the early
warning model was mainly established based on the safety monitoring indicators of gas
or other harmful gases concentration, hydrological parameters and roof pressure. For
example, Li established the Elman neural network risk identification and early warning
model of gas explosion disaster [14], Wu et al. established a mathematical evaluation
system of floor water inrush risk based on variable weight model and unascertained mea-
sure theory [15], Dou et al. established a multi-information normalized early-warning
mechanical model of coal-rock impact damage [16], and Zheng, Qiao and Man established
a remote monitoring and early-warning technology of mine hoist [17]. These research
warning indicators were relatively single, and have their own limitations [18] in terms of
application scope, evaluation accuracy, and objectivity of evaluation, etc., and the failure to
effectively analyze nonlinear systems [17] would lead to large warning errors. Through in-
tegration technology, several algorithms were fused together to establish an early warning
model, which could play a role of promoting strengths and circumventing weaknesses [18].
Therefore, some scholars have carried out research on the comprehensive early warning
model of various indicators and established the integrated muti-algorithm early warning
model. This includes the application of artificial neural network, fuzzy comprehensive
evaluation method, expert system, rough set, support vector machine (SVM), data mining
and other algorithms. Meng and Zhao comprehensively adopted an FCM fuzzy clustering
algorithm, rough set and RBF neural network to establish data mining and data fusion
to construct a coal mine safety early warning system [19]. Xin and Sun, Wen, Wang and
Cai, Wang et al., Chen et al., Liu et al. respectively, established different safety warning
models by applying principal component analysis, neural network algorithm, extension
theory and a support vector machine algorithm [20–24]. Zhang, Jiang and Guo, Jia and
Wei established a coal mine safety early warning system by using association rule data
mining [25,26]. These studies not only give full play to the intelligent advantages of com-
puters, but also avoid the one-sidedness of data indicators, increasing the rationality of
the index system [5,26]. However, some comprehensive warning model algorithms were
too complex to be operated easily in practical application. The principles of simplicity,
applicability and strong operability need to be fully considered, and appropriate methods
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and models should be selected through comparison according to the target achieved by the
research object, actual conditions and the environment [27].

As an important subsystem of coal mine production, the coal mining production
system can also adopt the ideas and methods applicable to coal mine safety early warning
model, including safety monitoring and early warning of single hazard source index and
intelligent safety early warning. Early warning of the working face safety monitoring
system with single hazard source index was based on the monitoring data of roof pressure,
hydrogeology, coal seam spontaneous combustion, gas, etc. For example, Fan, Mao and Qi
realized early warning of roof disaster [28]. Liu et al. studied the early warning index of
monitoring coal seam floor [29]. In addition, Shi et al. established an evaluation method
for the threat degree of spontaneous combustion of the working face under the condition
of coal seam group mining in close distance, so as to realize the advance warning of the
threat of spontaneous combustion fire faced by the working face in close distance coal
seam group mining [30]. Due to the fuzziness, randomness, suddenness, non-linearity and
dynamic characteristics of the coal face safety system [31], it is difficult to guarantee the
accuracy of the early warning system established solely by the safety monitoring system.
Therefore, some scholars have carried out intelligent safety early warning represented by
artificial neural networks in recent years. For example, Lu and Kang studied the principal
component analysis combined with back-propagation neural network (BP) prediction
model for the prediction of gas emission in mining face, Hao and Zhang studied the
prediction and early warning method of coal and gas outburst with Hadoop platform,
and established the BP neural network model to extract gas characteristic parameters
early warning model [32,33]. Zhao and Ma established the BP neural network prediction
model of particle swarm optimization for the prediction of dust concentration in fully
mechanized mining face [34]. These intelligent safety early warning systems based on BP
neural network solve the problems of non-linearity and fuzziness of danger source and
accident hidden danger of coal working face, but the single index of major danger source
of coal working face is taken as the research object, and all kinds of danger source and
accident hidden danger indexes of coal working face are not considered comprehensively.
As a production system, the safety state of a coal mine is affected by personnel, equipment,
environment, management, information and other factors. If one factor appears unsafe, it
may affect the safety of other factors and cause accidents [31]. Therefore, it is not possible
to fully reflect the safety situation of coal face by studying only a single hazard source or
ignoring the interaction between the hazard sources.

Therefore, it is necessary to design a set of intelligent model of coal face safety early
warning, which covers all the warning indicators of human, machine, environment and
management, so as to improve the ability of coal face risk pre-control and eliminate hidden
dangers, reduce or avoid the occurrence of accidents, and reduce the death rate of coal mine
accidents. Through literature review, the warning index is the basis of safety evaluation,
construction of early warning model, the selection and design in the model, model quality
affects the effect of application, a model can realize the original function, which is to think
it is a good model, good model with simplicity, accuracy and explain the universality and
operability of the three necessary conditions for [35]. Therefore, when designing the coal
face safety warning model in this study, the applicability of the theories and methods used
should be considered first, and the practicability of the warning model should be paid
attention to, rather than blindly pursuing novel or complex theoretical algorithms. The
hidden dangers such as roof pressure, flood, fire, gas and dust of coal face are dynamic,
uncertain and nonlinear, which are difficult to describe by an accurate mathematical early
warning model. The BP neural network is one of the widely used neural network models.
As for the complex enterprise operation system, it solves the defects of the traditional
model, such as the difficulty to deal with highly nonlinear model, poor fault tolerance, lack
of time variability in the early warning line and early warning area, and lack of self-learning
ability, and shows a good prediction effect [36].



Symmetry 2021, 13, 1082 4 of 23

BP neural network can arbitrarily approach a highly nonlinear function and has the ability
of self-organization and self-learning. Moreover, BP neural network has strong nonlinear
fault tolerance and allows strong noise in data, so it has great advantages in prediction and
early warning [37]. However, when BP neural network is trained by gradient descent method,
it may produce local minimum problem, and there is also the sensitivity problem of the
initial weight of the network, that is, any slight change in the initial weight will affect the
convergence speed and precision of the network, and even the network vibration [38–40]. A
genetic algorithm (GA) has strong global search ability, which can quickly and effectively
find the global optimal solution in the complex, multi-peak and non-differentiable large
vector space, and has the characteristics of efficient, parallel and global search [41]. A genetic
algorithm is used to overcome the above defects of BP neural network.

