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Abstract: In recent years, Android malware has continued to evolve against detection technologies,
becoming more concealed and harmful, making it difficult for existing models to resist adversarial
sample attacks. At the current stage, the detection result is no longer the only criterion for evaluating
the pros and cons of the model with its algorithms, it is also vital to take the model’s defensive
ability against adversarial samples into consideration. In this study, we propose a general framework
named AdvAndMal, which consists of a two-layer network for adversarial training to generate
adversarial samples and improve the effectiveness of the classifiers in Android malware detection
and family classification. The adversarial sample generation layer is composed of a conditional
generative adversarial network called pix2pix, which can generate malware variants to extend the
classifiers’ training set, and the malware classification layer is trained by RGB image visualized from
the sequence of system calls. To evaluate the adversarial training effect of the framework, we propose
the robustness coefficient, a symmetric interval i = [−1, 1], and conduct controlled experiments on the
dataset to measure the robustness of the overall framework for the adversarial training. Experimental
results on 12 families with the largest number of samples in the Drebin dataset show that the accuracy
of the overall framework is increased from 0.976 to 0.989, and its robustness coefficient is increased
from 0.857 to 0.917, which proves the effectiveness of the adversarial training method.

Keywords: Android malware; detection and classification; adversarial training; system call sequence;
visualization; robustness coefficient

1. Introduction

Mobile technology development and the diversity of smartphone application services
have been shifting people’s work and life scenes gradually from PC to mobile devices, and
Android maintained its position as the leading mobile operating system(OS) worldwide,
controlling the mobile OS market with a 71.93% share in January 2021 [1]. The openness
and large market shares of the Android system platform make it popular among attackers,
according to Skybox Security statistics, compared to the first half of 2019, vulnerabilities on
mobile OSs increased by 50% within the same period of 2020, driven solely by the upsurge
in Android flaws nearly 104% [2]. Based on the Kaspersky report, the number of new
Android malware in 2020 grew by 2.1 million, breaking the established trend of continuous
decline [3].

Deep learning has been gradually applied to the field of cyberspace security rep-
resented by malware detection and intrusion detection Since 2015 [4]. Compared with
traditional machine learning methods, deep learning can fit more complex data distribu-
tion, and the outcomes have been significantly improved. In recent years, with the rapid
escalation of network technology, emails, personal websites, cloud network platforms, etc,
have all become the media for spreading Android malware, and the and concealment of
the network have greatly increased the destructiveness of Android malware. Malware
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developers use obfuscation methods to hide malicious behaviors of applications and gener-
ate malware variants that can bypass the security review mechanism, which can destroy
the integrity and usability of the detection model, and lead to misjudgments and missed
judgments in the detection results.

To explore the generation and attack methods of Android malware variants, re-
searchers usually use black-box attack methods [5–9] to generate adversarial samples
attack models based on features extracted from malware. However, it is unclear whether
the adversarial samples generated by those (not all) techniques can be used as malware
to implement attacks on models, because mutations based on malware characteristics
may destroy the inherent behavioral attributes and functional structure of the malware,
resulting in malicious payload crash or function abnormal. Therefore, in order to ensure
the integrity and availability of the adversarial samples for the attack, the methods such
as program code transplantation [10] and injection of system API calls [11] are used to
construct new Android malware variants.

Researches limited to attack methods couldn’t solve the problem that malware can
evade neural network model detection through adversarial attacks. In response to this situ-
ation, there existed mainly five defense measures, consisting of defensive distillation [12],
pre-processing [13], regularization [14], adversarial training [15,16], and rejection of adver-
sarial samples [17]. Adversarial training is said the best solution to resist adversarial attacks
from all of them, which utilizes the well-trained model to generate virtual adversarial sam-
ples, then adds them to the training set so as to retrain the model, and repeats this process
until all possible virtual adversarial samples are obtained. So that the model is trained to
the best state, and fundamentally enhance the robustness of the target classifier [18].

Given the increasing number of Android malware variants and the network threats
it brings, enhancing the ability to recognize Android malicious variants and improving
the robustness of the detection model are the key to improving the overall detection level
of Android malware at the current stage. In this paper, We utilize adversarial training
techniques and adversarial samples to improve the detection and classification effects of
the classifier, and our contributions of this paper as follows:

• A feature database for system APIs. The database is a basis for the next feature
sequence analysis and visualization, including a total of 50,998 methods in 5858 classes
of Android API from level 1 to 30, and with a fixed color value setting for each
system method.

