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Abstract: We introduce a multi-parameter family of bases in the Hilbert space L2(R) that are asso-
ciated to a set of Hermite functions, which also serve as a basis for L2(R). The Hermite functions
are eigenfunctions of the Fourier transform, a property that is, in some sense, shared by these “gen-
eralized Hermite functions”. The construction of these new bases is grounded on some symmetry
properties of the real line under translations, dilations and reflexions as well as certain properties of
the Fourier transform. We show how these generalized Hermite functions are transformed under
the unitary representations of a series of groups, including the Weyl–Heisenberg group and some of
their extensions.

Keywords: Hermite functions; Weyl–Heisenberg groups; group representations; Fourier transform;
bases in Hilbert space L2(R); rigged Hilbert spaces

1. Introduction

In the present paper, we study the relations between certain physical relevant low-
dimensional Lie groups, in connection to affine transformations on the whole real line
(R) and their representations on the Hilbert space L2(R) as well as to other notions as the
Hermite functions, other bases in L2(R) and the eigenfunctions of the Fourier transform.
As a consequence of these relations, some invariance properties are disclosed.

These invariance properties come from the options between four types of freedom.
These are: (i) the freedom to choose between coordinate and momentum representations
and the respective bases determined by each of these representations; (ii) the freedom to
choose an origin on the real line when using any of these two representations; (iii) the
freedom to choose the units of length on R; and (iv) the freedom to choose an orientation
on the line. We span one dimensional wave functions in terms of bases in either coordinate
or momentum representation. The family of bases is parametrized by the set of real
numbers R, which is an homogeneous, self-similar and not oriented space, as is well known.
The Fourier transform, which is an invertible correspondence between coordinate and
momentum representations [1], implies some restrictions on self-similarity and orientation.

This invariance suggests a principle of relativity: Assume that two observers are
located at different points of the line and that, furthermore, they use different length
and/or momentum units. These observers would perceive the same physical state as
exactly the same description of the reality. This means that, under these invariances, the
one-dimensional physical world may be equivalently described by the coordinate x and
the momentum p or, alternatively, by the coordinate x′ = kx + a and the momentum
p′ = k−1 p + b with a, b ∈ R and k ∈ R∗ ≡ R− {0}.

As with other well-known situations showing invariance properties, this type of
invariance is described by a Lie group, which is usually denoted by H̃(1). This is a twofold
version of the affine Weyl–Heisenberg group H̃o(1) [2–8], since it includes the discrete
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symmetry associated to the reflection or Parity operator P : (x, p) → (−x,−p). The Lie
algebra of the affine Weyl–Heisenberg group, h̃(1) has four infinitesimal generators: D, X, P
and I that correspond to dilations, position operator, momentum operator and a central
operator commuting with the others, respectively. As we shall show later, the Lie group
H̃(1) is isomorphic to the the central extension of the Poincaré group in 1+1 dimensions [9]
enlarged with the discrete symmetry P T , where P is the parity and T is the time-reversal.

From now on, when we speak about symmetry or invariance on the real line, we refer
to the existence of properties of spaces constructed over R, such as L2(R). This includes
many others depending on a unique continuous parameter.

The Hermite functions are all real and determine a basis of the (complex) space of
functions L2(R). Self-similarity transformations do not change this property. In addition,
it is rather simple to construct additional bases of L2(R) after some transformations on
Hermite functions, for instance under the action of the group H̃(1). The results are the
so-called generalized Hermite functions, to be defined later (Section 4). Contrary to the
basis of Hermite functions, these bases of generalized Hermite functions are not sets of real
functions as they usually have a complex phase.

As is well known, the real line R as one dimensional Euclidean space is the homo-
geneous space Eo(1)/{0}, where Eo(1) is the group of translations on the line and {0} is
the isotropy group of an arbitrary point of the line—for instance the origin. The real line
supports two important continuous bases for L2(R): {|x〉}x∈R and {|p〉}p∈R. Each of these
bases is transformed into each other by the Fourier transform. The meaning of continuous
bases will be clarified later, although it is nonetheless explained in [10].

One consequence of the homogeneity is that the continuous basis in the coordinate
representation given by {|x〉}, where x runs out the set of real numbers, is equivalent to

the continuous basis {|x + a〉}, where x Ta−→ x + a, for each fixed a ∈ R, with Ta ∈ Eo(1).
Analogously, the continuous basis in the momentum representation, {|p〉}, is equivalent
to the continuous basis {|p + b〉}, where p runs out the set of real numbers and b is an
arbitrary, although fixed, real number.

If we consider the position, X and momentum, P, operators acting on their generalized
eigenvectors, which are |x〉 and |p〉, respectively, we have that

X |x〉 = x|x〉 ⇒ e−iXa|x〉 = e−iax|x〉 ,

P |p〉 = p|p〉 ⇒ e−iPb|p〉 = e−ibp|p〉 .
(1)

The Fourier transform and its inverse produce the following relations [10] :

|p〉 = 1√
2 π

∫
R

eipx|x〉 dx , |x〉 = 1√
2 π

∫
R

e−ipx|p〉 dp . (2)

We also have the following relations:

e−iXa |p〉 = 1√
2 π

∫
R

eipxe−iXa|x〉 dx =
1√
2 π

∫
R

eix(p−a)|x〉 dx = |p− a〉

e−iPb |x〉 = 1√
2 π

∫
R

e−ipxe−iPb|p〉 dp =
1√
2 π

∫
R

e−i(x+b)p|x〉 dp = |x + b〉.
(3)

The conclusion is that X and P, along with the central operator I, determine the Lie
algebra for the Heisenberg–Weyl group H(1). In this context, we say that the real line,
meaning the space L2(R), supports a unitary representation of H(1).

However, the group H(1) does not exhaust self-similarity invariances on the real line
and for our purposes is “not oriented”, in the sense that it is equivalent to consider the
direction on the line either from left to right or from right to left. Moreover, as commented
earlier, the continuous basis {|x〉} is equivalent to the continuous basis {|kx〉} for each
fixed k ∈ R∗ := R/{0}. This suggests the use of the dilatation operator, D, which may be
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defined by the action of its exponential on the continuous basis as e−idD|x〉 = e−d/2 |edx〉 (d
real), which defines a unique self-adjoint operator on L2(R). This action considers positive
dilatations only as ed > 0 for any real d. If 〈x|y〉 = δ(x− y) then 〈edx|edy〉 = δ(ed(x− y)) =
e−d δ(x− y). This is the reason to introduce the factor e−d/2 in the definition of the action

of e−idD in |x〉, so that 〈x|
(

e−idD
)†

e−idD|y〉 = 〈x|y〉.
Analogously, the continuous basis {|p〉} is equivalent to the continuous basis {|k′p〉},

for each k′ ∈ R∗. Consistency with Fourier transform invariance implies that k′ = k−1.
This suggests a result that shall become evident soon, which is that the algebra describing
the invariance in the real line has to be H̃o(1), i.e., the Weyl–Heisenberg group enlarged
with dilatations.