Based on the comprehensive analysis of the production practice and the characteristics
of safety hidden dangers of coal working face, this paper establishes a full warning index
system based on personnel behavior, equipment, environment, management and other
factors, and integrates the advantages of genetic algorithm and BP neural network to
construct a safety early warning model of coal working face.

Fuzzy C-means (FCM) is an algorithm that uses membership degree to determine
that each data point belongs to a certain degree of clustering [41]. It converges the target
clustering function through multiple iterations. With a FCM algorithm to cluster the input
data, the network structure and initial parameter values can be determined to ensure
uniform distribution of membership functions, so as to improve the convergence speed
of the neural network. Therefore, FCM algorithm was introduced to process the hidden
danger data of working face in fuzzy discretization and optimize the sample data space, so
as to improve the operation efficiency and precision of the neural model.

The structure of the paper is roughly as follows: First, the characteristics of safe
production of coal mining face are studied to develop a comprehensive early-warning index
system composed of personnel behavior factors, environmental factors and management
factors; Second, FCM fuzzy clustering is applied to fuzzy discretization of hidden danger
data of the working face, and sample data state space is optimized to build an early warning
model of coal mining face based on genetic algorithm and BP neural network; Finally, the
effectiveness of the early warning model is verified by taking the concrete coal mining face
as an example.

2. Research on Early Warning Index and Model of Coal Mining Working Face
2.1. Early Warning Indexes

There are many risk factors that affect the safety of coal mining face and selecting the
early warning index system is the premise of establishing the early warning model.

From the perspective of three kinds of hazard sources, it can reflect the factors and root
causes of the existence of danger comprehensively. The first type of hazard source is energy
and material, e.g., gas content, gas concentration, roof pressure, mine water inflow, etc.
The second category of hazard sources are physical faults, physical environmental factors,
etc., which primarily refers to the energy suppression measures for the first category of
dangerous substances, e.g., roof support, gas drainage, equipment protection and other
faults, as well as personnel operational errors. The third category of hazard primarily
refers to organizational factors of safety management, formulation and implementation of
safety management system, safety education training, safety input, miners’ educational
level, age structure, etc. [40]. The early warning indicators can be summarized in four
factors: personnel, equipment, environment, management, and each factor contains the
corresponding index. Besides, according to Coal Mine Safety Regulations issued by the
State Administration of Work Safety, the early warning indicators were established, as
listed in Table 1.
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Table 1. Safety warning index of coal mining face.

First Class Index The Index The Second Level Index

Human factor (U1)

1 Ratio of safety management personnel (U11)
2 Ratio of safety supervision personnel (U12)
3 Ratio of technical personnel (U13)
4 Education degree of worker culture in coal mining area (U14)
5 The average working age of coal mining workers (U15)
6 Monthly safety training (U16)

Equipment factors (U2)

7 Mechanization level of coal mining (U21)
8 The completion rate of supporting equipment (U22)
9 Circular completion rate (U23)

10 Completion rate of dust prevention equipment (U24)
11 Completion rate of firefighting equipment (U25)
12 The completion rate of drainage equipment (U26)
13 Completion rate of electromechanical equipment (U27)
14 Completion rate of transportation equipment (U28)
15 Degree of automation of safety monitoring equipment (U29)

Environmental factors (U3)

16 Prevention and control of coal dust (U31)
17 Prevention and management of roof panel (U32)
18 Prevention and management of gas (U33)
19 Fire prevention and management (U34)
20 Flood prevention and management (U35)

Management factors (U4)

21 Proportion of security funds (U41)
22 Improve the implementation of safety management system (U42)
23 Improvement of emergency response mechanism (U43)
24 Degree of safety inspection implementation (U44)
25 Hidden trouble investigation and rectification pass rate (U45)

2.2. FCM Clustering Algorithm

FCM (Fuzzy c-means) algorithm (Algorithm 1) is a multivariate technology, which
adopts a fuzzy mathematical method to classify objective things according to certain
similarity between objective things and build fuzzy similarity relations [42–44].

Set X = {x1, x2, . . . , xn} as a sample of N observation in Rn, and Rn is n-dimensional
Euclidean space. If i is any integer, 1 ≤ i ≤ n, supposed sample Xi = {xi1, xi2, . . . , xiq},
Xi∈Rn, xij is the j-th feature of Xi.

Fuzzy clustering of data set X is to divide X into c homogeneous categories, and make
Uk (k = 1, 2, . . . , c) be the fuzzy set to represent each category. The FCM algorithms can be
expressed by Equation (1).

Uc =

{
Uc×n ∈ Gcn

∣∣µij ∈ [0, 1];
c

∑
i=1

µij = 1; 0 ≤
n

∑
j=1

µij ≤ n;
c

∑
i=1

n

∑
j=1

µij = n

}
(1)

In Equation (1), Gc×n is a real c× n matrix, and µij is the membership degree of sample
Xi to fuzzy set Ui.

The value function (or objective function) of FCM is the generalized least-squared
errors functional

J(U, c1, . . . , cc) =
c

∑
i=1

Ji =
c

∑
i=1

n

∑
j

um
ij d2

ij (2)

In Equation (2), ci is the clustering center of fuzzy group I, uij is the degree of mem-
bership of xi in the cluster j, dij represents the Euclidean distance between the i-th cluster
center and the j-th data point of the sample, and

di j = ‖ci − xi j‖ (3)
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µij = (
c

∑
k=1

(
dij

dkj

) 2
m−1

)

−1

(4)

Here, c is the cluster number given by FCM algorithm. m is a weight exponent,
indicating the degree of fuzziness of clustering results, 1 ≤ m ≤ ∞, which is a flexible
parameter of a control algorithm. If m is too large or too small, the fuzzy clustering effect is
poor [44]. It has been proved that when m is between 1.5 and 2.5, the algorithm works best,
usually m = 2 [45].