• A visualization method for API call sequence. We choose the depth-first search (DFS)
algorithm to substitute all internal function call methods in the application with a
system-level API call sequence one by one. In order to generate adversarial samples
more efficiently, we visualized the sequence feature by means of matching the fixed
color value from the feature database, in the way to convert the system call sequence
into an RGB image.

• A general framework named AdvAndMal for adversarial training. AdvAndMal is
proposed to expand and balance the training set of the classifier, and increase the
distribution of malicious samples in the model feature space, so that the boundary
between benign and malicious applications or malware families in the feature space
is adjusted, which increases the attack cost of real malware variants. The virtual
malware variants are generated by pix2pix according to adversarial training, and we
utilize real data set to train the independent model parameters for malware detection
and family classification as two control groups, then with the same ways to train
experimental groups on the mixed data set.

• A robustness evaluation method for the overall framework. we utilize the independent
experiment results to construct the overall evaluation path architecture, and obtain
the robustness expectation of the framework on the test set, then calculate the average
value as an indicator to evaluate the robustness of the model.

The remainder of this paper is organized as follows. In Section 2, we introduce the
related work about adversarial training on the algorithm and model structure. Section 3
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thoroughly addresses the proposed framework and the adversarial training process on it.
In Section 4, we give the experimental results with analysis. Finally, we summarize the
work and propose the future research directions in Section 5.

2. Related Work
2.1. Android Malware Behaviour Detection

The structure of the Android application package (Apk) is complex because of the dif-
ferent file types and elements, and researches on Android malware classification (detection
can be considered as a two-class classification) mainly focuses on feature representation
and model optimization. The main categories are shown in Figure 1. Reasonable charac-
terization methods can economize run time and calculation costs, and help improve the
efficiency and accuracy of classification. Model optimization can make algorithms and
network parameters more adapted to sample features, which can also achieve the purpose
of improving effects.
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Figure 1. Android malware classification scheme.

At present, most studies focus on the application behavior characteristics, and API is
one of the most frequently used features. The execution sequence of API calls [19,20] helps
to fully understand the activity and thread information of the target malware application.
Omid et al. [21] researched the similarity behaviors of different malware families based
on sensitive APIs for classification. Tao et al. [22] analyzed the relevance of sensitive APIs
protected by permissions and mined malware patterns from known malware samples to
effectively identify malware.

The feature representation methods can transform the task of malware detection
into image classification, and use advanced techniques and models in the image field to
detect and analyze the malicious behaviors of the application. The characteristic image
representation types of malware mainly include RGB color image [23], binary(black and
white) image [24] and gray-scale image [25].

The language models help to analyze the behavior sequence of the application and
mine the malicious behavior model. Jiang et al. [26] analyzed the specific semantic infor-
mation of the malicious code, then constructed and transformed sequences of sensitive
opcodes into semantically related vectors to achieve family classification. The behav-
ior sequence can also be converted into the form of a dependence graph [27,28] or flow
graph [29,30] for malware detection. For example, Xu et al. [30] extracted n-gram sequences
from the feature flow diagram for model training, and selected the top-k sequence as the
graph of the target family.

In order to enhance the robustness of the model algorithm, Android malware detection
and classification models are developed towards integration and bagging. Sercan et al. [31]
proposed a static Android malware family classification framework, which can use a large
number of machine learning classification methods (support vector machine, decision
tree, logistic regression, K-nearest neighbor, random forest, AdaBoost and multi-layer
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Perceptron classifier) classify unknown families of malware. Calleja et al. [32] proposed
an extension classifier named Revealdroid∗, the enhanced version of RevealDroid, which
employs a pool of C4.5 trees instead of relying on just one instance, and the final label
assigned to sample results from majority voting.

2.2. Adversarial Attacks
2.2.1. Adversarial Algorithms

Szegedy et al. [15] first proposed the concept of adversarial samples. They discovered
the weaknesses of neural network models in the image classification field and believed
that the nonlinear expression ability and overfitting of deep neural networks were the
possible reasons. They used the limited-memory BFGS (L-BFGS) algorithm, adding a small
number of perturbations into the images to generate adversarial samples that humans
cannot distinguish while the model would misclassify. Goodfellow et al. [33,34] believe that
the linear behavior of deep neural networks in high-dimensional spaces is the root cause
of adversarial samples. They proposed the Fast Gradient Sign Method (FGSM) algorithm
and generative adversarial nets (GAN) based on the FGSM algorithm, which is composed
of a generator and a discriminator. Through the game between the two models, the
generated samples are getting closer to the distribution of real samples. Papernot et al. [35]
proposed a method to generate adversarial samples based on the forward derivatives
called Jacobian-based Saliency Map Attack(JSMA), which can reduce the search space of
adversarial examples, and few modifications on original samples can be misclassified.