Nevertheless, we need to introduce orientation invariance and negative values of k for
dilatations in our picture. This is done by means of the parity operator P , where the action
of P on the continuous bases is given by P |x〉 = | − x〉 and P |p〉 = | − p〉. If we add this
parity operator to the connected group H̃o(1), we obtain the general group of invariance of
the real line H̃(1). Then, the space L2(R) supports a unitary representation U of H̃(1).

This representation U can be well studied using the generalized Hermite functions, that
we mentioned earlier. For our purposes, we need two families of bases that are constructed
as follows: First, take the basis of the normalized Hermite functions {ψn(x)} and add
their Fourier transforms {ψ̃n(p)}. Then, if the unitary representation is denoted by U(g̃)

with g̃ ∈ H̃(1), these families are given by {U(g̃)ψn(x)}g̃∈H̃(1)
x∈R and {U(g̃)ψ̂n(p)}g̃∈H̃(1)

x∈R .
These two families of generalized Hermite functions are transformed into each other
by the Fourier transform and its inverse, exactly as happens with the regular Hermite
functions [10].

The present article is organized as follows: In Section 2, starting from the transla-
tion groups and considering some extra symmetries for the line, we arrive at the Weyl–
Heisenberg group H(1). We also considered the symmetry under Fourier Transform for the
Hermite functions. In Section 3, we present some general properties of the Weyl–Heisenberg
group and its extension to H̃(1). This group is connected to the general symmetry on the
real line. We deal with local structures, exhibited by the Lie algebra of H̃(1), which is
presented in its more familiar form, which includes the parity operator.

In Section 4, we construct the unitary representations of the Weyl–Heisenberg group
and its generalisations defined in the previous Section. Considering the behaviour of the
Hermite functions under the group H̃(1), we introduce, in Section 5, a generalization
of such Hermite functions: we obtain a three-parameter family of “generalized Hermite
functions” that are bases of L2(R). We study the properties of these generalized Hermite
functions as well as their behaviour under the Fourier transform. We also construct Rigged
Hilbert space structures associated with these generalized Hermite functions. We give our
concluding remarks in the final Section 6.

2. From the Translation Group to the Weyl–Heisenberg Group

Let us consider the group of the translations of the real line, Eo(1). It can be considered
as the connected part of the isometries of the line (translations and reflexions in a point, as
for instance the origin) that constitute the Euclidean group on one dimension E(1).

The group Eo(1) is isomorphic to the group (R,+). Under a translation Ta, the point
x of the real line is transformed as x → x + a with a ∈ R. The action of Eo(1) on the space
of square integrable functions defined on R (L2(R)) is given by

(U(Ta) f )(x) = f (x− a) , (4)

where we have taking into account that, if a group G acts on a space X from the left

(i.e., ∀x ∈ X
g∈G−−→ g x ∈ X such that e x = x, with e as the identity element of G, and
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g′(g x) = (g′ g) x , ∀g, g′ ∈ G), then there is a representation of this group on the space of
functions defined in X as

(U(g) f )(x) = f (g−1x) . (5)

Let P be the infinitesimal generator of the translation group, so that U(Ta) = e−iaP. It
is clear from Equation (5) that P = −i d

dx .

2.1. The Group Eo(1) Extended by Dilations: A Matrix Realization

Let us also consider transformations, such as dilations: Dk, acting as x → kx with
k ∈ R∗. Thus, the composition of translations and dilations of the form Ta · Dk acts as

x
Dk−−−→

k∈R∗
kx Ta−−→

a∈R
kx + a . (6)

We can represent the group spanned by both transformations as the group of matrices

M[k,a] =

(
k a
0 1

)
, k 6= 0, b ∈ R , (7)

which acts on the real line as follows:

M[k,a]x =

(
k a
0 1

)(
x
1

)
=

(
k x + a

1

)
, (8)

in agreement with Equation (6). Henceforth, we shall denote this group as Ẽ(1). It is
non-connected and shows two connected components: the connected component of the
unit characterized by k > 0 and and a second component for which k < 0.

2.2. The Connected Component of Ẽ(1): Ẽo(1)

Let us start by restricting ourselves to the connected component of the unit of Ẽ(1) that
we denote as Ẽo(1). The infinitesimal generators in the matrix representation (Equation (7)) are

P =
dM[k,a]

da

∣∣∣∣
a=0

=

(
0 1
0 0

)
, D =

dM[k,a]

dk

∣∣∣∣
k=1

=

(
1 0
0 0

)
. (9)

The commutation relation of P and D is [D, P] = P . We see that under exponentiation
(i.e., eaP and ekK), we only recover Ẽo(1)

eaP ekD =

(
1 a
0 1

)(
ek 0
0 1

)
= M[a,ek ]. (10)

Let us denote by g = (a, k) = eaP ekD an arbitrary element of Ẽo(1) with a, k ∈ R. The
group law is given by

g′ · g = (a′, k′)(a, k) = (a′ + ek′ a, k′ + k) . (11)

Moreover, the element g can be factorized as g = (a, 1)(0, k) and g−1 = (−e−ka,−k) .
The action of g ∈ Ẽo(1) on the functions f (x) is given by (see Equation (5))

(U(a, k) f )(x) = e−k/2 f (e−k(x− a)) , (12)

where the term e−k/2 has been added so as to assure the unitarity of this representation
[11–13]. In particular, the Hermite functions ψn(x) are functions in L2(R). In addition,
Hermite functions are a basis of L2(R). Consequently, they support the representation of
Ẽo(1), so that

(U(a, k)ψn)(x) = e−k/2 ψn(e−k(x− a)) . (13)
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After Equation (12) (U(a, k) = e−iaP e−ikD), the infinitesimal generators take the ex-
plicit form

P = −i
d

dx
, D = −i

1
2

(
x

d
dx

+
d

dx
x
)

, (14)

and its Lie commutator is given by [D, P] = iP .

2.3. The Group Ẽ(1)

To take into account the orientation invariance of the real line or, in other words, to
consider the second connected component of the group Ẽ(1), we must include the parity
or reflexion operator around the origin P , which acts on R as x → −x . The infinitesimal
generators P and D transform under P as P : (P, D) → (−P, D), and the elements
g = (a, k) of Ẽo(1) transform under parity as (a, k)P = (aP , kP ) = (−a, k) .

Each of the g̃ ∈ Ẽ(1) can be parametrized by

g̃ = (a, k, α) , α ∈ V = {I ,P} (15)

where I is the identity transformation. The group law is given by

g̃′ · g̃ = (a′, k′, α′)(a, k, α) = (a′ + ek′ aα′ , k′ + k, α′α) , (16)

where, clearly,

aα =

 a if α = I

−a if α = P
. (17)

Thus, Ẽ(1) is given by a semidirect product, such as Ẽ(1) = Ẽo(1)� V = (Eo(1)�
V)�D, where D is the group of dilations {(0, k, I)}k∈R. This is clear, since

g̃ = (a, k, α) = (a, k, I) (0, 0, α) = (a, k, I) (0, 0, α) = (a, 0, I) (0, 0, α) (0, k, I) . (18)

On the given representation of Ẽ(1), the operator P is realized as a linear operator, so
that the representation is unitary. It has the form [13,14]

(U(a, k, α) f )(x) = e−k/2 f (e−k(xα − a)) .