The criterion of clustering algorithm is to make the objective function J (U, c1, . . . , cc)
reached the minimum value [31]. Lagrange multiplier method is applied to construct a
new objective function, to make J (U, c1, . . . , cc) to obtain a minimum.

The key to the fuzzy clustering algorithm lies in the given initial cluster category
number c. After initializing the membership matrix U, the clustering center vector and
membership matrix are updated repeatedly through Equations (1) and (2) to obtain J (U, c1,
. . . , cc) minimum conditions.

Algorithm 1 FCM Algorithm

Initialization: given c, n, m; sets the iteration threshold for the cycle conditions, expressed in ε.
Step 1: computer clustering centers ci, i = 1, . . . , c;
Step 2: computer the new membership matrix U;
Step 3: computer the value function J(U, c1, . . . , cc). If J(U, c1, . . . , cc) < ε, or the change in the value
of the twice applied value function is smaller than the change in the conditions ε, then stop, and
output membership matrix U and clustering center c; otherwise return to perform the first step.

2.3. BP Neural Network Model

BP neural network has strong self-organization, self-learning ability and strong fault
tolerance, so it is applicable to solve the safety warning problem of coal mining face, which is
affected by bad environment and has non-linear, uncertain and dynamic safety hidden danger.

2.3.1. Principle of BP Neural Network

The basic structure of BP neural network includes input layer, hidden layer and output
layer, as shown in Figure 1.
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The BP algorithm is guided by teachers and based on a gradient descent method,
which is suitable for a kind of learning of multi-layer neural network, and the learning
process is divided into two stages [31]. In the forward propagation, the signal is input
from the input layer, processed layer by layer through the hidden layer, then transmitted
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to the output layer. If the output value is the same as the expected value, the training is
completed [46]. Otherwise, it turns to the error back-propagation stage. In this process,
the error signal between the actual output and the expected output is calculated in reverse
according to the original connection path. By modifying the weights of neurons in each
layer, the error signal is transmitted to the input layer successively for calculation, and then
goes through the forward propagation process again. After repeated application of these
two processes, the learning process is end when the final output of the modified network is
close to the expected value [47–50].

Set the network input layer as X = {x1, x2, . . . xj, . . . xn}, the hidden layer contains q
neurons, and the output of the hidden layer is B = {b1, b2, . . . bj, . . . bq}, the output layer
is Y = {y1, y2, . . . yk, . . . ym}; f 1 is the hidden layer transfer function, f 2 is the output layer
transfer function; the hidden layer threshold is αj, the threshold of the output layer is βk;
the weight from the input layer to the hidden layer is wij (1 ≤ i ≤ n, 1 ≤ j ≤ q), and the
weight from the hidden layer to the output layer is wjk (1 ≤ j ≤ q, 1 ≤ k ≤ m).

When the signal is in the forward propagation, the output yk can be obtained, bj is the
j-th neuron in the hidden layer, expressed as:

bj = f1

(
n

∑
i=1

wijxi − αj

)
(i = 1, 2, . . . , n; j = 1, 2, . . . , q) (5)

yk = f2

(
n

∑
i=1

wjk f1(
n

∑
i=1

wij − αi)− βk

)
(6)

In the stage of error back-propagation, the total sample error is calculated first, and
the weight and threshold of the output layer are subsequently adjusted to reduce the total
sample error.

Assuming that there are p sample inputs, the actual output of each sample is yk, and
the expected output is tk, the output error in the k-th input mode is expressed as:

Ek =
1
2

q

∑
j=1

(yk − tk)
2 (7)

The total error of the p training samples is expressed as:

E =
1
2

p

∑
k=1

Ek =
1
2

p

∑
k=1

q

∑
j=1

(yk − tk)
2 (8)

Following the above derivation process, the equivalent error is generated by backward
propagation from the output layer to the input layer, and the network is repeatedly adjusted
to converge to the target.

It is well known that each hidden neuron in the feed forward ANN draws a simple
hypersurface in the input space. Each output neuron then combines them to distinguish
regions, constructing a final region corresponding to the class. Therefore, the hiding layer
provides global separation of the input space, which can be performed in a variety of ways
due to fuzzy boundaries between related classes, hidden neuronal symmetry, etc.

2.3.2. Safety Warning BP Neural Network Model

The input layer nodes are directly connected with the input vector, and the input
number equals to the index number of the early-warning index system of coal mining, i.e.,
the number of neurons in the first layer is the number of characteristic parameters, so there
exist a total of 25 input nodes.

The output of the output layer is the safe state of the coal mining face. According to
the general classification principle of coal mine, the safety state is divided into five levels



Symmetry 2021, 13, 1082 8 of 23

of danger, relatively dangerous, general safety, relatively safe and safe. Accordingly, the
output layer is a node, which is the safety state.

The number of neurons in the hidden layer significantly affects the convergence speed
and prediction accuracy of the network. The number of cells in the hidden layer of the
network can be calcualted by empirical formula, which is expressed as n1 = n+m

2 + a,
where n and m denote the input and output the number of neurons, respectively, and a
is an integer between the interval [1,10]. Thus, the number of hidden layer nodes in the
network is calculated as 14. The hidden layer node function selects Sigmoid function, and
the initial weight takes random value of interval (−1, 1).

The neural network architecture is illustrated in Figure 2.
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2.4. Genetic Algorithm Model
2.4.1. Genetic Algorithm

A genetic algorithm (GA) refers to an adaptive global optimization probability search
algorithm that simulates the genetic and evolutionary processes of organisms in the nat-
ural environment [51]. Genetic algorithm includes five core elements, namely parameter
coding, initial population setting, fitness function design, genetic manipulation and control
parameter setting. The genetic operation includes selection operation, crossover operation
and mutation operation. According to certain rules by parameter coding, the parameters
of optimization problem are transferred to chromosome genes. The initial test group is the
initial group data that represents the initial search point, which should have a certain scale
and randomness. Fitness is calculated according to the value of chromosome gene, while
the probability of chromosome crossing is determined by the value of fitness. If the proba-
bility of chromosome crossing is large, the genetic opportunity is large. After chromosome
crossing, the mutation is performed, and the mutation operation changes the genetic value
of an individual or some genetic values according to a certain small probability to avoid
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premature convergence of the algorithm. The population after mutation is the offspring,
which, as the parent generation of the next generation, performs the same operation, and
thus circulates until the optimal solution [52]. The individual with the highest fitness in the
population is the optimal solution of the parameters to be optimized.

