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Abstract: IDEA is a classic symmetric encryption algorithm proposed in 1991 and widely used
in many applications. However, there is little research into white-box IDEA. In traditional white-
box implementations of existing block ciphers, S-boxes are always converted into encoded lookup
tables. However, the algebraic operations of IDEA without S-boxes, make the implementation not
straight forward and challenging. We propose a white-box implementation of IDEA by applying
a splitting symmetric encryption method, and verify its security against algebraic analysis and
BGE-like attacks. Our white-box implementation requires an average of about 2800 ms to encrypt a
64-bit plaintext, about 60 times more than the original algorithm would take, which is acceptable for
practical applications. Its storage requirements are only about 10 MB. To our knowledge, this is the
first public white-box IDEA solution, and its design by splitting can be applied to similar algebraic
encryption structures.

Keywords: cryptanalysis; IDEA; white-box cryptography; obfuscation

1. Introduction

Among many classic symmetric encryption algorithms, the International Data En-
cryption Algorithm (IDEA) was jointly developed and proposed [1–3] in 1991. The main
encryption process of IDEA includes group operations, a multiplication and addition (MA)
structure, and output transformations. Its core operations are modular multiplication,
modular addition, and XOR. In addition, the Feistel or SPN structure always uses the
S-box as the core structure, while IDEA incorporates three different algebraic operations to
replace the traditional S-box non-linear function. Due to its special structure, IDEA differs
from these symmetric ciphers and is often selected as an encryption primitive in products
such as VLSI and SMS messages [4–6].

In 2002, the concepts of a black-box model, gray-box model, and white-box model
were proposed by Chow et al. in conjunction with the white-box implementation of AES [7]
and DES [8]. As the color lightens, the attacker is given more powerful capabilities. In the
white-box model, an attacker can fully monitor and track the contents of memory and cache
during dynamic and static execution [9] (for fixed keys), modify the internal operations
and memory contents of the algorithm at any time point [10], and so on. Traditional
implementations of block ciphers are insecure in these scenarios, because the key simply
added (XOR-ed) in the round function will be exposed directly.

More seriously, if an attacker can perform the white-box attacks on legitimate terminal
devices securing information such as SMS messages, all of the high-value messages will be
obtainable by the attacker. This is a critically serious security risk to both symmetric en-
cryption and asymmetric encryption. White-box cryptography is a solution for preserving
the same security level as in the black-box model, with practical significance in applications
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such as wireless sensor networks, mobile agents, and digital rights management [11–16].
Many companies have been working to use white-box encryption solutions, such as the
secure chip of a downloadable conditional access system (DCAS) terminal [17] and white-
Cryption secure key box (SKB). The latter is the first and only enterprise-ready white-box
cryptography solution for web applications, launched by Intertrust company at the RSA
Conference, on 24 February 2020.

In the field of white-box research, especially based on symmetric encryption, much
work has been done in the design of white-box implementations [18–22], mostly concen-
trating on DES, AES, SM4, and their variants, which provide a certain degree of protection,
but are still breakable [23–28]. Since the only non-linear component of the above block
ciphers is S-box, a common approach of these white-box schemes is to hide the S-box in
lookup tables and use random bijection to confuse inputs and outputs of the lookup tables
to protect secret information (the key). As we mentioned before, IDEA has a variety of
non-linear operational modes that replace the S-box component. Therefore, the key will be
included in multiple non-linear operations. This special behavior brings new challenges to
the design of white-box implementations.

In 2019, Lu et al. [29] proposed white-box KMAC, converting modular operations
into lookup tables. Since the size of its lookup tables are relatively large and the algebraic
operations are different from IDEA, it is not directly usable for implementing a white-box
IDEA while preserving IDEA’s throughput. There are no other solutions for transforming
algebraic operations into lookup tables, and, as far as we know, no white-box IDEA
implementation has been proposed. The research into this topic is scant.

In this paper, we observe the algebraic structure of IDEA’s group operations and
reduce the storage cost of the lookup tables by splitting the plaintext blocks into reasonably
sized chunks. We split every arithmetic operation, multiplication modulo (216 + 1) and ad-
dition modulo 216, into two parts and use an affine transformation to obscure them. A Type
I lookup table is created for each part, such that effective analysis is impossible. The outputs
of the Type I lookup tables will be added with corresponding module. A Type II lookup
table is generated by encoding the additional module results with a randomly chosen
mask to eliminate leakage of key related information from unbalanced encodings. We
reorganize the MA structure as four arithmetic operations, with each operation processed
similarly as before. We then create a working white-box IDEA solution with adequate
performance. The total storage is 10.06 MB with an average encryption time of 2786 ms
(based on 50,000 encryptions of 64-bit plaintext using Java 8.0), which is about 60 times
as much time as the original IDEA. Compared with other white-box implementations in
Table 1, our solution offers satisfactory efficiency. The implementation methods that split
the blocks with encoding and masks are also usable with other cryptographic primitives
using algebraic operations.