(U(a, k, α)ψn)(x) = e−k/2 ψn(e−k(xα − a)) .
(19)

2.4. The Weyl–Heisenberg Group H(1)

An important fact of the Hermite functions is that they are eigenfunctions of the
Fourier transform (FT) and its inverse (IFT) [10]

FT [ψn(x), x, p] = in ψn(p) , IFT [ψn(p), p, x] = (−i)n ψn(x) , (20)

i.e.,

FT[ f (x), x, p] =
1√
2 π

∫
R

eipx f (x) dx = f̂ (p) ,

IFT[ f̂ (p), p, x] =
1√
2 π

∫
R

e−ipx f̂ (p) dp = f (x) .
(21)

Henceforth, we shall use this notation.
All properties that are fulfilled by the Hermite functions ψn(x) are also valid for their

FTs ψn(p). Hence,
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(
e−iPa f̂

)
(p) =

1√
2 π

∫
R

eipx
(

e−iPa f
)
(x) dx =

1√
2 π

∫
R

eipx f (x− a) dx

=
1√
2 π

eipa
∫
R

eiup f (u) du = eipa f̂ (p) ,

(
e−iDk f̂

)
(p) =

1√
2 π

∫
R

eipx
(

e−iDk f
)
(x) dx =

1√
2 π

∫
R

eipx e−k/2 f (e−kx) dx

=
1√
2 π

∫
R

ek/2 eiekvp f (v) dv = ek/2 f̂ (ek p) .

(22)

In the above relations, we used the changes of variables given by u = x − a and
v = e−kx. In addition, we need a translation operator acting on the real line in the p
representation. Let us first recall some important properties of the FT, such as:

x f (x)
FT[•,x,p]−−−−−→ −i

d
dp

f̂ (p) ,
d

dx
f (x)

FT[•,x,p]−−−−−→ −ip f̂ (p) . (23)

Hence, we define a new operator X acting on the space of square integrable functions
on the line as:

(X f )(x) = x f (x) , (eiX f )(x) = eix f (x) , (24)

so that,(
eiXb f̂

)
(p) =

1√
2 π

∫
R

eipx
(

eiXb f
)
(x) dx =

1√
2 π

∫
R

eipx eibx f (x) dx

=
1√
2 π

∫
R

eix(p+b) f (x) dx = f̂ (p + b) .
(25)

Thus, X is the infinitesimal generator of translations on the p-real line.
From Equation (20) and taking into account the isomorphism between the real x-line

and the real p-line, we can identify, up to a phase, the Hermite functions ψn(x) and their
FT, i.e.,

ψn(x) TF−→ ψ̂n(p) = in ψn(p) ≡ in ψn(x) . (26)

Hence, we have properly determined the generators X (Equation (24)) and P (Equation (14))
acting on L2(R), with R as the x-line. From Equations (4) and (24), we note that X pro-
duces a phase and P a translation, respectively. Clearly from Equation (23), the roles of
X and P interchange when R is the p-line. Both operators along to the central operator I
determine the Weyl–Heisenberg group, since they verify the Lie commutators [X, P] = i I
and [I, • ] = 0 .

In the next section, we study the Weyl–Heisenberg group as well some of its extensions
in detail.

3. The Weyl–Heisenberg Group and Its Extensions

In this section, we give first a review of the Weyl–Heisenberg (WH) group as well
one of its extensions and their respective Lie algebras. Then, we provide the isomorphism
between the extended WH group and a central extension of the Poincaré (1 + 1) group
enlarged by the discrete symmetry P T (parity-time inversion).

3.1. The Weyl–Heisenberg Group: A Matrix Realization

The most common commutation relation that plays a role in ordinary relativistic quan-
tum physics, which is [x, p] ≡ [x,−ih̄ ∂

∂x ] = ih̄, serves to define the Weyl–Heisenberg group
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H(1). This group admits a representation by real 3× 3 upper uni-triangular matrices [8]
given by:

A[a, b, θ] =

1 a θ
0 1 b
0 0 1

 , a, b, θ ∈ R . (27)

These matrices form a group with the usual matrix multiplication as one readily sees:

A[a′, b′, θ′] · A[a, b, θ] = A[a′ + a, b′ + b, θ′ + θ + ab′] . (28)

The identity element is the identity matrix, i.e., Id = A
∣∣
a,b,θ=0, and the inverse of A

is given by A−1[a, b, θ] = A[−a,−b, ab− θ]. H(1) is a subgroup of the group of all upper
triangular matrices 3× 3, M3(R) [15].

3.2. The Extended Weyl–Heisenberg Group

In order to include self-similarity on the real line, one needs to look at a more general
subgroup of M3(R), which is the set of all 3× 3 matrices of the form:

B[a, b, θ, k] =

1 a θ
0 k b
0 0 1

 , a, b, θ ∈ R, k ∈ R∗ . (29)

The group law is also given by matrix multiplication. Hence

B[a′, b′, θ′, k′] · B[a, b, θ, k] = B[ka′ + a, k′b + b′, θ′ + θ + a′b, k′k] . (30)

The identity element is Id = B
∣∣
a,b,θ=0,k=1 and the inverse of the element B[a, b, θ, k] is

B[−a/k,−b/k,−θ + ab/k, 1/k]. Clearly, this group reduces to H(1) if, and only if, k = 1.
In other words H(1) is a subgroup of this extended Weyl–Heisenberg group. Consequently,
we denote the extended group as H̃(1). The group H̃(1) has two connected components:
the connected component of the identity characterized for k > 0, which is a subgroup of
H̃(1), here denoted as H̃o(1), and a second component containing the elements elements
caracterized by k < 0. This can be obtained multiplying the elements of H̃o(1) by the
“parity” matrix P = Diagonal[1,−1, 1].

3.3. The Weyl–Heisenberg Algebras

Let us go back to the group H(1) of matrices of the form Equation (27). This group
depends on three real parameters a, θ and b related to the generators X, I and P, respectively,
of the Lie algebra h(1). In addition, the Lie algebra h̃(1) contains another generator, D,
which is associated with the real parameter k in the group of matrices (Equation (29)). The
explicit form of these generators in this matrix representation is given by

X = ∂B
∂a

∣∣∣∣
Id
=

 0 1 0
0 0 0
0 0 0

, I = ∂B
∂θ

∣∣∣∣
Id
=

 0 0 1
0 0 0
0 0 0

,

P = ∂B
∂c

∣∣∣∣
Id
=

 0 0 0
0 0 1
0 0 0

, D = ∂B
∂k

∣∣∣∣
Id
=

 0 0 0
0 1 0
0 0 0

.

(31)

Hereafter, we will remove the “overline” symbol of the infinitesimal generators in the
matrix representation, and we will write, with same symbol, the generators in the matrix
representation and in the vector field representation.