2.2.2. Adversarial Malware Samples

Biggio et al. [36] started early on hiding the adversarial samples by attacking the
clustering algorithm, in a way that destroyed the training data distribution without chang-
ing the clustering results of other samples by the means of injecting the benign samples
with poisoning behaviors. Calleja et al. [32] proposed a novel classification evasion attack
model named IagoDroid, and the variants generated with evolutionary algorithms against
any triage process where the family classification relies on static analysis. they tested
the method on RevealDroid using 29 different malware families from the Drebin, and
IagoDroid successfully forces misclassification of 28 of the 29 families.

Grosse et al. [8] generated adversarial malware samples against the RNN classification
model based on the FGSM and JSMA algorithms, and the attack success rate was up to 63%.
Hu et al. [6] proposed MalGAN based on GAN, utilized the generated adversarial samples
labeled by the target black-box detector as the alternative detector’s training samples, to
learn the parameters of the target black-box detector and generate adversarial samples that
can evade the target detector. Kawai et al. [7] improved the MalGAN and the data set by
separating the detection model from MalGAN, and using different training data sets to
create API lists separately for MalGAN and detector.

2.3. Adversarial Training

Adversarial training is an important way to enhance the robustness of neural networks,
widely used in image processing [37–39] and computer vision [40,41], as well as other fields
such as medical imaging [42,43], speech recognition [44,45] and cyber security [46,47]. Data
augmentation by adversarial training techniques can effectively resist adversarial attacks
on detection models, by adding few small disturbances (may cause misclassification) into
training samples to robust the classifies.

Singh et al. [48] proposed a GAN training method, which embeds prior knowledge
about the data set into the model algorithm, that evaluates training stability and adver-
sarial samples’ quality with different indicators. The malware detection results are more
substantial than the benchmark. Chen et al. [49] used GAN for data augmentation for the
categories with relatively few samples. They verified on two datasets of AMD and DREBIN,
and the difference in F1-score accuracy between the two can reach 5∼20% compared with
that before amplification. Sen et al. [50] used evolutionary computation technologies to
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generate new variants that can successfully evade the detection system of mobile malware
under static analysis, and provided the system with a better security solution to identify
these variants.

3. Methodology
3.1. Feature Processing

Since the system method will not be modified by code obfuscation, and all functions
of the Android application can be implemented by system API sequences. Thus, the
system method becomes an ideal feature that can reflect the actual intent of the application.
However, the API calls of Android applications include not only system calls (Android
Platform APIs), but also internal methods (defined by the application developer) and
external interfaces (third-party service interfaces). The differences in naming rules and
obfuscation techniques of malicious code destroy the uniformity and uniqueness of feature
representation, which is not conducive for batch analysis of applications and comparative
analysis between applications.

Therefore, we utilize the system API sequences to express the behavior intention of
the applications. Instead of directly filtering the internal methods and external interfaces
out from the API call sequence, we replace them with the callback results (system API
sequences) according to the traversal order of the DFS algorithm, which ensures the
integrity of the behavioral logic, and finally visualize the system API sequences to an RGB
image through color values matching from the constructed feature database. The entail
process is given by the following Figure 2.
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Figure 2. Android application feature processing.

3.1.1. Decompilation and Feature Extraction

The Android Apk is directly converted into the smali file package through the decom-
pilation tool called Apktool, and then performs feature extraction of the API call sequences.
Figure 3 shows how to traverse all the Smali files in turn, and find the object class, super
class, interface and API calls in terms of the identifiers about “.class”, “.super”, “.imple-
ments” and “.invoke” in every *.smali file, in such a way as to extract the function elements
from all internal methods of an application.

3.1.2. Sequence Analysis and Visualization

Sequence analysis is to replace all internal methods nested in the original API call
sequences with the corresponding system API sequences in terms of DFS traversal order,
and finally return the matched color value of the method from the system feature database
shown as Figure 4.

In order to simplify the matching process, this paper only retains the method name
that can reflect the functional intention when constructing the system feature database, and
assigns a unique color value (three-digit hexadecimal number) to each remaining method
after deduplication.