Table 1. Efficiency comparison.

Scheme Operations 1 Delay Cost 2 Storage

white-box KMAC 32,920 375 107.7 MB
white-box AES 3104 55 580 KB

white-box IDEA 264 60 10.06 MB
1 The operations include: lookups, XORs, and other algebraic operations. 2 Times slower, compared with the cost
in the black-box model (the plain algorithm).

The structure of the rest of the paper is as follows. In Section 2, we review the
IDEA cipher along with encoding and masking techniques. We present our white-box
implementation in Section 3. In Section 4, we present a performance analysis. We measure
and analyze the security of the white-box IDEA in Section 5. Section 6 contains an additional
discussion and our conclusions.
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2. Preliminaries
2.1. Notation

We use the following notations in this paper.
�multiplication mod (216 + 1) of 16-bit integers
� addition mod 216 of 16-bit integers. During arithmetic operations of IDEA, the all-

zero value is never used and is replaced by (216 + 1) or 216.
⊗multiplication mod 216 of 16-bit integers
⊕ bitwise exclusive OR (XOR of 16-bit strings)
×, −, + arithmetic operation
‖ bit string concatenation
◦ functional composition

2.2. Description of IDEA

We now describe the encryption process of IDEA. The fixed size 64-bit plaintext P is
divided into four 16-bit blocks P = (P1‖P2‖P3‖P4). The entire algorithm includes eight
rounds of encryption operations plus the output transformations, with each encryption
round selecting six sub-keys Z(r)

i , i = 1, 2 . . . 6, r = 1, 2 . . . 9. The 128-bit initial master
key is divided into eight 16-bit sub-keys from left to right, for 52 total sub-keys (eight
rounds × six sub-keys + four sub-keys), generated by left shifting by 25 positions. X(r)

j

and Y(r)
j , j = 1, 2, 3 . . ., denote the intermediate values, with the final ciphertext being

C = (C1‖C2‖C3‖C4).
The eight encryption rounds are

group operations


Y(r)

1 = P(r)
1 � Z(r)

1

Y(r)
2 = P(r)

2 � Z(r)
2

Y(r)
3 = P(r)

3 � Z(r)
3

Y(r)
4 = P(r)

4 � Z(r)
4

XOR operations

{
Y(r)

5 = Y(r)
1 ⊕Y(r)

3

Y(r)
6 = Y(r)

2 ⊕Y(r)
4

MA structure


Y(r)

7 = Y(r)
5 � Z(r)

5

Y(r)
8 = Y(r)

7 �Y(r)
6

Y(r)
9 = Y(r)

8 � Z(r)
6

Y(r)
10 = Y(r)

9 �Y(r)
7

XOR operations


Y(r)

11 = Y(r)
1 ⊕Y(r)

9

Y(r)
12 = Y(r)

3 ⊕Y(r)
9

Y(r)
13 = Y(r)

2 ⊕Y(r)
10

Y(r)
14 = Y(r)

4 ⊕Y(r)
10

.

The output transformations are{
C1 = Y(8)

11 � Z(9)
1 , C2 = Y(8)

13 � Z(9)
2

C3 = Y(8)
12 � Z(9)

3 , C4 = Y(8)
14 � Z(9)

4

.

In the group operations, the arithmetic operations, integer multiplication modulo
216 + 1 (1) and integer addition modulo 216 (2), are the core operations in IDEA:

X(r)
j (orY(r)

j )� Z(r)
i = Y(r)

j , (1)

X(r)
j (orY(r)

j )� Z(r)
i (orY(r)

j ) = Y(r)
j . (2)
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For integer multiplication modulo 216 + 1, direct calculation is expensive. We can use
a low–high algorithm to compute integer multiplication, for example:

X(r)
j � Z(r)

i =



(X(r)
j × Z(r)

i mod216)− (X(r)
j × Z(r)

i div216),

i f (X(r)
j × Z(r)

i mod216) ≥ (X(r)
j × Z(r)

i div216);

(X(r)
j × Z(r)

i mod216)− (X(r)
j × Z(r)

i div216) + (216 + 1),

i f (X(r)
j × Z(r)

i mod216) ≤ (X(r)
j × Z(r)

i div216).

Thus, the low–high algorithm is available for most CPU, and invertible for the Fermat
primes. The two arithmetic operations with XOR operations were added for both confusion
and diffusion. The three operations on 16-bit blocks are incompatible, and they are non-
associative, non-distributive, or non-isotopic.