The commutation relations are

[X, P] = I , [D, X] = −X , [D, P] = P, [I, • ] = 0 . (32)
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It is noteworthy that the action of the parity matrix, P = Diagonal[1,−1, 1], on the
generators is given by P YP−1 (with Y = X, P, I, D), so that

P XP−1 = −X , P PP−1 = −P , P I P−1 = I , P DP−1 = D . (33)

For arbitrary g ∈ h(1), one has the commutator [g, [g, g]] = 0. Thus, the algebra
h(1) ≡ 〈X, P, I〉 is nilpotent. On the other hand, this is not the case for h̃o(1) ≡ 〈X, P, D, I〉,
which is not nilpotent, although solvable.

The four one-parametric subgroups of h̃o(1), corresponding to its four independent
real parameters, are constructed by direct exponentiation of the matrices in Equation (31).
They are

eaX =

 1 a 0
0 1 0
0 0 1

, eθ I =

 1 0 θ
0 1 0
0 0 1

, ebP =

 1 0 0
0 1 b
0 0 1

 , edD =

 1 0 0
0 ed 0
0 0 1


with a, θ, b, d ∈ R. Since, by exponentiation, we only obtain the elements of the connected
component of the unit, which is H̃o(1), we must have that ed > 0.

The group H̃o(1) can be factorized as a product of its four one-dimensional groups as

eθ I ebP edD eaX = B[a, b, θ, ed] ,

eθ I ebP eaX edD = B[eda, b, θ, ed] ,

eθ I eaX ebP edD = B[eda, b, θ + ab, ed] ,

(34)

or alternatively as eθ I eaX+bP edD = B[eda, b, θ + ab/2, ed] .
In the sequel, we shall write all g ∈ H̃o(1) as a product of the four one-parametric

groups using the second formula in Equation (34). This means that

g ≡ (θ, b, a, d) = eθ I ebP eiaX edD , θ, b, a, d ∈ R . (35)

With this parametrization, the group law becomes

g′g = (θ′, b′, a′, d′) (θ, b, a, d) = (θ′ + θ + a′ ed′b, b′ + ed′b, e−d′ a + a′, d′ + d) (36)

and the inverse element of g = (θ, b, a, d) is g−1 = (−θ + ab,−e−db,−eda,−d) .
We may compute the adjoint action of the four one-parameter subgroups on the four

generators of the Lie algebra h̃o(1). The not trivial actions are

eaXPe−aX = P + aI , eaXDe−aX = D + aX ,

ebPXe−bP = X− bI , ebPDe−bP = D− bP ,

edDXe−dD = e−dX , edDPe−dD = edP .

(37)

From Equations (35) and (37), we can easily compute the adjoint action of the group
H̃o(1) on its Lie algebra h̃o(1). The result is

gXg−1 = e−dX− e−dbI ,

gPg−1 = edP + edaI , g = (θ, b, a, d)

gDg−1 = D + a X− b P− a bI .

(38)

Hence, Equation (38) show that, under the action of the elements of H̃o(1), the position
and the momentum operators are transformed as X′ = e−dX− e−dbI and P′ = edP + edaI,
respectively. Therefore, the whole group describing the invariances in the oriented real line
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should be H̃(1), as e±d is always positive, so that it does not change the orientation of X
and P. However, the real line is not, properly speaking, an oriented space as can be seen
equally well from left to right or from right to left. As a consequence, we have to add to H̃o(1)
a parity operator P acting like the parity matrix Diagonal[1,−1, 1] (Equation (33)). Hence,

H̃(1) = V2 ⊗ H̃o(1) , (39)

where V2 is the group of the discrete symmetries {I ,P}.

3.4. The Extended WH Group Versus an Extension of the Poincar é (1+1) Group

The group H̃(1) is isomorphic to an extension of the Poincaré (1 + 1) group, which we
denote by P̃(1, 1). More especifically, it is the connected component of the identity of the
extended Poincaré group in (1 + 1) dimensions [7,9]. The group P̃o(1, 1), enlarged with the
symmetry P T , gives

P̃(1, 1) = P̃o(1, 1) ∪ P T · P(1, 1) = V2 ⊗ Po(1, 1) . (40)

Here, V2 is the group of the discrete symmetries {I ,PT }. As a matter of fact, the
group P̃o(1, 1) is spanned by H, P, K and C. These are the infinitesimal generators of the
time-translations, space-translations, boots and the central extension, respectively. Their
Lie commutators are

[P, H] = C, [K, H] = P, [K, P] = H, [•, C] = 0 . (41)

Under the discrete symmetry P T , the infinitesimal generators transform as

(H, P, K, C) P T−−→ (−H,−P, K, C) . (42)

Now, let us consider the new generators

X± = H ± P , I = 2C (43)

together with K. Their commutation relations are

[X+, X−] = I, [K, X+] = X+, [K, X−] = −X−, [•, I] = 0 . (44)

From Equation (42), the behaviour of X± under the symmetryP T is (P T ) X± (P T )−1 =
−X±. Hence, the identification

(X+, X−, K, I) ⇐⇒ (X, P, D, I) (45)

along to the symmetry (P T ) ⇔ P allows us to show the existence of an isomorphism
between the Lie algebras Lie[P̃(1, 1)] and Lie[H̃(1)] and their Lie groups.

4. Unitary Representations of the WH Groups

In this section, we review the unitary representations (UR) and the unitary irreducible
representations (UIR) of the different HW groups described in the previous section.

4.1. UIR of the Weyl–Heisenberg Group H(1)

One may consider the WH group as a central extension of the abelian group of the
translations on the 2-dimensional euclidean plane. The elements of the WH group are
parametrized by g = (θ, a, b) with θ ∈ R and a, b ∈ R [7,16,17] with the multiplication law

g1 · g2 = (θ1, a1, b1)(θ2, a2, b2)

= (θ1 + θ2 + ξ((a1, b1), (a2, b2)), a1 + a2, b1 + b2) ,
(46)
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where the exponent ξ is

ξ((a1, b1), (a2, b2)) =
1
2
(a1 b2 − a2 b1) . (47)

For the sake of simplicity, we write~a = (a, b, 0) so that, after Equation (47), we have

ξ(~a1,~a2) =
1
2
~a1 ∧~a2 , ~ai = (ai, bi, 0), i = 1, 2 . (48)

Note that Equation (46) comes after the more usual factorization

g = (θ, a, b) := eθ I eaX+bP . (49)

The proof is very simple making use of of the Glauber formula [1,7], which states that if
A and B are two operators such that [A, [A, B]] = [B, [A, B]] = 0, then eA eB = eA+B e

1
2 [A,B]

or equivalently eA eB = eB eA e[A,B]. The Glauber formula is a particular case of the
Baker–Campbell–Hausdorff formula [18–20]. The Glauber formula relates the different
parametrizations of the group. For instance, from Equation (49) eaX+bP = e(θ−

1
2 ab)I ebP eaX .

The UIRs of the WH group on the space of square integrable functions on the real
line L2(R) are well known due to their applications in quantum mechanics. Here, we can
distinguish two types or classes thereof:

I. The infinite-dimensional representations labeled by a real parameter h ∈ R∗ given by
the product of operators [7,16]

Uh(g) ≡ Uh(θ, a, b) = eihθ eih(aX−bP) = eih(θ−ab/2) eihaX e−ihbP , (50)

for which its explicit expression acting on the functions f (x) ∈ L2(R) is given by

(Uh(g) f )(x) = eihθ eiha(x−b/2) f (x− b) . (51)

Note that Uh′ and Uh with h′ 6= h are non-equivalent.
II. The one-dimensional and trivial UIR with h = 0, so that (U0(g) f )(x) = f (x), which

is not relevant in our discussion.