Due to the huge number of external interfaces, this paper does not establish a special
feature database for third-party interfaces, just replaces them with a special color value
targeted for all external interfaces. The whole process is shown in Figure 5.
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Figure 3. Decompilation and feature extraction.
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Figure 5. Sequence analysis and visualization.

3.2. Adversarial Training Framework

The structure of the Android malware adversarial training framework consists of a
two-layer network. The first layer is pix2pix, generating an extended training set of adver-
sarial samples with malicious attributes. The second layer is LeNet-5, charging Android
malware detection and family classification. The two-layer network of the adversarial
training framework is replaceable, and the effective adversarial example sets are screened
based on the retraining results on the mixed data set. In this paper, we choose benign and
malicious Android samples as the real x and condition y, and the training process is shown
in Figure 6.

• STEP 1: Switch ¬­® off, train the classifier L on the original training set, and gain the
validation results as the baseline;

• STEP 2: Switch ¬ off, ­® on, train pix2pix;
• STEP 3: Switch ¬ on, ­® off, generate and verify adversarial samples. retrain L with

the mixed training set, and compare the new validation result with the baseline, the
loss is passed to the generator for retraining;
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• STEP 4: Repeat steps 2 and 3 until the test result of the verification set is higher than
the baseline and tends to be stable, then test on the test set.

Adversarial training is used to find the mappings that are prone to deviation and
misclassification in the feature space of the classifier with the help of virtual adversarial
samples, and retrain the classifier with the training set added those adversarial samples to
increase the probability distribution of malware in the sample space. The premise of real
malware variants attacking the classifier through obfuscation technology is not to change
the inherent malicious behavior, thus the model trained by the adversarial training method
can increase the attack cost of adversarial samples and enhance the model robustness.

XR XF

7UDLQLQJ�VHW

 L loss
G 

 D
loss

XR

XR y
y     : Condation (Malware)

XR : Real Samples (Benign)

XF  : Fake Samples

G(x) : Adverserial Samples

1

7UDLQLQJ�VHW

 L loss
G 

XR G(x)

2 3

G(x)

2 3

������

������

������

5HDO�

0L[HG

Figure 6. Adversarial training process.

3.2.1. Adversarial Sample Generation Layer

The original GAN [33] is an implicit generative model, and it unable to explicitly
estimate the probability density with training samples randomly sampled from the data
distribution of the collection. Due to the difficulty of sampling in high-dimensional space,
GAN cannot perform point-to-point image conversion, so that the final sampling result is
not comprehensive, and the target type output cannot be generated according to the input.
In response to the above problems, the improved model conditional generation adversarial
nets (CGAN) [51] added condition y into the input layer of generator and discriminator, and
defined the learning mapping G : {z, y} → x, changing the network from unsupervised
to semi-supervised. CGAN can guide the generation process of the generator and specify
the generation types of the adversarial samples. The objective function of CGAN is as
Formula (1).

min
G

max
D

V(G, D) = Ex∼pdata (x)[log D(x|y)]

+Ez∼pz(z)[log(1− D(G(z|y)))]
(1)

In the original CGAN, the generator not only has to fool the discriminator, but also
generates real images as much as possible. The discriminator just needs to judge the
authenticity of the images, and the problem of pattern collapse has not been obviously
solved. The feature images in this paper are of different sizes, and the generated adversarial
samples need to be more similar to condition y (malware). Therefore, we choose pix2pix [37]
as the adversarial sample generation layer, a general image conversion framework which
defines the learning mapping of CGAN is from the real sample x and random noise z to
the condition y, as G : {x, z} → y, so that the redefined objective function by pix2pix is as
Formula (2):

LcGAN(G, D) = Ex,y[log D(x, y)]

+Ex,z[log(1− D(x, G(x, z))].
(2)
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On this basis, pix2pix improved the loss function by adding the L1 constraint to its
objective function. Based on Formulas (2) and (3), the final loss function of pix2pix is
calculated as Formula (4).

LL1(G) = Ex,y,z[‖y− G(x, z)‖1] (3)

G∗ = arg min
G

max
D
LcGAN(G, D) + λLL1(G). (4)

The comparison of the original CGAN and pix2pix is shown in Figure 7. In the figure,
pix2pix uses the L1 constraint to make the guiding effect of the condition y implicit, and
the λ in Formula (4) used to adjust the similarity with condition y. In addition, pix2pix
uses the dropout function to replace the noise z. If the λ is set to 0, the effect of pix2pix is
the same as CGAN.

z

G 

D 
����

G(z)   

y

X D 
����

y

y

(a) CGAN

X

G 
X

D 
����

G(x)   y

X

D 
����

dropout

(b) pix2pix

Figure 7. Adversarial training process.