2.4.2. GA-BP Neural Network Model Design

The initial weight and threshold of BP neural network are optimized by genetic
algorithm [53,54]. Here’s the approach: First, the global search performance of genetic
algorithm is used to find the region where the optimal solution to the problem lies, and
the initial weight and threshold of the neural network are optimized. Second, the optimal
initial weight in the global scope is given to BP neural network. Third, by taking advantage
of the strong local search ability of BP neural network, the initial weight of neural network
is further optimized to find the optimal solution [55,56]. The main process includes to
determine the connection structure of BP neural network, the weight and threshold of BP
neural network, and to predict BP neural network [57–60].

The length of chromosome encoding of GA is determined by the number of parameters
required by BP neural network. The error feedback value obtained from BP neural network
training was used as the fitness value of the population individuals for optimization,
and the corresponding connection and threshold values in the optimal individual values
obtained by genetic algorithm were assigned to the corresponding neurons to achieve the
actual neural network prediction [61].

In the genetic algorithm, the first is to solve the problem of the variable appropriate
combination and coding. Its encoding can be in binary or decimal form. For multivariable
problems, we usually arrange the variables in a certain way to form a multivariable coding
string [49]. Symmetric coding theory will be used to improve the performance of genetic
algorithm to solve such problems, improve the quality of solutions and solving speed.

As is known to all, prematurity often appears in the practical application of genetic
algorithms, which limits the search performance of genetic algorithms. To overcome this
problem, the performance of the genetic algorithm can be improved by improving the
genetic algorithm operator or introducing special individuals. For example, the symmetric
harmonic genetic algorithm is adopted, which selectively puts symmetrical harmonic
individuals according to the change of each adaptive value in the genetic process, so as to
maintain the diversity of the population.

The main operating steps are as follows:
(1) Population initialization
First, the number of layers of the network and the number of nodes in the input,

output and hidden layers are determined. Each individual is a binary string composed of
input layer and hidden layer connection weight, hidden layer and output layer connection
weight, hidden layer threshold and output layer weight. Binary encoding is used for each
weight and threshold, and the encoding of ownership value and threshold is connected as
an individual encoding.

If the number of input nodes is n, the number of output nodes is m, and the number
of hidden layer nodes is q, the chromosome length is expressed as:

l = (n + 1)× q + (q + 1)×m (9)

By substituting n = 25, q = 14, and m = 1 into Equation (9), l = 379 is obtained,
where n × q = 350 are the weights between the input neuron and the hidden layer neuron,
m × q = 14 are the weights between the hidden layer neuron and the output layer neuron,
the threshold of hidden layer neurons is 14, and the threshold of output neurons is 1.

(2) Fitness function
The performance index of BP network takes the sum of squares of errors as the output

of the target function, the smaller the sum of squares of errors, the better it will be. However,
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in the genetic algorithm, the larger the fitness value, the better it will be. Thus, the reciprocal
of the objective function is taken as the fitness function, which is expressed as:

F =
1
E

(10)

E is shown in Equation (8).
(3) Genetic operations
The selection operator selects individuals according to the fitness of the population.

Individuals with high fitness are more likely to be selected and those with low fitness
are more likely to be eliminated. After the selection of individuals in the probability of
crossover operations, the generation of new sub-individuals into the population; Then the
mutation operation is performed to generate new offspring populations [62,63].

The selection operator adopts the proportional selection method, and the probability of
each individual being selected is proportional to its fitness value. The individual selection
probability can be obtained from the following formula.

pk =
Fk

n
∑

k=1
Fk

(11)

where Fk denotes the fitness of the k-th individual, and Fk =
1

Ek
; Ek is expressed in Equation (7).

Set the probability pc crossover operation on the selected individuals Xt
A and Xt

B, then
the new individuals Xt+1

A and Xt+1
B generated after crossover operation.

The new individuals are inserted into the population and the evaluation function of
the new individuals is calculated.

(1) Cycle operation process (2) and (3) until the error is reached, or the requirements
of evolutionary algebra are met. Subsequently, the connection weight and threshold of BP
neural network optimized by genetic algorithm are yielded.

(2) Taking the obtained initial value as the initial weight, BP neural network is applied
to train the network. If the network output reaches the maximum number of training or
meets the error requirements, the optimal solution is output, and the operation is completed.
Otherwise, genetic manipulation will continue.

3. Application Cases

The coal mining face of a mine in China’s Shandong province was taken as a practical
case study, the working face is briefly introduced as follows:

The working face was arranged along the 3-coal floor with a minable area of 35,224.05 m2,
the coal strata were generally monoclinal structures inclined in the Northeast direction. The
average fault drop is 0.5 m, and the working face was arranged along the bottom, and the
fault would affect the mining of the working face. The sandstone aquifer of the coal roof is
a direct water-filled aquifer, composed of siltstone, medium and coarse sandstone, and its
water content is uneven and poor. The gas content and emission amount are very small, and
the carbon dioxide emission amount is 2.20 m3/t/coal dust explosion index is 37.45%, which
is explosive. The working face is located between the goaf area and the unexploited area. The
upper roof is prone to collapse after upper stratification mining. Within 100 m above the coal
seam, there is no hard-rock layer with a thickness of more than 10 m.

3.1. Data Preparation and Preprocessing

The sample data were selected from the monthly safety assessment report of the coal
mining face of the mine, and 46 groups of data were collected in March, June, September,
and December each year from 2007 to 2017 and from March and June 2018 (as shown in
Table 2).
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Table 2. Sample data.