Under the representations of class I, see Equation (51), the infinitesimal generators
X, P, I take the form

(X f )(x) = x f (x) , (P f )(x) = − i
h

d f
dx

(x) , [X, P] =
i
h

I ⇒ I = h . (52)

If h = 1/h̄, we recover well-known results in quantum mechanics. We may say that
the real line, by which we mean the space of square integrable functions on the real line
L2(R), supports a UIR Uh of the Weyl–Heisenberg group H(1).

4.2. UIR of the Weyl–Heisenberg Group with Dilations H̃o(1)

As mentioned in Section 1, the group H(1) does not exhaust self-similarity invariances
on the real line, which, for our purposes, should be considered as “non-oriented”. By non-
orientation, we refer to the equivalence of both directions from left to right or from right to
left. The Lie algebra describing the invariance on the real line is h̃(1), and its generators fulfil
the commutation relations (Equation (32)). Then, we take into account the realization of
the infinitesimal generators of the WH group (Equation (52)) and Section 2.2 (in particular
expression (14)). With all these ingredients, we obtain the following expression for the
infinitesimal generator D:

(D f )(x) = − i
2h

(
x

d
dx

+
d

dx
x
)

f (x) = − i
2h

.
(

2x
d f (x)

dx
+ f (x)

)
(53)
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Hence,
(

e−ihdD f
)
(x) = e−d/2 f (e−dx) . Another interesting fact is that this group has

two Casimir elements: I (central charge) and C = X P− I D (the quadratic Casimir). The
eigenvalues of these central elements (h, C) ∈ R2 label the UIRs of H̃o(1). For the sake of
our purposes, the suitable UIRs of H̃o(1) (h 6= 0, C) are given by

(Uh,C(ĝ) f )(x) = e−d/2 eih(θ+C) eiha(x−b/2) f (e−d(x− b)) , (54)

where, according to Equation (49) ĝ = (g, d) = (θ, a, b, d) = eθ I eaX+bP edD with g ∈ H(1)
and d ∈ R . Now, the group law is given by

ĝ1 ĝ2 = (θ1 + θ2 +
1
2

ξ((a1, b1), (ed1 a2, e−d1 b2)), a1 + ed1 a2, b1 + e−d1 b2, d1 + d2) , (55)

where we have considered Equation (46). The inverse of the element ĝ = (θ, a, b, d) is
the element

ĝ−1 = (−θ,−e−da,−edb,−d) . (56)

Following the notation used in Equation (47), we can rewrite the exponent ξ of
Equation (55) as

ξ(ĝ1 ĝ2) = ξ((a1, b1), (ed1 a2, e−d1 b2)) = ξ
(
~a1,~a d1

2

)
, ~a d = (eda, e−db) . (57)

The factor systems [21] ωH̃o(1) = eihξ of the group H̃o(1) are

ωH̃o(1)(ĝ1 ĝ2) = eihξ
(
~a1,~a

d1
2

)
. (58)

In [9], the UIRs of the Poincaré (1 + 1) group are constructed. Taking into account
the relationship between this group and H̃o(1), which was discussed in Section 3.4, it is
straightforward to rewrite these representations in terms of our results for H̃o(1).

4.3. UR of the Extended Weyl–Heisenberg Group H̃(1)

The invariance under orientation, or invariance under the change x ↔ −x suggests
the need for the use of the parity operator, P . The connected group H̃o(1) plus the parity
operator provide the general group of invariance of the real line as a semidirect product of
the group of the discrete symmetries V2 = {I ,P}, where I is the identity operator and the
affine Weyl–Heisenberg group (Equation (39)). This semidirect group is

H̃(1) = V2 � H̃o(1) . (59)

The action of the parity into H̃o(1) is given by (θ, a, b, d) P−→ (θ,−a,−b, d) . The
elements of the group H̃(1) can be written as g̃ = (ĝ, α) where ĝ = (θ, a, b, d) ∈ H̃o(1) and
α ∈ V2 . The law group of H̃(1) is given by

g̃1 · g̃2 = (ĝ1, α1)(ĝ2, α2) = (ĝ1 · ĝα1
2 , α1α2) , (60)

where ĝα = ĝ if α = I and ĝP = (θ,−a,−b, d) if α = P . From Equations (56) and (60), the
inverse of g̃ is

g̃−1 = (ĝ, α)−1 = (
(

ĝ−1
)α

, α) = (−θ,−e−daα,−edbα,−d, α) . (61)

Before constructing the representations of H̃(1), we display some well-known facts
about representations of non-connected groups.

Let us consider a non-connected Lie group G, a subgroup H ⊂ G of index 1 or 2
in G and a realization of G on the group of linear and antilinear operators in a Hilbert
space such that U(g) be linear or antilinear if g ∈ H or g ∈ G− H. Hence, the action of
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U(g) on a function f (x) would be (U(g) f )(x) = η(g, x) f g(g−1x) such that f g(x) = f (x)
or f g(x) = f (x)∗ if g ∈ H or g ∈ G − H, respectively, with η : G × X → U(1).
Moreover, from the relation U(g′)U(g) = ω(g′, g)U(g′g), with ω : G × G → U(1) ,
we find that η(g′, gx) η(g, x)g′ = ω(g′, g) η(g′gx) . The factor system ω verifies the two-
cocycle condition

ω(g1, g2)ω(g1g2, g3) = ω(g2, g3)
g1 ω(g1, g2g3) (62)

together with ω(e, e) = ω(e, g) = ω(g, e) = 1, ∀g ∈ G, with e as the identity element of
G. The action of G on U(1), denoted by ∗H, is defined by βg = β if g ∈ H and βg = β∗

if g ∈ G − H with β ∈ U(1). The set of two-cocycles is denoted by Z2
∗H(G, U(1)). The

two-coboundaries are those two-cocycles ω verifying

ω1(g1, g2) = λ(g1) λ(g2) λ(g1, g2)
−1 . (63)

The set of classes of equivalence of two-cocycles modulo two-coboundaries determines
the second cohomology group of G: H2(G, U(1)) = Z2

∗H(G, U(1))/B2
∗H(G, U(1)) [22].