In many tasks related to image conversion, the underlying features of the image (such
as color, contour, etc.) are equally important. For example, in this paper, the color value and
position of the pixel in the feature image of the Android application are closely related to
the system API and its call sequence. Changing the key position and color of the pixel will
destroy the behavioral intention expressed in the original image, and make the generated
sample image inconsistent with the attributes of the condition.

Pix2pix replaces the original generator with U-Net [52], and utilizes the symmetry of
the model to directly map the low-level information of the image to the high-level features,
and conducts end-to-end training to preserve the entail information of the image to the
greatest extent. Under normal circumstances, the discriminator makes judgments based on
the entire image, while the pix2pix uses the PatchGAN to divide the feature image into
N×N patches, and then judge the authenticity of each patch in turn. The patch result of the
entire image calculates the average value as the output result of the discriminator, which is
suitable for images of any size.

3.2.2. Malware Classification Layer

In this paper, the classifier is constructed according to the structure of LeNet-5. Com-
pared with the fully-connected neural network, LeNet-5 [53] extracts image features
through convolution calculation, parameter sharing, pooling, etc., and uses the fully-
connected layer only for classification, which reduces time and computational overhead.
In order to improve the accuracy of model prediction and speed up the convergence, it is
necessary to standardize processing in the input layer. The specific network and training
parameters are shown in Table 1.

When the convolution kernel size in the C1 layer is set to 8, the optimal effect is
obtained on the data set. The network parameters of the classifiers are trained separately
for malware detection and family classification, a total of four models in two categories
were trained independently based on controlled experiments, so as to detect and classify
Android malware.
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Table 1. LeNet-5 model parameters.

Layer Feature Map Size Kernal Size Stride Activation Paras

Input (Image) 32 × 32 1 - - - -
C1/Convolution 28 × 28 8 5 × 5 1 tanh 608

S2/Pooling 14 × 14 8 2 × 2 2 - 0
C3/Convolution 10 × 10 16 5 × 5 1 tanh 3216

S4/Pooling 5 × 5 16 2 × 2 2 - 0
C5/Convolution 1 × 1 120 5 × 5 1 tanh 48,120

F6/Full connection 84 - - - relu 10,164
Output_Detection 2 - - - softmax 170

Output_Classification 12 - - - softmax 765

EPOCHS = 150 Batch_Size = 32 INIT_LR = 0.001 decay = INIT_LR/EPOCHS

4. Experimental Results
4.1. Datasets

The data sets used in the experiments including 5831 benign and 5546 malicious
Android applications. The benign applications are downloaded from AndroZoo [54], a
big Android apps database that provides a comma-separated values (CSV) file about
the information of all apps, and the format is shown in Table 2. AndroZoo supports
accurate search based on the “sha256, sha1, md5, pkg_name” fields and filtered search with
limited field ranges to download applications. We set “vt_detection = 0” and “markets =
play.google.com” to filter out pure applications and construct the benign data set.

Table 2. AndroZoo CSV file format.

Field Explanation

sha256 Signature hash
sha1 Signature hash
md5 Signature hash

dex_date The date attached to the dex file inside the zip
apk_size The size of the apk

pkg_name The name of the android Package
vercode The version code

vt_detection The number of AV from VirusTotal that detected the apk as a malware
vt_scan_date Scan date of the VirusTotal scan reports

dex_size The size of the classes.dex file
markets Source (App store)

The malware samples come from the Drebin [55], which contains 5560 Android
malware from 179 families. This paper successfully converted 5546 malicious samples to
RGB images, and the statistics of family numbers are shown in Table 3.

Table 3. Malware family sample set statistics table.

No. Family Number No. Family Number

1 FakeInstaller 925 8 Kmin 147
2 DroidKungFu 665 9 FakeDoc 131
3 Plankton 625 10 Adrd 91
4 Opfake 613 11 Geinimi 90
5 GinMaster 339 12 DroidDream 81
6 BaseBridge 327 - others 1360
7 Iconosys 152 total - 5546

The malware data set is divided in terms of family, and the ratio of the training set
(including validation set) and test sets is 8:2, and the classification experiment is carried
out on the data sets of No. 1 to No. 12.
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4.2. Robustness Evaluation Method

The evaluation criteria of classifier robustness are not uniform. This paper proposes
the “Independent experiment + Overall evaluation” method, which builds an overall
evaluation standard based on the detection and classification results of the classifier in the
independent experiment.