2.3. White-Box Cryptography Techniques and Terminology

White-box cryptography is an obfuscation technique that hides the information about
the key in a cryptography system. In recent developments, multi-linear mapping technol-
ogy [30] and masking technology [31] have provided meaningful security guarantees.

2.3.1. Internal Encodings

A popular method for handling a fixed key is to embed it in lookup tables encoded
with random bijection [7,8]. Randomness of the bijection makes it difficult for the adversary
to recover the key from the encoding lookup tables.

1. Encoding: X is the transformation, from m-bit to n-bit:

E(X) = G ◦ X ◦ F,

where F is a randomly selected m-bit to m-bit bijection called the input encoding,
and G is a randomly selected n-bit to n-bit bijection called the output encoding. E(X)
is called an encoded transformation. The main purpose of constructing E(X) is to
obfuscate the input and output of X.

2. Networked encoding: a networked encoding of the compound transformation Y ◦ X
(Y transformation after X transformation) is

Y′ ◦ X′ = (N ◦Y ◦M−1) ◦ (M ◦ X ◦ H−1) = N ◦ (Y ◦ X) ◦ H−1,

where N, M, and H are all bijections. The networked encoding confuses the input
and output of X and Y and ensures that all the transformations are combined to be
functionally equivalent to the original transformation.

2.3.2. External Encodings

An adversary’s extraction of the entire solution to another device is equivalent to
possessing the encryption function of the white-box implementation [25]. One possible
solution to this problem is the use of external encodings that assumes the encryption
function Ek is part of a more powerful environmental system E′k:

E′k = A ◦ Ek ◦ B−1,

where A and B are randomly selected bijective encodings that make it impossible for the
attacker to calculate E′k directly by extracting Ek.

2.3.3. Masking Technology

When generating the lookup table Y, for a plaintext P and secret key K, before encoding
the output of E, one idea [31] is to use a mask α that is selected randomly to perform the
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XOR operation followed by use of a linear encoding L and a different non-linear encoding
N to encode the output:

N ◦ L ◦ [E(P, K)⊕ α]→ Y.

Using the same linear encoding can protect the encryption operations and cancel the
mask via a simple XOR operation.

3. White-Box Implementation of IDEA

The strategy of our solution is to split the IDEA into five parts. Each part is obfuscated
and represented as a number of lookup tables. Specifically, we use randomly chosen group
members and the additive inverses of F216+1 and F216 to transform the group operations to
Type I lookup tables, add different masks to generate the Type II-V tables, and eliminate
the masks via XOR operations with the Type II-E tables. Finally, external encodings are
used to protect the initial inputs and final outputs.

3.1. Generating the Lookup Tables for Group Operations

A 64-bit initial plaintext P is split into four blocks P = (P1‖P2‖P3‖P4). Prior to the
encryption operations, encoding blocks L(0,1), L(0,2), L(0,3), and L(0,4) are used to encode the
plaintext blocks. The encoding blocks are randomly chosen group members from F216+1
or F216 :

X1 = L(0,1) � P1, X2 = L(0,2) ⊗ P2,

X3 = L(0,3) ⊗ P3, X4 = L(0,4) � P4.

We denote the four blocks of the encryption ROUND-1 as:

(L(0,1) � P1‖L(0,2) ⊗ P2‖L(0,3) ⊗ P3‖P(0,4) � P4)

= (X1‖X2‖X3‖X4) = X.

The encoding blocks L(0,1), L(0,2), L(0,3), and L(0,4) are the external encodings to protect
the initial blocks. The inputs of each encryption round are denoted as

X(r) = (X(r)
1 ‖X

(r)
2 ‖X

(r)
3 ‖X

(r)
4 ).

We select four group members Q(r,a), a = 1, 2, 3, 4 from F216+1 and four group mem-
bers P(r,a) from F216 in each encryption round. We now describe the computations more

concretely using the examples X(r)
1 and X(r)

2 .

We implement the multiplication modulo (1) by splitting the 16-bit X(r)
1 into two 8-bit

parts (see Figure 1):

Figure 1. Splitting the input of group operations.

X(r)
1 = 28 × X(r)

1−1 + X(r)
1−2.
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The two parts of X(r)
1 are encoded by L−1

(r−1,1), which is the multiplicative inverse of

L(r−1,1), and Q(r,1), resulting in: X(r)′
1−1 and X(r)′

1−2. Thus, the multiplication modulo (1) can
be split into two calculations:

X(r)
1 � Z(r)

1 = [(X(r)′
1−1 + X(r)′

1−2) mod (216 + 1)]� Z(r)
1

= [X(r)′
1−1 � Z(r)

1 + X(r)′
1−2 � Z(r)

1 ] mod (216 + 1).