Let G be a semidirect product G = Go �V, where Go is the connected component of
the identity and V = πo(G) is the group of the connected components, with the action

g ∈ G α∈V−−→ gα ∈ G . In this case, the restrictions to Go and V of the action of G on U(1)
give the actions of Go and V on U(1) (denoted by ∗H

∣∣
Go

and ∗H
∣∣
V respectively). In this

case, ∗H
∣∣
Go

is trivial. Then, for each [ω] ∈ H2
∗H(G, U(1)), we can find a factor system ω,

which is an element of Z2
∗H(G, U(1)) given by

ωG(g1, α1; g2, α2) = ωGo (g1, gα1
2 )ωV(α1, α2)Λ(g2, α1) , (64)

where ωGo ∈ Z2
∗H
∣∣

Go

(Go, U(1)), ωV ∈ Z2
∗H
∣∣

V

(V, U(1)) and Λ : Go ×V → U(1) verifying

ωGo (gα
1 , gα

2) = ωGo (g1, g2)
∗H
∣∣

V
(α) Λ(g1g2, α)(Λ(g1, α)Λ(g2, α))−1 , (65)

Λ(g, α1α2) = Λ(gα2 , α1) (Λ(g, α2))
∗H
∣∣

V
(α1) . (66)

For more details, see [14] and the references therein.
Returning to the parity operator P , we may select two choices for its representation

U(P), either by a linear or by an antilinear operator. In the sequel, we analyse both
possibilities [14].

(I) If we look at P as a linear operator, then H = H̃(1). The factor systems of H̃(1) can
be written as

ωH̃(1)(ĝ1, α1, ĝ2, α2) = ωH̃o(1)(ĝ1, ĝα1
2 )ωV2(α1, α2)Λ(ĝ2, α1) , (67)

where the factors ωH̃o(1), ωV2 , and Λ : H̃o(1)× V2 → U(1) fulfil the equations

ωH̃o(1)(ĝα
1 , ĝα

2) = ωH̃o(1)(ĝ1, ĝ2)Λ(ĝ1 ĝ2, α)(Λ(ĝ1, α)Λ(ĝ2, α))−1 , (68)

Λ(ĝ, α1α2) = Λ(ĝα2 , α1)Λ(ĝ, α2) . (69)

where we have taken into account that the action ∗H
∣∣
V2
(P) is here trivial after the linearity

of P .
In this case, we take the factors (Equation (58)) for H̃o(1). Then,

ωH̃o(1)(ĝα
1 , ĝα

2) = ωH̃o(1)(ĝ1, ĝ2) , α ∈ {I ,P} . (70)
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Hence, Λ, is two-coboundary (Equation (63)), and therefore we may dismiss it. The
factor ωV2(α1, α2) is easily shown to be trivial in this case. It is straightforward that
ωV2(P ,P) = m ∈ U(1), while all the others : ω(I , I) = ω(I ,P) = ω(P , I) = 1 . Now,
from Equation (63), we can write

ω1(P ,P) = m = λ(P) λ(P) λ(P2)−1 = λ(P)2 ⇒ λ(P) = m1/2 , (71)

since λ(I) = 1. Thus, the UIRs are given by

(Uh,C(ĝ, α) f )(x) = e−d/2 eih(θ+C) eiha(x−b/2)α
f (e−d(x− b)α) . (72)

(II) According to the second option, P is an antilinear operator. Then, H = H̃o(1). The
factors for H̃(1) satisfy the relation (67). ωH̃o(1), ωV2 and Λ verify the Equations (65) and (66).
Since P is an antilinear operator, the action ∗H

∣∣
V2
(P) is the complex conjugation. Hence,

ωH̃o(1)(ĝα
1 , ĝα

2) = ωH̃o(1)(ĝ1, ĝ2)
∗H
∣∣
V2

(α)
Λ(ĝ1 ĝ2, α)(Λ(ĝ1, α)Λ(ĝ2, α))−1 , (73)

Λ(ĝ, α1α2) = Λ(ĝα2 , α1)Λ(ĝ, α2)
∗H
∣∣
V2

(α)
. (74)

From Equations (58) and (70), we conclude that Eqaution (73) have no solutions for Λ
unless h = 0. Moreover, ωV2 is non trivial now and ωV2

m (P ,P) = m with m = ±1. Then, Λ
becomes trivial. Its factor system is now

ωH̃(1)(ĝα
1 , ĝα

2) = ωV2
m (α1, α2) . (75)

We, thus, obtained a semi-unitary representation of the whole group such that its
restriction to the connected component is a realization with h = 0. We have now

(U0,C(ĝ, α) f )(x) = ∆(α) f (xα) , (76)

where ∆(I) = Identity and ∆(P) = K, the conjugation operator.
In the following, we shall focus our attention in the representations of class I, i.e., in

the unitary representations (72) or (81) as they are the only non-trivial.

4.4. Unitary Representations of H̃(1) and Fourier Transform

The above unitary representations can be translated to functions f̂ (p) via the Fourier
transform. Thus, for the representation (72), we have(

Uh,C(g̃) f̂
)
(p) =

∫
R

eihpx (Uh,C(g̃) f )(x) dx

= ed/2 eih(θ+C) eihpb f̂ (ed(p + a)α) .
(77)

For the representation (76), we have(
U0,C(ĝ, α) f̂

)
(p) =

∫
R

eεαihpx (U0,C(ĝ, α) f )(x) dx

=
∫
R

eεαihpx ∆(α) f (xα) dx = ∆(α)
∫
R

eihpαxα
f (xα) dx

= ∆(α) f (pα) ,

(78)

where εα = sign(∆(α)i).
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5. A Generalization of the Hermite Functions

The most used orthonormal basis for the Hilbert space L2(R) is the basis of the
normalized Hermite functions, {ψn(x)}, defined as [23,24]

ψn(x) :=
e−x2/2√
2nn!
√

π
Hn(x) , Hn(x) := (−1)n ex2 dn

dxn e−x2
, n = 0, 1, 2, . . . , (79)

where the Hn(x) are the so-called the (physicists) Hermite polynomials [10,25]. We recall
the following well known relations of orthognormality an completeness, respectively, that
assure that the normalized Hermite functions are a basis for L2(R):

∫ +∞

−∞
ψn(x)ψn′(x)∗ dx = δnn′ ,

∞

∑
n=0

ψn(x)ψn(y)∗ = δ(x− y) . (80)

The basis of Hermite functions (Equation (79)) has two interesting properties: (i) despite
the complex character of the functions in the Hilbert space L2(R), all Hermite functions are
real and (ii) they are eigenfunctions of the FT and also of the IFT (Equation (20)) [10].

We can restrict the UIR of H̃(1) (Equation (72)) to those elements g̃ = (ĝ, α) with θ = 0,
recall that g̃ = (θ, a, b, d, α). Let us denote g̃0 = (0, a, b, d, α), and take C = 0. The action of
g̃0 on the Hermite functions is given by

(Uh,0(g̃0)ψn)(x) = e−d/2 eiha(x−b/2)α
ψn(e−d(x− b)α) . (81)

Note that the joint action of Parity (Equation (17)) and dilatation becomes

e−d xα =

 e−d x = kx with k > 0 if α = I

−e−d x = kx with k < 0 if α = P
(82)

Since Uh,0 is a UIR, it preserves the orthonormality and the completeness relations
(Equation (80)) for the transformed Hermite functions (Uh,0(g̃0)ψn)(x). If we split the
completeness relation for the (Uh,0(g̃0)ψn)(x) into its real and imaginary parts, we arrive
at the following pair of equations, both together equivalent

∞

∑
n=0

cos[ha(x− y)]ψn(kx + b)ψn(ky + b) = δ(x− y) ,

∞

∑
n=0

sin[a(x− y)]ψn(kx + b)ψn(ky + b) = 0 .
(83)

In the sequel, we shall introduce a generalization of the Hermite functions and study
some of their properties.