The Sample
Number

The Sample
Time U11 U12 U13 U14 U15 U16 U21 U22 U23 U24 U25 U26 U27

1 2007/3 0.671 0.811 0.839 6.990 7.736 0.727 0.746 0.885 0.858 0.840 0.904 0.839 0.876
2 2007/6 0.685 0.810 0.856 7.130 7.891 0.742 0.761 0.903 0.875 0.857 0.922 0.856 0.894
3 2007/9 0.700 0.846 0.875 7.291 8.069 0.758 0.778 0.924 0.894 0.876 0.943 0.875 0.914
4 2007/12 0.651 0.787 0.814 6.781 7.504 0.705 0.723 0.859 0.832 0.815 0.877 0.814 0.850
5 2008/3 0.638 0.797 0.797 6.644 7.352 0.886 0.709 0.842 0.815 0.798 0.859 0.797 0.833
6 2008/6 0.735 0.888 0.919 7.656 8.472 0.796 0.817 0.970 0.939 0.920 0.990 0.919 0.960
7 2008/9 0.853 0.941 0.974 8.881 9.828 0.924 0.947 0.979 0.995 0.975 0.861 0.974 0.950
8 2008/12 0.736 0.889 0.919 7.662 8.480 0.797 0.817 0.971 0.940 0.920 0.991 0.919 0.960
9 2009/3 0.743 0.898 0.929 7.739 8.564 0.805 0.825 0.980 0.949 0.930 0.969 0.929 0.970

10 2009/6 0.787 0.951 0.984 8.199 9.073 0.853 0.875 1.000 0.949 0.985 0.961 0.892 0.932
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45 2018/3 0.920 1.000 0.950 8.500 11.900 1.000 0.950 0.995 0.992 0.975 0.990 0.990 0.987
46 2018/6 0.950 0.980 0.950 8.200 12.200 1.000 0.960 0.996 0.991 0.980 0.996 0.990 0.990

The Sample
Number

The Sample
Time U28 U29 U31 U32 U33 U34 U35 U41 U42 U43 U44 U45

1 2007/3 0.895 0.746 0.559 0.652 0.885 0.839 0.671 0.606 0.699 0.839 0.895 0.839
2 2007/6 0.913 0.761 0.570 0.665 0.903 0.856 0.685 0.618 0.713 0.856 0.913 0.856
3 2007/9 0.933 0.778 0.583 0.681 0.924 0.875 0.700 0.632 0.729 0.875 0.933 0.875
4 2007/12 0.868 0.723 0.542 0.633 0.859 0.814 0.651 0.588 0.678 0.814 0.868 0.814
5 2008/3 0.850 0.709 0.532 0.620 0.842 0.797 0.638 0.576 0.664 0.797 0.850 0.797
6 2008/6 0.980 0.817 0.612 0.715 0.970 0.919 0.735 0.663 0.766 0.919 0.980 0.919
7 2008/9 0.970 0.947 0.710 0.757 0.941 0.891 0.713 0.644 0.743 0.891 0.951 0.891
8 2008/12 0.981 0.817 0.613 0.715 0.971 0.919 0.736 0.664 0.766 0.919 0.981 0.919
9 2009/3 0.991 0.825 0.619 0.722 0.980 0.929 0.743 0.671 0.774 0.929 0.991 0.929

10 2009/6 0.951 0.875 0.656 0.765 0.915 0.984 0.787 0.711 0.820 0.984 0.950 0.984
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45 2018/3 0.990 0.950 0.910 0.930 0.990 0.990 0.975 0.900 0.950 0.950 1.000 1.000
46 2018/6 0.991 0.960 0.910 0.950 0.990 0.990 0.970 0.900 0.950 0.950 1.000 1.000
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Taking characteristic data as input, FCM was used to preprocess the measured charac-
teristic data to form new sample data. Subsequently, to compare the operation results of
the two algorithms, BP neural network and GA-BP neural network were used for training
and test operation, respectively.

MATLAB 7.0 software was used to implement the fuzzy neural network algorithm
based on FCM.

3.2. FCM Clustering
3.2.1. Fuzzy Clustering Preprocessing of Characteristic Data

Deviation standardized characteristic data were used to eliminate the dimensional effect
and the effect of the variable’s own variation size and numerical size, as shown below.

x′k =
xk −min(xk)

max(xk)−min(xk)
(12)

Here, xk is the raw data, x’k processed data, min(xk) is the minimum value of the
vector, and max(xk) is the maximum value of the vector.

After deviation standardization, the observed values of various variables will be in
the range of 0~1, and the standardized data are pure quantities without units.

3.2.2. FCM Classification

Set the fuzzy degree parameter m = 2, the maximum number of clustering cmax = 3,
and the maximum number of iterations tmax = 100. According to the above FCM operation
steps, the optimal class vector is obtained as listed in Table 3. Table 4 shows the FCM
classification results, and Figure 3 shows the scatter distribution of data in the eigenvalues
U11 (x-axis) and U12 (y-axis) after FCM clustering.

Table 3. Optimal class center vector.

Characteristic Value
Clustering Center

v1 v2 v3

U11 0.4337 0.6138 0.1246
U12 0.7590 0.8788 0.1614
U13 0.8181 0.6715 0.2362
U14 0.4586 0.5674 0.1256
U15 0.3269 0.6316 0.0945
U16 0.2398 0.8757 0.2398
U21 0.5519 0.5519 0.7019
U22 0.7786 0.8786 0.3025
U23 0.6946 0.8598 0.2541
U24 0.8161 0.7899 0.2357
U25 0.7338 0.8682 0.3403
U26 0.5206 0.8320 0.2333
U27 0.6352 0.8317 0.2905
U28 0.7213 0.8873 0.3342
U29 0.5886 0.7759 0.1683
U31 0.3348 0.7712 0.0881
U32 0.4163 0.7704 0.1153
U33 0.5549 0.8868 0.3054
U34 0.8248 0.8108 0.2340
U35 0.4403 0.8333 0.1170
U41 0.3934 0.5532 0.1072
U42 0.4853 0.7656 0.1387
U43 0.1387 0.6040 0.2327
U44 0.7053 0.5439 0.3602
U45 0.8268 0.8273 0.2353
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Table 4. FCM clustering results.