We let
Y(r)

1−1 = X(r)′
1−1 � Z(r)

1 , Y(r)
1−2 = X(r)′

1−2 � Z(r)
1 ,

and then we randomly select the additive inverses (a1,a′1) from F216+1, adding them to Y(r)
1−1

and Y(r)
1−2, respectively:

MY(r)
1−1 = (Y(r)

1−1 + a1) mod (216 + 1),

MY(r)
1−2 = (Y(r)

1−2 + a′1) mod (216 + 1).

The operations X(r)
1−1(→X(r)′

1−1→Y(r)
1−1)→MY(r)

1−1, X(r)
1−2(→X(r)′

1−2→Y(r)
1−2)→MY(r)

1−2 are
implemented as lookup tables Type I-HB1 and Type I-LB1. We can compute the final result
Y(r)

1 using MY(r)
1−1 + MY(r)

1−2 mod (216 + 1).

We perform the addition modulo (2) by splitting X(r)
2 into X(r)

2−1 and X(r)
2−2, but the

difference is that the sub-key Z(r)
2 is also encoded by P(r,1), and as a result, Z(r)′

2 . The multi-

plicative inverse of L(r−1,2) along with P(r,1) are used to encode X(r)
2−1 and X(r)

2−2, resulting

in X(r)′
2−1 and X(r)′

2−2. This leads to

X(r)
2 � Z(r)

2 = (X(r)′
2−1 � X(r)′

2−2)� (28 × Z(r)′
2−1 + Z(r)′

2−2)

= [X(r)′
2−1 � (28 × Z(r)′

2−1)]� (X(r)′
2−2 � Z(r)′

2−2),

where Z(r)′
2−1 and Z(r)′

2−2 are generated by splitting Z(r)′
2 . We then define

Y(r)
2−1 = X(r)′

2−1 � (28 × Z(r)′
2−1), Y(r)

2−2 = X(r)′
2−2 � Z(r)′

2−2,

with further additive inverses (a2,a′2) from F216 added into Y(r)
2−1 and Y(r)

2−2, respectively:

MY(r)
2−1 = Y(r)

2−1 � a2, MY(r)
2−2 = Y(r)

2−2 � a′2.

The transformations X(r)
2−1(→X(r)′

2−1→Y(r)
2−1)→MY(r)

2−1 and X(r)
2−2(→X(r)′

2−2→Y(r)
2−2)→

MY(r)
2−2 are denoted as tables Type I-HB2 and Type I-LB2. The final result of the addition

modulo (2) is Y(r)
2 , the result of computing MY(r)

2−1 � MY(r)
2−2.

In the same way, we obtain the results Y(r)
3 and Y(r)

4 , and have other four Type I lookup

tables X(r)
3−1→MY(r)

3−1, X(r)
3−2→MY(r)

3−2, X(r)
4−1→MY(r)

4−1, and X(r)
4−2→MY(r)

4−2. Following the
strategy, we transform the group operations for IDEA into eight Type I lookup tables.
Figure 2 depicts them.
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Figure 2. Generating the eight Type I lookup tables for group operations (the two corresponding
8-bit in and 16-bit out lookup tables can be calculated to obtain the encoded 16-bit original block).

3.2. Incorporating Masks

In this step, we mask four outputs of group operations by randomly selecting MASKN1,
MASKN2 ∈ {0, 1}16. First, we offset the influences of the four group members. To do so,
we design the Calculation boxes, the CA(r,b) box, b = 1, 2, 3, 4, to calculate the additive
inverses of [Q(r,a) − 1] � Γ(r,b) or [P(r,a) − 1] ⊗ Γ(r,b), denoted Ψ(r,b), where Γ(r,b) repre-
sents the four group operations (1) and (2). For example, In CA(r,1), the additive inverse
of [Q(r,1) − 1] � Γ(r,1) is Ψ(r,1), which is calculated and applied to the Q(r,1) � Γ(r,1) by
performing the addition modulo:

[Ψ(r,1) + (Q(r,1) − 1)� Γ(r,1)] mod (216 + 1) = 0,

(Ψ(r,1) + Q(r,1) � Γ(r,1)) mod (216 + 1) = Γ(r,1).

Second, we randomly select MASKN1, MASKN2 ∈ {0, 1}16 to perform the XOR
operations and encode the outputs using S−1

(r) , T−1
(r) , where S−1

(r) = M−1
(r) ◦ A(r,1), T−1

(r) =

M−1
(r) ◦ A(r,2), M(r), A(r,1), and A(r,2) are all 16× 16 randomly selected reversible affine

mappings. The overall process is shown in Figure 3.