5.1. Generalized Hermite Functions

Let us define a three-parameter family of square integrable functions based on the
Hermite functions as follows:

χn(x, k, a, b) :=
√
|k| e−iax ψn(kx + b) , a, b ∈ R; , k 6= 0 ∈ R∗ . (84)

These also verify the orthonormality and completeness relations (Equation (80)) as
the Hermite functions as the reader can easily verify. This shows that, for fixed a, b and
k 6= 0, the functions χn(x, k, a, b), n = 0, 1, 2, . . . , form a basis for L2(R). Thus, we have
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constructed a family of bases for this Hilbert space, whose elements under the Laplace
transform and its inverse become

FT[χn(x, k, a, b), x, p] = inχn(p, k−1, b,−a) ,

IFT[χn(p, k, a, b), p, x] = (−i)nχn(x, k−1,−b, a) .
(85)

Thus, the generalized Hermite functions are not eigenvectors of FT (IFT) contrarily to
the Hermite functions (Equation (20)). On the other hand, if

k = k−1, a = b, b = −a =⇒ k = ±1, a = 0, b = 0, (86)

the corresponding generalized Hermite functions are eigenvalues of FT (IFT). This only
happens for the standard Hermite functions.

Note that while the Hermite functions are real, the generalized Hermite functions are
not real and they are only real for the particular choice a = 0, where the three-parameter
family of bases becomes restricted to a two-parameter family.

Finally, we may disregard translational invariance and consider self-similarity and
invalid orientation only. Then, the three-parameter family of bases Equation (84) reduces
to a one-parameter family, depending only on k ∈ R∗. This is

{χn(x, k)}n∈N
∈R∗ ≡ {χn(x, k, 0, 0)}n∈N

∈R∗ ≡ {
√
|k| ψn(kx)}n∈N

∈R∗ . (87)

We shall discuss the importance of these bases in the sequel.

5.2. P̃(1, 1) and the “Classical” Real Line

In Section 3, we extended the group H(1) to include non-commutativity and self-
similarity. Thus, we arrived to H̃(1), which is isomorphic to an extension of the Poincaré
group in 1+1 dimensions, P̃(1, 1), see Section 3.4. Nevertheless, it is always possible to start
from symmetries of “classical physics” given by Po(1, 1), which is the connected component
of the Poincaré group in (1 + 1) dimensions to arrive again at P̃(1 + 1) using the central
extension and the P T symmetry as a tool.

In order to implement this programme, we start with the algebra Lie(Po(1 + 1)) = Po(1 + 1)
with the basis {H, P, K} [9]. Here, H and P are the infinitesimal generators of the time
and space translations, respectively, and K is the infinitesimal generator of the Lorentz
transformations. Their commutation relations are

[H, P] = 0, [H, K] = P, [P, K] = H . (88)

The action of an arbitrary element (a0, a1, Λ(η)) ∈ Po(1+ 1) on the space-time is given by

(a, b, Λ(η))x ≡
(

cosh η sinh η
sinh η cosh η

)(
x0

x1

)
+

(
a0

a1

)
, (89)

where x = (x0, x1)T . Using the relations (43) and (45), we obtain a new basis {X, P, K},
such that [X, P] = 0. These new basis elements are related to to the light-cone coordinates:

x± = x0 ± x1 ⇔ x0 =
x+ + x−

2
, x1 =

x+ − x−
2

. (90)

The commutator [X, P] = 0 justifies the label of “classicality” for the symmetry with
group of invariance Po(1, 1). As previously remarked, the group P(1, 1) is the result of the
addition of the operator PT to Po(1, 1). The action of each g = (a, b, d, α) ∈ P(1, 1) on any
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square integrable function in the coordinate and the momentum representation is (x+ = x,
x− = p), respectively, according to Equations (81) and (82):

U(g) f (x) = |k|−1/2 f (k−1(x− b))

U(g) f (p) = |k|1/2 f (k(p + a))
k =

(
ed
)α
∈ R∗ . (91)

Now, let us consider self-similarity and parity transformations on the line, perform-
ing the operations x =⇒ kx and p =⇒ k−1 p, along the symmetries induced by these
transformations. The translation invariance introduced in quantum physics by the non-
commutativity is not relevant here. For k 6= 0 and real, Equation (87) yields to

χn(x, k) =
√
|k| e−k2x2/ 2√

2nn!
√

π
Hn(kx) . (92)

One readily obtains that, for any k ∈ R∗, these functions verify orthogonality an
completeness relations, such as the Hermite functions (Equation (80)). This shows that
{χn(x, k)} is a one-parameter family of orthonormal bases for L2(R). Under FT and IFT
these bases become

FT[χn(x, k), x, y] = inχn(y, k−1) , IFT[χn(p, k−1), y, x] = (−i)nχn(x, k) . (93)

The functions belonging to the family of basis {χn(x, k)} are all real for all k ∈ R∗, a
property also shared by the basis of Hermite functions {ψn(x)}. This means that both sets
of bases are equally appropriate for the Hilbert space L2(R), no matter if this is a Hilbert
space over either the complex or the real field. This property is, in general, false if we
choose {χn(x, k, a, b)} as a basis, which, for most values of the parameters, is solely a basis
for L2(R) as a Hilbert space over the complex field.

On the other hand, all the bases {ψn(x)}, {χn(x, k, a, b)} and {χn(x, k)} have a similar
behaviour under the Fourier transform and its inverse, so that all serve as bases in the
momentum representations (Equations (20), (85) and (93)).

5.3. Generalized Hermite Polynomials

Some comments on the functions {χn(x, k)} are in order here. For each value of
n = 0, 1, 2, . . . , these functions include the factor Hn(kx), which is the n-th Hermite poly-
nomial (Equation (79)) with a dilation on its argument. The Rodrigues formula for Hn(kx)
follows straightforwardly from Equation (79) and gives

Hn(kx) = (−1)n ek2x2 dn

kndxn e−k2x2
=

(
2kx− 1

k
d

dx

)n
∗ 1 , (94)

with the generating function

e2kxt−t2
=

∞

∑
n=0

Hn(kx)
tn

n!
. (95)

Other relevant formulas or recurrence relations of the Hermite polynomials Hn(x)
are straightforwardly obtained from Hn(kx). As for instance, the differential equation for
Hn(kx), which is

H′′n (kx)− 2k2xH′n(kx) + 2k2nHn(kx) = 0 . (96)

5.4. The Set of Functions {χn(x, k)} as Basis for Representations of the WH Algebra H(1)

As already mentioned, {ψn(x)} ≡ {χn(x, 1)} is a basis for representations of the
WH algebra h(1) [26], which are supported on L2(R). In addition, following previous
experiences with the use of ladder operators, we may also here construct a set of operators,
{H, A+, A−}, for h(1) such that the basis functions {χn(x, k)} are eigenfunctions of H and
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are transformed into each other using A± as ladder operators. The explicit form of these
operators for h(1) is