Sample Clustering Results

1, 2, 3, 4, 5, 6, 8, 9, 25, 26, 27 I
38, 39, 40, 41, 42, 43, 44, 45, 46 II

7, 10, 11, 12, 13, 15, 16, 18, 19, 21, 22, 25, 26, 29, 30, 32, 33, 35, 36, 37 III
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3.3. Model Validation
3.3.1. Training Sample Data, Test Samples and Network Output

Before neural network training, input samples and ideal output training samples were
determined. According to the FCM classification results, 10 groups of data in September
2008, June 2009, September and December 2009, March 2010, June 2010, September and
December 2011, March 2011 and June 2011 were selected as samples. The input and output
data of training samples are listed in Table 5. December 2014, March 2015 and June 2015
were selected as the input and output data of the test sample, as listed in Table 6.

Table 5. Training sample data.

The Input Sample Data

The Sample
Number

The Sample
Time U11 U12 U13 U14 U15 U16 U21 U22 U23 U24

1 2008/9 0.0228 0.0323 0.0359 0.8969 0.6300 0.0305 0.0330 0.0365 0.0382 0.0360
2 2009/6 0.0156 0.0350 0.0390 0.8962 0.7710 0.0214 0.0260 0.0341 0.0348 0.0391
3 2009/9 0.0155 0.0351 0.0389 0.8961 0.8320 0.0267 0.0259 0.0408 0.0348 0.0390
4 2009/12 0.0156 0.0351 0.0391 0.8961 0.7020 0.0272 0.0260 0.0409 0.0349 0.0392
5 2010/3 0.0157 0.0352 0.0390 0.8961 0.9130 0.0237 0.0261 0.0409 0.0349 0.0391
6 2010/6 0.0156 0.0351 0.0390 0.8960 1.0000 0.0233 0.0259 0.0364 0.0348 0.0391
7 2010/9 0.0157 0.0351 0.0390 0.8961 0.9740 0.0431 0.0260 0.0364 0.0350 0.0391
8 2010/12 0.0156 0.0351 0.0389 0.8961 0.9600 0.0533 0.0259 0.0363 0.0348 0.0390
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Table 5. Cont.

The Input Sample Data

The Sample
Number

The Sample
Time U11 U12 U13 U14 U15 U16 U21 U22 U23 U24

9 2011/3 0.0156 0.0351 0.0390 0.8961 1.0000 0.0334 0.0260 0.0363 0.0349 0.0391
10 2011/6 0.0157 0.0351 0.0389 0.8961 1.0000 0.0000 0.0260 0.0363 0.0349 0.0391

The Sample
Number

The Sample
Time U25 U26 U27 U28 U29 U31 U32 U33 U34 U35

1 2008/9 0.0236 0.0359 0.0333 0.0355 0.0330 0.0072 0.0123 0.0323 0.0269 0.0075
2 2009/6 0.0362 0.0280 0.0328 0.0350 0.0260 0.1715 0.0129 0.0308 0.0390 0.0156
3 2009/9 0.0363 0.0280 0.0327 0.0351 0.0259 0.1691 0.0129 0.0307 0.0389 0.0155
4 2009/12 0.0363 0.0281 0.0328 0.0351 0.0260 0.3520 0.0131 0.0309 0.0391 0.0156
5 2010/3 0.0364 0.0281 0.0328 0.0352 0.0261 0.3713 0.0130 0.0309 0.0390 0.0157
6 2010/6 0.0363 0.0280 0.0327 0.0351 0.0259 0.3230 0.0130 0.0309 0.0390 0.0156
7 2010/9 0.0364 0.0281 0.0328 0.0352 0.0260 0.1357 0.0131 0.0309 0.0390 0.0157
8 2010/12 0.0362 0.0279 0.0327 0.0351 0.0259 0.3571 0.0130 0.0308 0.0389 0.0156
9 2011/3 0.0363 0.0281 0.0328 0.0351 0.0260 0.3211 0.0131 0.0309 0.0390 0.0156

10 2011/6 0.0363 0.0280 0.0328 0.0351 0.0260 0.0000 0.0131 0.0309 0.0389 0.0157
The Sample

Number
The Sample

Time U41 U42 U43 U44 U45

1 2008/9 0.0000 0.0108 0.0269 0.0334 0.0269
2 2009/6 0.0065 0.0195 0.0390 0.0349 0.0390
3 2009/9 0.0065 0.0194 0.0389 0.0349 0.0389
4 2009/12 0.0065 0.0196 0.0391 0.0350 0.0391
5 2010/3 0.0066 0.0195 0.0390 0.0350 0.0390
6 2010/6 0.0065 0.0195 0.0390 0.0350 0.0390
7 2010/9 0.0065 0.0195 0.0390 0.0350 0.0390
8 2010/12 0.0065 0.0195 0.0389 0.0349 0.0389
9 2011/3 0.0065 0.0195 0.0390 0.0350 0.0390

10 2011/6 0.0065 0.0195 0.0389 0.0350 0.0389

Expected outputs

2008/9 2009/6 2009/9 2009/12 2010/3 2010/6 2010/9 2010/12 2011/3 2011/6

00010 00100 00100 00100 01000 01000 10000 10000 10000 10000

Table 6. Test sample data.