Figure 3. Application of masks.

Because the calculation of Ψ(r,b) is related to the keys, it must be invisible to users,
and the application of masks is similar to adding round-keys. Thus, we use the Type II
lookup table to include these two transformations.
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We use Y(r)
1 → Y(r)

1−N1 as an example. In CA(r, 1), we perform the calculation [Q(r,1) −
1]� Γ(r,1) and then find Ψ(r,1) from F216+1. Ψ(r,1) is used to offset a part of Q(r,1) � Γ(r,1).
This calculation is

(Y(r)
1 + Ψ(r,1)) mod (216 + 1) = Γ(r,1) = Y(r)′

1 .

The mask MASKN1 ∈ {0, 1}16 is selected randomly, and XORed with Y(r)′
1 . The com-

posite affine mapping S−1
(r) encodes the output to obtain the result:

Y(r)
1−N1 = S−1

(r) ◦
{
[(Y(r)

1 + Ψ(r,1)) mod (216 + 1)]⊕MASKN1
}
.

The Type II-V1 lookup table includes the operation Y(r)
1 (→Y(r)′

1 )→Y(r)
1−N1, which uses

a 16-bit input and produces a 16-bit output. Y(r)
1−N1 is an intermediate value, which is key-

sensitive and masked as well (see Figure 4). MASKN1 is also encoded by S−1
(r) , MASKN1→

E−MASKN1, and denoted as Type II-M1. Note that the encode masks are stored in other
security components not in our solution.

Figure 4. Generating the Type II-V1 lookup table (the application of MASKN1).

Using the same method, we use the Type II-V lookup tables to obtain Y(r)
1 →Y(r)

1−N1,

Y(r)
2 →Y(r)

2−N2, Y(r)
3 →Y(r)

3−N1, and Y(r)
4 →Y(r)

4−N2. The corresponding two blocks perform XOR
operations to obtain the inputs of the MA structure:

Y(r)
5 = Y1−N1 ⊕Y3−N1, Y(r)

6 = Y2−N2 ⊕Y4−N2.

Since these XOR operations of IDEA eliminate MASKN1 and MASKN2 added in this
step, the inputs of the MA structure have no masks.

3.3. Generating the Lookup Tables of MA Structure and Adding Another Masks

Although operations in MA structure are different, the four arithmetic calculations are
similar to the group operations except for the number of the sub-keys (the group operations
have four sub-keys, and the MA structure has two). The table type is also Type I. To encode
the outputs of thebMA structure, we use CA(r,c), c = 5, 6 to offset the confusion caused by
the random group members and add the other two masks to generate the Type II lookup
tables. The whole process of the MA structure is shown in Figure 5.

The inputs of the MA structure are Y(r)
5 and Y(r)

6 . Y(r)
5 is encoded by the composite

affine mapping R(r) to obtain Y(r)′
5 , where R(r) = A−1

(r,1) ◦ M(r), with R(r) stored in the

encryption system. Y(r)′
5 is split into two parts, and Q(r,3) is used to encode them. The mul-

tiplication modulo can be performed with the sub-key Z(r)
5 , and the addition inverses

(a5,a′5) from F216+1 are added, yielding the operations Y(r)′
5−1→MY(r)

5−1 and Y(r)′
5−2→MY(r)

5−2,

which are then recorded as lookup tables Type I-HB5 and Type I-LB5. The final result Y(r)
7

is obtained by the calculation MY(r)
5−1 + MY(r)

5−2 mod (216 + 1).

We use the composite affine mapping T(r) to encode Y(r)
6 , where T(r) = A−1

(r,2) ◦M(r).
T(r) is also stored in the system. In particular, the addition modulo operation will be done

with Y(r)
7 rather than a sub-key. We split Y(r)′

6 into two parts and use P(r,3) to encode Y(r)′
6−1
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and Y(r)′
6−2. Φ(r,1) is the multiplicative inverse of Q(r,3) from F216+1 and is used to offset Q(r,3)

on Y(r)
7 . P(r,3) handles it, yielding Y(r)′

7 . This leads to the following calculations:

P(r,3) ⊗ (28 ×Y(r)′
6−1 + Y(r)′

6−2)� [P(r,3) ⊗ (Φ(r,1) �Y(r)
7 )]

= [P(r,3) ⊗ (28 ×Y(r)′
6−1)]� [(P(r,3) ⊗Y(r)′

6−2)�Y(r)′
7 ].

We then let

CY(r)
6−1=P(r,3)⊗(28 ×Y(r)′

6−1), CY(r)
6−2=(P(r,3)⊗Y(r)′

6−2)�Y(r)′
7 .