4.2.1. Independent Experiment Evaluation

Construct the confusion matrix according to the malware detection and family classifi-
cation experiment of the classifiers, and the general confusion matrix framework is shown
in Table 4. The row of Ci represents the predicted distribution of the actual category i, and
the value corresponding to Ci,j represents the number of samples in the test set of class i
that were judged (i = j) or misjudged (i 6= j) as class j by the classifier. The model evaluation
indicators and formulas of malware detection (n = 2) and family classification (n = the
number of families to be classified, 12) are separately shown in Table 5.

Table 4. General confusion matrix.

Detection: n = 2 Predicted
Classification: n = 12 Class 1 Class 2 ...... Class n

Actual

Class 1 C1,1 C1,2 ...... C1,n
Class 2 C2,1 C2,2 ...... C2,n

...... ...... ...... Ci,j ......
Class n Cn,1 Cn,2 ...... Cn,n

Table 5. Evaluation indicators and formulas.

Domain Indicator Formula

Detection & Classification

Accuracy ∑n
i=1 Ci,i

∑n
i,j=1 Ci,j

(5)

Precision i
Ci,i

∑n
j=1 Cj,i

(6)

Recall i
Ci,i

∑n
j=1 Ci,j

(7)

F-score i
2 ∗ Precision i ∗ Recall i

Precision i + Recall i
(8)

Classification

Aver-Precision ∑n
i=1 Precision i

n
(9)

Aver-Recall ∑n
i=1 Recall i

n
(10)

Aver-Fscore ∑n
i=1 F-score i

n
(11)

4.2.2. Overall Framework Evaluation

The overall evaluation method refines the classification results of the model framework
and evaluates the model in combination with the actual needs of the Android malware
detection field, as shown in Figure 8. Construct a “detection-classification” confusion
matrix based on the overall evaluation framework.

Based on the test results of independent experiments and the overall evaluation path
framework shown in Figure 8. The evaluation confusion matrix of “detection-classification”,
as is shown in Table 6 is constructed. From the perspective of model robustness, the more
applications in path ¬ and ¯, the more robust the classifiers are. Path ® and ± offset the
interferences caused by detection and family classification, but they can play a warning
role and contribute to the overall assessment. The applications in path ­ and ° can cause
interference and confusion to the classifier, weakening the robustness of the model.
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Figure 8. Robustness evaluation framework.

Table 6. Evaluation confusion matrix.

T F Category Explanation Path

T TT FT TTB, TTM True Detection, True Classification ¬, ¯

FT False Detection , True Classification ®

F TF FF TF True Detection , False Classification ±

FFB, FFM False Detection , False Classification ­, °

TT, FT, TF, FF respectively correspond to the samples detected or classified from
different paths, and the accuracy of the overall adversarial training framework is calculated
according to Formula (12).

Overall-Acc =
TT ∪ FT ∪ TF

TT + FT + TF + FF
(12)

AccD and AccC represent detection accuracy and classification accuracy, and the
joint probability density of the path is calculated by the accuracy of the detection and
classification classifiers. The weighted summation represents the robustness expected value
(Robustness Value) of the overall evaluation framework on the test set. The calculation
process is shown as follows:

RTT = Acc ∗ TTB + Acc ∗ F− Acc ∗ TTM (13)

RFT = (1− Acc) ∗ F− Acc ∗ FT (14)

RTF = Acc ∗ (1− F− Acc) ∗ TF (15)

RFF = (1− Acc) ∗ FFB + (1− Acc) ∗ (1− F− Acc) ∗ FFM (16)

Robustness-Value = RTT + RFT + RTF − RFF (17)

Generally, for a model with good classification results, the more samples in the test set,
the greater the Robustness Value. In order to facilitate the comparison between different
sample sets and models, the mean value of robustness expectation is calculated as the
robustness coefficient (RC value for short) of the model. The formula is as follows:

Robustness-Coefficient =
Robustness-Value

TT + FT + TF + FF
(18)

The range of RC value is a symmetrical interval i = [−1, 1], and the value is positively
correlated with model robustness. When the RC value is equal to 1, it means that the
detection and classification accuracy of the model are both equal to 1. When the value is
−1, the detection and classification accuracy of the model are both 0, and the same model
may take different RC values on different test sets.
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4.3. Results and Analysis
4.3.1. Android Malware Feature Image

Take the three malware families—FakeInstaller(925), Adrd(91) and AccuTrack(10)
as the representatives corresponding to the different intervals for family set sizes. The
visualized feature images show obvious family characteristics, and the main behavioral
characteristics are shown in Figure 9.