The Input Sample Data

The Sample
Number

The Sample
Time U11 U12 U13 U14 U15 U16 U21 U22 U23 U24

1 2014/12 0.0000 0.0226 0.0252 0.9497 0.9750 0.0247 0.0189 0.0302 0.0252 0.0233
2 2015/3 0.0105 0.0301 0.0301 1.0000 0.9768 0.0360 0.0301 0.0325 0.0301 0.0279
3 2016/6 0.0105 0.0302 0.0302 1.0000 0.9712 0.0257 0.0302 0.0325 0.0302 0.0279

The Sample
Number

The Sample
Time U25 U26 U27 U28 U29 U31 U32 U33 U34 U35

1 2014/12 0.0291 0.0252 0.0259 0.0264 0.0126 0.0000 0.0063 0.0264 0.0264 0.0138
2 2015/3 0.0342 0.0309 0.0313 0.0325 0.0198 0.0105 0.0198 0.0313 0.0301 0.0244
3 2016/6 0.0343 0.0309 0.0314 0.0325 0.0197 0.0105 0.0197 0.0314 0.0302 0.0244

The sample
number

The Sample
time U41 U42 U43 U44 U45

1 2014/12 0.0013 0.0063 0.0226 0.0239 0.0226
2 2015/3 0.0000 0.0127 0.0255 0.0301 0.0313
3 2016/6 0.014

Expected outputs

2014/12 2015/3 2016/6

00010 01000 01000
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Training samples and test sample data have been normalized, and the normalized
values are all in the interval [0,1]. Map minmax function in MATLAB function library is
used for normalization.

Set the output warning level. The five warning levels of danger, relatively dangerous,
general safety, relatively safe and safe represent codes 00001, 00010, 00100, 01000 and 10000,
respectively. The expected output is given according to the historical safety risk assessment
report of the mine.

3.3.2. Application of BP Neural Network Early Warning Model

As mentioned above, the BP neural network model has a structure of 25-14-1, and its
setting parameters are listed in Table 7.

Table 7. BP neural network operation basic parameters table.

Parameter Value

Input layer node number 25
The node of hidden layer number 14

Learning rate 0.001
Training function trainlm

The performance target value 0.00001
The output layer node 1

Maximum number of training steps 2000
Hidden layer 1

After training, testing and simulation of BP neural network, the performance curve of
simulation and prediction data error is shown in Figure 4, and the simulation results of BP
neural network prediction data are shown in Figure 5.
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3.3.3. Application of GA-BP Neural Network Early Warning Model

Following the above steps, GA-BP neural network was developed. The number of
neurons in the input layer was the number of safety management indicators. Here, the
input layer was 25 neurons, the hidden danger layer was 14 neurons, the excitation function
was Sigmoid type, the training function was TRAINLM, the learning rate was 0.3, and the
momentum factor was 0.9.

The parameter settings of the genetic algorithm are listed in Table 8.

Table 8. Table of basic parameters and operation mode of genetic algorithm.

Parameter Value

Initial population number 50
Genetic algebra 100

Crossover probability 0.3
Mutation probability trainlm

Encoding Real coding
Selection Operation Fitness scaling
Crossover operation Arithmetic intersection
Mutation operation Uniform variation

The error performance curve obtained through training is shown in Figure 6. The
simulation results of GA-BP neural network prediction data are shown in Figure 7.
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The early warning index data of coal mining face in March 2007 were input into the
early warning model, and the early warning results were output as listed in Table 9.

Table 9. Early warning result output table.

Early Warning Result

0.3236 0.4020 0.2131 0.2047 0.8593

In accordance with the principle of maximum membership, the corresponding safety level
is 00001, and the production safety level of this mine was at a lower level in March 2012.
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4. Result Discussion

The practical application results of a fully mechanized mining face in Shandong,
China, show the feasibility of the early warning model. Combined with the output data
and charts, the feasibility of artificial neural network early warning model, the effectiveness
of BP neural network optimized by genetic algorithm, and the rationality of FCM clustering
algorithm are further discussed.

4.1. Feasibility of the Warning Model

Figure 4 is analyzed to illustrate the prediction feasibility of the BP neural network
early warning model.

In the full-index early warning model of the mine, the input layer of the neural
network contains 25 neurons, the output layer contains one neuron, and the neurons of
the hidden layer are finally confirmed to be 14. The function of the hidden layer and
the incentive function of the output layer are S-shaped functions, the training function is
trainlm, and the learning rate is 0.001.

The sample input network is repeatedly trained until the error is less than 0.00001.
Figure 4 is the output error performance curve, which shows that the training times

of BP neural network reaching the error limit are 639, and the root mean square error is
5.7356 × 10−20. Figure 5 is the curve of the simulation results of the predicted data, which
shows that the actual data curve is significantly different from the predicted curve, but the
variation trend of the curve is basically the same.

The result analysis in Figures 4 and 5 shows that the BP neural network model can
achieve the expected error performance index and predict the index value, but the relative
error is relatively large.

Figures 6 and 7 are analyzed to illustrate the feasibility of GA-BP neural network early
warning model prediction.

The population size was set as 50, the genetic algebra was set as 100, the mutation
probability was set as 0.3, the same BP neural network model was adopted, and the same
training samples were used.

Figure 6 is the output error performance curve of GA-BP neural network, showing that
the error limit is reached after 452 times of training. Figure 7 is the curve of the simulation
results of the predicted data. Similarly, the actual data curve is significantly different from
the predicted curve, and the variation trend of the curve is roughly the same.

The result analysis in Figures 6 and 7 shows that the GA-BP neural network model
can achieve the expected error performance index, and can predict the index value, but the
relative error is relatively large.

Within the relative error range of ±6%, the prediction hit rates of the two models
shown in Figures 4 and 5 are all below 50%. The fitting degree between the prediction
curves of the two models and the real curves also shows that the prediction errors of the
two models are relatively large, and the output results are not very ideal.

(1) The sample selected is not large enough.
Although the samples from 2007 to 2017 were selected, only 46 sets of data were

collected in the third month of each quarter, so the sample size was too small.
(2) Quality of selected sample data.
The sample data is collected by questionnaire, which is sent to the personnel respon-

sible for mining safety, mechanical and electrical, production, transportation, one and
three prevention, and finally collected and sorted by the deputy general manager of mine
mechanical and electrical.