The additive inverses (a6,a′6) from F216 should be incorporated to obtain

MY(r)
6−1 = CY(r)

6−1 � a6, MY(r)
6−2 = CY(r)

6−2 � a′6.

We implement the calculations Y(r)′
6−1→MY(r)

6−1 and Y(r)′
6−2→MY(r)

6−2 using tables Type

I-HB6 and Type I-LB6. The final result Y(r)
8 can then be calculated using MY(r)

6−1 � MY(r)
6−2

(see Figure 6).

Figure 5. Process of the MA structure.
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Figure 6. Generating the Type I lookup tables of the MA structure.

Using the same method, the second multiplication modulo in the MA structure uses
Φ(r,2) to eliminate P(r,3), with the output encoded by Q(r,4) and incorporating the additive

inverses (a8,a′8). From this, we obtain Y(r)
8−1→MY(r)

8−1 and Y(r)
8−2→MY(r)

8−2, implemented as the

tables Type I-HB8 and Type I-LB8. The result of the calculations is Y(r)
9 . The two operations

of the second addition modulo are Y(r)
7−1→MY(r)

7−1 and Y(r)
7−2→MY(r)

7−2, implemented as tables

Type I-HB7 and Type I-LB7, with the calculation result Y(r)
10 . Finally, the outputs of the MA

structure are Y(r)
9 and Y(r)

10 .
After the MA structure, MASKK1 and MASKK2 ∈ {0, 1}16 are selected randomly,

and they differ from MASKN1 and MASKN2. After calculations of CA(r,c), the XOR

operations are performed via Y(r)′
9 and Y(r)′

10 . Note that CA(r,c) uses the same method as
CA(r,b). The composite affine mappings T−1

(r) and S−1
(r) are used to encode the outputs. We

then obtain the Type II lookup tables providing the masked intermediate values Y(r)
10−K1

and Y(r)
9−K1. The transformation of Y(r)

10 can be seen in Figure 7.

Figure 7. Generating the Type II-V5 lookup tables (the application of MASKK1).

3.4. Eliminating the Masks

At this point, we have six blocks: four containing the outputs of group operations
and two containing the outputs of the MA structure. We perform four XOR operations to
complete the original IDEA design:

Y(r)
11 = Y1−N1 ⊕Y9−K2, Y(r)

12 = Y2−N2 ⊕Y10−K1,

Y(r)
13 = Y3−N1 ⊕Y9−K2, Y(r)

14 = Y4−N2 ⊕Y10−K1.

There are two different masks for each of the four results Y(r)
11 , Y(r)

12 , Y(r)
13 , and Y(r)

14 . We

remove the masks with the XOR operations and then exchange Y(r)
16 and Y(r)

17 (see Figure 8).
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Figure 8. The whole mask elimination process (use the coded masks in Type II-M tables and affine
transformations to perform operations in order).

The same affine layers make it easy to eliminate the masks with table Type II-M.
The outputs should be encoded by L(r,1), L(r,3), L(r,2), and L(r,4), with the intermediate

values encoded by T(r) and S(r). We now show Y(r)
11 as an example (see Figure 9). After two

masks have been eliminated, S(r) is used to encode the output, producing EY(r)′
11 , and L(r,1)

is used to process EY(r)′
11 from F216+1, with a final value of Y(r)

15 .

Figure 9. Eliminating the masks of Y(r)
11 (the operations will generate a Type II-E1 lookup table).

Thus far, we have finished one encryption round. The other seven rounds have the
same sequence of operations.

3.5. Generating the Lookup Tables for Output Transformation

The output transformation phase performs only group operations, so we also convert
these computations into eight Type I lookup tables. Two corresponding tables can be used
to compute EC1, EC2, EC3, and EC4, respectively. Finally, the ciphertext is

EC = (EC1‖EC2‖EC3‖EC4).

In particular, we regard the multiplicative inverses of Q(9,1), P(9,1), P(9,2), and Q(9,2) as
external encodings embedded in other components of the computer. Using the external
encodings, we obtain the same outputs as the original IDEA implementation:

(Φ(9,1)�EC1‖Φ(9,2)⊗EC2‖Φ(9,3)⊗EC3‖Φ(9,4)�EC4)

= (C1‖C2‖C3‖C4) = C.

4. Performance Analysis

The white-box IDEA requires 68 modular additions, 48 XORs, 216 lookups, and eight
composite affine mappings.
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All of the arithmetic operations are transformed into Type I lookup tables, requiring
4× (2× 28 × 16)× 8 + 4× (2× 28 × 16)× 8 + 4× (2× 28 × 16) = 65× 213 bits of storage.
The two corresponding Type I lookup tables are synthesized (modular addition) and
confused by 16× 16 affine transformations and 16-bit random masks. The Type II lookup
tables require 4× (216× 16)× 8+ 2× (216× 16)× 8+ 4× (216× 16)× 8 = 10240× 213 bits
of storage. The storage required for eight composite affine mappings is 8× 2× (16× 16 +
16) = 4115 bits. The total storage cost is about 10.06 MB.