(c) AccuTrack (10)

(a) FakeInstaller (925)

(1) (2)

(3)

(5)

(7)

(4)

(6)

(8)

(b) Adrd (91)

(1) (2)

(3) (4)

Figure 9. Visualization of malware family behavior. (a) Representation for the families, which samples’ number belong
to (100, +∞). (b) Representation for the families, which samples’ number belong to (10, 100). (c) Representation for the
families, which samples’ number belong to (1, 10).
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The degree of behavioral similarity for samples within a family is very high, and the
larger size of a family sample set, the more forms of malicious behavior that the set has.
For example, the family set (a) with 925 samples and 8 main characteristics, and (b) with
91 samples and 4 main characteristics. Although (c) with a smaller sample set with just
10 samples, the characteristic from its feature images is more concentrated.

4.3.2. Adversarial Training

In order to generate adversarial samples with malicious attributes by using pix2pix,
the condition y and the real sample x should be matched in color and size. The λ coefficient
in Formula (3) is set 50, and the change of loss values during training process on the
generator and the discriminator are shown in Figure 10.

�a���
���������

 �b���
���	�
�������



Figure 10. Adversarial training loss. (a) The loss function curve of generator model during training process. (b) The loss
function curve of discriminator model during training process.

In the later stage of training, the discriminator loss fluctuates between 0.6 and 1, and
the generator loss fluctuates around 8, which basically reaches a balanced state. Under the
circumstances, the generated adversarial sample images are shown in Figure 11.

5HDO�[��EHQLJQ� \��PDOZDUH�$GYHUVDULDO�VDPSOH

(a)

(b)

(c)

Figure 11. Visualization of Adversarial samples. (a–c) are three examples for input pairs (real sample
x and condition y) and their corresponding output adversarial samples.

4.3.3. Malware Detection

Figure 12 shows the accuracy and loss function curves of the two-class classifier used
for malware detection on the training and validation sample sets. The two curves in
subgraphs respectively represent the training process of the control group (CG for short)
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with the original real training sets, and the experimental group (EG for short) correspond
to the mixed training set with generated adversarial samples added into it. It can be seen
from (c) and (d) that the model trained with adversarial samples has a higher accuracy rate
and a lower loss value, and the result comparison on the test set is shown in Figure 13.

(b) ����	�
�����������
�
������(a) ����	�
����������
�
������

(c) ����	�
������������

��
������ (d) ����	�
�����������

��
������

��

��

��

��

��

��

��

��

Figure 12. Detection model training. (a) The accuracy function curve of detection model on training sets. (b) The loss
function curve of detection model on training sets. (c) The accuracy function curve of detection model on validation sets.
(d) The loss function curve of detection model on validation sets.
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Figure 13. Detection result comparison.

For malware detection, it is necessary to increase the recall and accuracy values and
reduce the rate of false positives rate (FPR). In order to evaluate the effect of the adversarial
training on framework, 887 benign samples selected randomly as well as 836 malicious
samples from families No.1 to No.12 formed a test subset according to the same ratio as
the original test set. It can be found from Figure 13 that the indicators of test results on the
subset are significantly better than those on the whole test set, from which can derive that
data augmentation is beneficial to model training.
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4.3.4. Family Classification

Compared with the two-class classification model of malware detection, the adver-
sarial training process of family classification is more complicated. As shown in the EG(a)
in Figure 14, the adversarial sample blurs the boundaries of the family, resulting in the
classification result not rising but falling compared to the CG.
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Figure 14. Classification model training. (a) The accuracy function curve of classification model on training sets. (b) The loss
function curve of classification model on training sets. (c) The accuracy function curve of classification model on validation
sets. (d) The loss function curve of classification model on validation sets.

The results of the EG(b) on the validation set are slightly improved compared to the
CG, and it is found that the adversarial training has the effect of preventing overfitting. The
test results of classifiers with adversarial samples added to the training set are generally
0.5% higher than those on the validation set, while the test results of models without
adversarial training are on the contrary. The confusion matrices are shown in Figure 15.
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Figure 15. Confusion matrix of family classification for adversarial training.
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As can be seen from the confusion matrix of the CG that the classifier cannot effectively
learn the features of family Adrd, DroidDream, Geinimi, and GinMaster because of the
small sample sizes, thus leading to false positives and false negatives. The results from
EG(b) show that data augmentation through adversarial training enables the model to
divide the boundaries of the family more accurately, so as to improve the classification
effect. The top 12 families’ classification results are shown in Table 7.