Survey to the mine safety record in some data or missing, missing some data in the
survey, the hard to avoid appear strong subjectivity, optional the gender is big, and the
early stage of the quantitative and qualitative index of the existence very big subjectivity,
some data can’t reflect objective safety state, and the sample data from the correlation
between strong, also affect the quality of the output.
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In order to overcome these defects in future research and application, the sample size
should be large enough, the weight of each index should be calculated, and the unqualified
indexes should be eliminated to ensure the quality of application effect.

4.2. Validity of Optimizing BP Neural Network Performance with Genetic Algorithm

Figures 4–7 were compared to verify the effectiveness of genetic algorithm in optimiz-
ing BP neural network performance.

In the same performance goals, and the same training samples, Figure 4 reflects the
traditional BP neural network training mature iteration number is 639, Figure 6 reflects the
genetic algorithm to optimize the BP neural network training after mature iteration number
is 452, a 1.4 -fold increased convergence speed, shows that GA-BP faster convergence than
BP neural network to the requirements of accuracy,

It shows that genetic algorithm can improve the performance index of BP neural network.
In terms of output error performance index, the total output error of GA-BP training

samples is 5.85 × 10−6 and the average output error is 2.81 × 10−10, while the total output
error of BP neural network training samples is 8.18 × 10−6 and the average output error is
3.92 × 10−10, and the average output error of the latter is 1.39 times of the former.

The curve of simulation results of prediction data shows that the errors shown in
Figures 5 and 7 are relatively large, but the overall fluctuation of GA-BP algorithm error
represented in Figure 7 is smaller than that of BP algorithm, and the overall prediction
effect of GA-BP algorithm is more ideal.

Through comparative analysis, it is shown that the introduction of genetic algorithm
to optimize the initial connection weights and thresholds of the neural network makes the
BP neural network converge faster, reach the mature state and enter the prediction stage
faster, which indicates the feasibility and effectiveness of the optimization of the BP neural
network by genetic algorithm.

Table 9 is analyzed to illustrate the effectiveness of GA-BP neural network in predicting
and warning the safety conditions of coal face.

The operation results of the forecast data in March 2007 in the warning model show that
the safety condition of the coal face in that month is not good, and the safety level is low.

After consulting the actual safety records of the mine in March 2007, it is found that
the safety personnel allocation rate, coal dust control, roof control and flood control safety
evaluation are all below 0.7, and the safety input ratio is below 0.7.

According to the geological data of the coal working face of the mine, “explosion
index is 37.45%, which is explosive”, and the integrity rate of coal dust prevention and
control in that month is 0.559. According to the Coal Mine Safety Regulations, the coal dust
concentration of the coal working face shall not be higher than 10 mg/m3, and the dust
removal rate of the dust prevention effect shall not be less than 90%, that is, the integrity
rate reaches more than 0.9.

In March 2007, the coal dust concentration in this mine was seriously out of standard,
and there was a risk of coal dust explosion. The prediction results of the early warning
model were consistent with the actual safety conditions of coal mining face, which indicated
the effectiveness of the prediction and early warning of GA-BP neural network.

4.3. Rationality of Application of FCM Clustering Algorithm

The results of Tables 3 and 4 and Figure 3 were analyzed to illustrate the rationality of
FCM clustering algorithm.

The FCM clustering algorithm discretized the original sample data in order to optimize
the sample space and improve the operation efficiency of the neural network.

Table 3 is the optimal central vector of FCM clustering operation for sample data.
Table 4 is the result of FCM clustering, which shows that the sample data is divided into
three sets after clustering. Figure 4 shows the fuzzy set of samples after clustering more
intuitively.
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The FCM clustering samples were used for neural network training and testing with
MATLAB. Due to the elimination of some interference samples, the efficiency of selecting
training samples and testing samples in the neural network system was improved, thus
effectively reducing the training time of BP neural network.

4.4. The Possibility of Application in Intelligent Coal Mine

At present, intelligent mining has become the focus of construction in China. The
classification and grading evaluation index system and evaluation method of intelligent
coal mines can evaluate the type of mine intelligent construction conditions and the level of
mine intelligent construction. The evaluation results also reflect the shortcomings of mine
intelligent construction and provide guidance for the subsequent intelligent upgrading
and transformation of coal mines [64]. The safety early warning model constructed above
can evaluate the safety condition of the coal working face by classifying the hidden danger
index of the coal working face and by using the fuzzy clustering algorithm and GA-BP
neural network operation. Therefore, the model can provide help for the intelligent mining
of coal mine.

5. Conclusions

The quality of the early warning indicators is the key to the operation effect of the
early warning model. “The early warning elements should include all the dangerous
states that may lead to accidents. In order to achieve no omission and alarm leakage,
it is necessary to carry out repeated investigation of dangerous elements for six major
specialties (coal mining, excavation, transportation, ventilation, electromechanical, water
prevention and control) and three analysis objects (personnel, process and device) in coal
mine” [65]. Compared with previous researches on safety warning indicators and warning
models of coal mining face.

The whole warning index system of “human, machine, environment and pipe” and
other dangerous elements established in this paper makes the analysis and evaluation of
the safety state of coal face more comprehensive and systematic.

On the basis of the security warning index, a security warning model combining
the advantages of genetic algorithm and BP neural network was established, and FCM
clustering algorithm was used to optimize the network sample space, thus improving the
network learning speed.

Taking a fully mechanized mining face in a mine as an example, the results of the early
warning are verified to be consistent with the reality, which indicates that the effectiveness
of improving the weight and threshold of BP neural network system by genetic algorithm
can make up for the deficiency of BP neural network falling into local optimum, improve the
intelligent search ability of the network, and improve the accuracy of the prediction results.

The BP neural network optimized by genetic algorithm has the advantages of the two,
improves the stability of the model, and provides a method for the system with uncertainty,
fuzziness and complexity, which is suitable for the safety early warning system of coal face.

Due to “coal mine safety production relative risk exists obvious spatial distribution and
the provinces there is a big difference interval,” [66] the coal mining face in different areas
of the early warning index of different kinds of each index is different on the contribution
rate of safety early warning effect, this article does not consider the weight of each index,
and it is also a need to further research content. The application of this model in large
industrial environment will be the focus of future research.
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