We used a common laptop with an Intel® Core(TM) i7-3630QM CPU at 2.40 GHz to
test our white-box IDEA implementation written in Java 8.0. Encrypting a 64-bit plaintext
50,000 times with the original IDEA requires about 47 ms on average. Our white-box IDEA
required 2786 ms on average, about 60 times slower than the plain algorithm, which is
acceptable. Since our solution is the first white-box IDEA implementation, we can only com-
pare efficiency with white-box implementations of other algorithms, such as KMAC [29]
and AES [7]. As shown in Table 1, our solution offers competitive computing efficiency.

5. Security Analysis

Since the function of the S-box is replaced by algebraic operations in IDEA, the core
idea of our solution is the transformation of the two arithmetic operations into lookup
tables. Therefore, we conduct our security analysis on the lookup table structure of our
white-box IDEA against algebraic attacks and BGE-like attacks.

5.1. Analysis of the Lookup Tables

We first analyze the Type I lookup tables using X(r)
1 as the example. The adversary

can obtain the input X(r)
1−1 and the output MY(r)

1−1 of a single Type I lookup table. MZ(r)
1 can

be computed by inverse multiplication:

MZ(r)
1 = MY(r)

1−1 � [X(r)
1−1]

−1. (3)

On the other hand, by combining the two Type I lookup tables to eliminate the
influence of (a1, a′1), we can find:

MZ(r)′
1 = Y(r)

1 � [X(r)
1 ]−1. (4)

Due to the randomness of (a1, a′1), Q(r,1), and L−1
(0,1), where (a1, a′1) are additive in-

verses and Q(r,1), L−1
(0,1) are group members from F216+1. They provide 248 different values

in (3) and 232 probabilities in (4). Thus, there is no effective calculation or analysis of the
secret key.

Another approach is the 2003 proposal from Biryukov et al. [24] that describes an
algorithm for any two substitutions (S-boxes) to solve the affine equivalence problem. The
S1 and S2 affine equivalents should satisfy the equation

S2(X) = Λ2 ◦ S1(Λ1 ◦ X⊕ α)⊕ β or

S2(X)⊕ β = Λ2 ◦ S1(Λ1 ◦ X⊕ α),

where Λ1 and Λ2 are n× n invertible matrices, and α and β are n-bit columns. The linearity
of Λ1, Λ2 means we can check all α, β that satisfy the above equation to the recovered
key with time complexity O(n322n). The core idea of this attack is to construct the affine
equivalence problem.

Since the algebraic operations replace the S-boxes, it is not possible to find the S-boxes
and the linear relationship directly. However, we can regard the multiplication modulo (or
addition modulo) operation as a T-box to try to find a structure equivalent to the S-box.
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Then, using the idea of the affine equivalence problem to attack the solution, and using the
example X(r)

1 , we have

Y(r)
1−N1 =S−1

(r) ◦
{

CA(r,1) ◦[(Q(r,1) � L−1
(r,1) � X(r)

1 )� Z(r)
1 ]⊕MASKN1

}
=S−1

(r) ◦ T1[Λ1 ⊗ X(r)
1 ]⊕ [S−1

(r) ◦MASKN1].

Here, we regard Λ1 as a random group member from F216+1, α as a 16-bit column,
and the T1 box as a type of S-box representing the multiplication modulo and the operation
of the CA(r,1) box. We regard the added masks as a T2 box. This leads to

T2(X(r)
1 )=Y(r)

1−N1=S−1
(r) ◦T1[Λ1◦X(r)

1 ]⊕[S−1
(r) ◦MASKN1].

We then rewrite the preceding equation as

T2(X(r)
1 ) = Λ2 ◦ T1(Λ1 ◦ X(r)

1 ⊕ α)⊕ β,

where S−1
(r) is represented by Λ2, which is a randomly selected reversible composite affine

mapping, and S−1
(r) ◦MASKN1 is represented by β, which is actually the Type II-M1 lookup

tables. Thus, we have constructed the affine equivalence problem.
In our scheme, the above equation is only similar in form to the structure of the affine

equivalence problem because the operations of the T-boxes and S-boxes are different. Even
if the adversary combines the Type I and Type II tables to obtain the encoded masks’ lookup
tables, they also need to determine all possible Λ1, Λ2, and α to obtain the key information
hidden in the T1 box from the above formula.