Table 7. Evaluation confusion matrix.

Family Precision Recall F-Score
CG EG(b) CG EG(b) CG EG(b)

Adrd 0.833 1 0.556 0.833 0.667 0.909
BaseBridge 0.868 0.909 0.908 0.923 0.868 0.909

DroidDream 0.714 0.857 0.313 0.75 0.435 0.8
DroidKungFu 0.84 0.94 0.91 0.947 0.874 0.944

FakeDoc 0.857 0.962 0.923 0.962 0.889 0.962
FakeInstaller 0.978 0.984 0.962 0.968 0.97 0.975

Geinimi 0.8 1 0.444 0.722 0.571 0.839
GinMaster 0.63 0.836 0.603 0.824 0.617 0.83
Iconosys 0.806 0.829 0.967 0.967 0.879 0.892

Kmin 0.967 0.983 1 1 0.935 0.967
Opfake 0.96 0.953 0.976 0.984 0.968 0.968

Plankton 0.875 0.921 0.896 0.936 0.885 0.929

Average 0.841 0.929 0.788 0.901 0.801 0.912

Accuary CG: 0.88 EG(b): 0.935

Compared with the similar work of Chen et al. [50], whose Experiment 1 used the
same dataset as this paper, and the detailed comparison is shown in Table 8. By comparing
the F-score values of the two experiments, it can be seen that the overall effect of the method
in this paper is better.

Table 8. Adversarial training evaluation result.

Experiment Chen et al. This Paper

Training Model CNN, GAN CNN, CGAN
Dataset 10 families, Drebin 12 families, Drebin

Data Augmentation Adrd, DroidDream, Geinimi Families with small sizes and poor results
Evaluation Indicators F-score, p-values Accuracy, Recall, Precision, F-score

Results (F-score)
Adrd: 60.1%→ 84.3% Adrd: 66.7%→ 90.9%

DroidDream: 73.1%→ 84.2% DroidDream: 43.5%→ 80%
Geinimi: 50.2%→ 77% Geinimi: 57.1%→ 83.9%

4.3.5. Robustness Evaluation

Construct a “Detection-Classification” confusion matrix based on the test set of family
No. 1–12, which is used to evaluate the robustness of the adversarial training framework.
The numerical data in the confusion matrix can be disassembled into two sets of actual
paths, as shown in Figure 16, and the evaluation parameters and evaluation results of the
overall framework are shown in Table 9.

Table 9. Adversarial training evaluation result.

Experiment
Accuracy

Robustness Value R-C
Detection Classification Framework

CG 0.976 0.88 0.976 1477 0.857
EG(b) 0.987 0.935 0.989 1580.835 0.917
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Figure 16. Robustness evaluation framework.

As is clear from the table, the robust performance of the Android malware variant
detection framework has been improved after the adversarial training. The correct results
of comprehensive detection and classification have also increased the accuracy of the
overall framework.

From the classification path of the overall framework, it can be seen that the classifiers
have significantly improved the detection effects on Android malware after the adversarial
training. Although the accuracy of family classification is lower than the value of the
detection model, the classification model based on behavior learning of the malware family
can capture the features not learned by the detection model and help the overall framework
to identify more malware.

5. Conclusions

This paper utilizes adversarial training methods to build a general model framework
named AdvAndMal for the detection and family classification of Android malware by the
image features of the system API sequence, and improves the accuracy of the classifier
through retraining. The proposed robustness evaluation method verifies the detection
and classification effects of the classifier before and after the adversarial training, and the
experimental results confirm the feasibility and effectiveness of the method. There are still
some problems and improvements in the work:

• The quality of the generation of adversarial samples is unstable. The adversarial
samples generated by CGAN cannot be used to visually confirm whether they have
malicious attributes or not, and without measuring the statistically significant differ-
ences between the different results. The generated datasets used to improve the model
effect may contain useless or problematic samples, which will affect the learning effect
of the model. In this stage, adversarial samples that can improve the classification
effect are just screened through model training and verification in batches. In the
future, we will combine the behavioral characteristics of Android malware to generate
adversarial samples effectively.

• The classifier used in this article has a small number of layers and network parameters,
which is easy to train, but the learning ability of the model will be limited. Moreover,
the data set required for CGAN training has a one-to-one correspondence between
real samples and conditions. If the paired images are too different, it will affect the
effectiveness of the generated samples. Therefore, our model need to be further
improved to apply into many scenarios.
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