5.2. BGE-Like Attacks

Billet et al. [23] proposed a method called BGE to attack the white-box AES designed
by Chow et al. [7]. The core idea of the BGE attack is the transformation of the non-linear
structure into a linear structure, construction of a linear relationship, and then use the
linear relationship to determine the affine or linear encoding. The time complexity of this
algorithm is 222 at present.

The group operations of the IDEA, multiplication modulo, and addition modulo can
be performed separately as non-linear T1- and T2-boxes, which are treated as non-linear
S-boxes. We consider the group operations of one encryption round as follows:MY(r)

1−1=Q(r,1)�L−1
(r−1,1)�(2

8×X(r)
1−1)�Z(r)

1 �a1,

MY(r)
1−2=Q(r,1)�L−1

(r−1,1)�X(r)
1−2�Z(r)

1 �a′1.MY(r)
2−1=P(r,1)⊗L−1

(r−1,2)⊗(2
8×X(r)

2−1)�(28×Z(r)′
2−1)�a2,

MY(r)
2−2=P(r,1)⊗L−1

(r−1,2)⊗X(r)
2−2�Z(r)′

2−2�a′2.MY(r)
3−1=P(r,2)⊗L−1

(r−1,3)⊗(2
8×X(r)

3−1)�(28×Z(r)′
3−1)�a3,

MY(r)
3−2=P(r,2)⊗L−1

(r−1,3)⊗X(r)
3−2�Z(r)′

3−2�a′3.MY(r)
4−1=Q(r,2)�L−1

(r−1,4)�(2
8×X(r)

4−1)�Z(r)
4 �a4,

MY(r)
4−2=Q(r,2)�L−1

(r−1,4)�X(r)
4−2�Z(r)

4 �a′4.
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We can also consider the MA structure, obtaining the equations:{
MY(r)

5−1=Q(r,3)�(28×Y(r)′
5−1)�Z(r)

5 �a5,

MY(r)
5−2=Q(r,3)�Y(r)′

5−2�Z(r)
5 � a′5.{

MY(r)
6−1=P(r,3)⊗(28×Y(r)′

6−1)�a6,

MY(r)
6−2=P(r,3)⊗Y(r)′

6−2�Y(r)′
7 �a′6.{

MY(r)
7−1=[P(r,4)⊗Φ(r,1)�(28×Y(r)

7−1)]�a7,

MY(r)
7−2=(P(r,4)⊗Φ(r,1)�Y(r)

7−2)�Y(r)′
9 �a′7.{

MY(r)
8−1=[Q(r,4)�Φ(r,2)⊗(28×Y(r)

8−1)]�Z(r)
6 �a8,

MY(r)
8−2=(Q(r,4)�Φ(r,2)⊗Y(r)

8−2)�Z(r)
6 �a′8.

From these eight sets of equations, we can see that the calculation methods of the T1
and T2 boxes are not exactly the same, meaning that a linear relationship
MY(r)

i = K ◦ Y(r)
j ◦ σ, where K denotes random group members from F216+1 or F216 ,

and σ is a constant, which does not necessarily exist. If the linear relationship is not
established, the BGE-like method cannot recover the keys.

In addition, the number of invertible matrices of order 16 is

(216 − 1)×
15

∏
j=1

(216 − 1−
j

∑
k=1

( j
k)) = 2255.

For white-box diversity and white-box ambiguity [7], our scheme has enough ran-
domness to counter brute-force attacks.

In summary, although our scheme is a completely new implementation of a cryp-
tography primitive, it is still sufficiently secure to resist ordinary algebraic analysis and
BGE-like attacks.

6. Conclusions and Discussion

In this paper, we proposed a scheme to implement the white-box IDEA. We focused
on the computation of two arithmetic operations in IDEA and developed a method to trans-
form these arithmetic operations into lookup tables (Type I) and embedded four different
masks to increase the resistance against white-box attacks (Type II). Our implementation
presents a new approach for transforming different algebraic operations into lookup tables,
and can be applied to other encryption systems with similar algebraic structures with
resistance against algebraic attacks, including BGE attacks.

Since the security evaluation method of the white-box model is not as complete as in
the black-box model, our future work will have two avenues. One effort will be to test other
new white-box implementation methods. For example, we want to design a completely
new white-box cipher with much smaller storage costs. The other will be to optimize
security and robustness of this white-box IDEA implementation with the expectation
that it will provide long-term protection. Since the structures of the three operations are
completely different from other block ciphers, we used the relatively large lookup tables
(Type II) to convert these calculations. Without the traditional S-box, there are still great
difficulties and challenges in optimizing the storage costs and security of the lookup tables.
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