H :=
1
2
(k2X2 + k−1P2) , A± :=

k√
2

x∓ 1√
2 k

d
dx

. (97)

They fulfil the following commutation relations in h(1):

[H, A±] = ±A± , [A+, A−] = −1 . (98)

It is quite simple to show that the operators A± act as ladder operators with respect to
the family of bases {χn(x, k)}:

A+ χn(x, k) =
√

n + 1 χn+1(x, k) , A− χn(x, k) =
√

n χn−1(x, k) . (99)

Then, we may define the number operator N := A+A− so that, from Equation (99),
we have

Nχn(x, k) = n χn(x, k) , (100)

as we may have expected. Note that H = N + 1/2 and that relations (98) and (99) are
independent on k. This representation of h(1) has the zero operator as a Casimir [26,27]:[

H − 1
2
{A+, A−}

]
χn(x, k) = 0 . (101)

This relation may be extended to the common domain of the operators {H, A+, A−}.
This domain is dense in L2(R) since it contains the Schwartz space. We also may write the
Casimir in terms of the basis {X, P, H}. Needless to say that, in this explicit realization
(Equation (97)), the Casimir is also zero, i.e.,[

H − 1
2
(k2X2 + k−2P2)

]
χn(x, k) = 0 . (102)

Observe that the formal expression for the Casimir depends now on k. This is also the
case of the kinetic energy operator, which, on each member of the basis {χn(x, k)}, acts as

P2

2
χn(x, k) = k2

[
(N + 1/2) − k2X2

2

]
χn(x, k) . (103)

Note that the right hand side of Equation (103) goes to the free particle of zero energy
in the limit k→ 0. This exhibits a limiting connection between the harmonic oscillator and
the free particle within the context of quantum mechanics.

5.5. Representations on a Rigged Hilbert Space

Thus far, we have discussed representations of some Lie algebras as operators on
the Hilbert space L2(R). These operators, although self-adjoint, are unbounded. It would
be interesting to represent these algebras of operators as continuous operators on some
topological vector space. The formalism of rigged Hilbert spaces (RHS), or Gelfand triplets,
is very suitable in achieving this goal. A rigged Hilbert space is a triplet of spaces [28]
Φ ⊂ H ⊂ Φ×, such thatH is a complex separable infinite dimensional Hilbert space.

The locally convex space Φ is endowed with a strictly finer topology than the inherited
by Φ fromH, so that the canonical injection Φ 7−→ H is continuous. Finally, the space of
all continuous antilinear functionals on Φ is Φ×, which is the antidual space of Φ. It may
have any topology compatible with the dual pair {Φ, Φ×}, i.e., weak, strong or MacKey.
We usually choose this antiduality instead of duality for notational convenience [29,30].
See also [10,31–34].

The simplest example for Φ is the Schwartz space S of all complex indefinitely dif-
ferentiable functions on the real line, such that they and their derivatives go to zero at
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infinity faster than the inverse of any polynomial. A good discussion on the Schwartz
space may be found in [35]. The Schwartz space contains all the basis {χn(x, k, a, b)} and
S ⊂ L2(R) ⊂ S× is a RHS. In the sequel, we shall see why this RHS is suitable for our
purposes. We should note first that, if A is a symmetric (Hermitian) continuous operator
[35] on S , then it may be extended to a continuous operator on S× by using the duality
formula 〈Aϕ|F〉 = 〈ϕ|AF〉 for all ϕ ∈ S and F ∈ S× , and 〈ϕ|F〉 is the action of F ∈ S× on
ϕ ∈ S .

The usual Frèchet topology on S is given by a countable set of norms. There are several
countable families of norms given the same topology on S , although the most convenient
for our purposes in the following [35]: A square integrable function f (x) ∈ L2(R) with
f (x) = ∑∞

n=0 an ψn(x) is in S if, and only if,

∞

∑
n=0
|an|2 (n + 1)2r < ∞ , r = 0, 1, 2, . . . . (104)

Then, for any f ≡ f (x) ∈ S , we define the following countable family of norms, pr( f ), as:

pr( f ) :=

√
∞

∑
n=0
|an|2 (n + 1)2r , r = 0, 1, 2, . . . . (105)

For r = 0, we have the Hilbert space norm, and thus the canonical injection i : S 7−→ L2(R)
is continuous.

What happens if we use the other families of bases such as {χn(x, k)} or {χn(x, k, a, b)}?
Note that for fixed real numbers a, b and k 6= 0, we have

f (x) =
∞

∑
n=0

bn χn(x, k, a, b) =
∞

∑
n=0

bn
√

k e−iax ψn(kx + b)

=
∞

∑
n=0

bn
√

k e−i(y/k−b/k) ψn(y) ,
(106)

so that for all r = 0, 1, 2, . . . ,

p2
r ( f ) = k

∞

∑
n=0
|bn|2 (n + 1)2r , (107)

and hence |an|2 = k |bn|2, n = 0, 1, 2, . . . , for k fixed. This is the same for the span of f (x) in
terms of the family of basis {χn(x, k)}.

With these ideas in mind, it is trivial to prove that the operators A±, H and N,
defined in Equations (97)–(99), are continuous operators on S and, therefore, continuously
extensible to S×. This comes from the following result [35]:

Theorem 1. Let Φ be a locally convex space for which the topology is defined by the family of
seminorms {pi(·)}i∈I . A linear operator A : Φ 7−→ Φ is continuous on Φ if, and only if, for each
seminorm pj of the previous family, there exist a positive constant K > 0 and k fixed seminorms of
the same collection pn1 , pn2 , . . . , pnk such that for all ϕ ∈ Φ, we have

pi(ϕ) ≤ K{pn1(ϕ) + pn2(ϕ) + · · ·+ pnk (ϕ)} . (108)

The constant K, the seminorms pn1 , pn2 , . . . , pnk and its number k may depend on pj.

Proof. In order to prove our claim, let us first show that, for any f (x) ∈ S , A± f (x) ∈ S ,
and the same property is true for H and N. Take,

[A+ f ](x) =
∞

∑
n=0

an
√

n + 1 χn+1(x, k) , (109)
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so that for any norm, pr, in Equation (105), one has for r = 0, 1, 2, . . .

pr(A+ f ) =
√

k

√
∞

∑
k=0
|an|2 (n + 1) (n + 1)2r ≤

√
k

√
∞

∑
k=0
|an|2 (n + 1)2(r+1)

≤
√

k pr+1( f ) .

(110)

This proves both that A+ f ∈ S for any f ∈ S and that, according to the previous
Theorem, A+ is continuous on S . Similar proofs can be used for A−, H and N. Since,

X =
1√
2 k

(A+ + A−) , P =
ik√

2
(A− − A+) , (111)

it comes that X and P are also continuous operators on S . The same property holds for the
parity operator P. All these operators are continuously extensible to S×.

6. Concluding Remarks

We studied how invariance properties on the real line under geometric transforma-
tions, such as translations, dilations and inversions, can be represented as unitary mappings
on L2(R). This representation transforms the basis of Hermite functions with a new basis
of functions, which generalizes the notion of Hermite functions. In the process, we arrive
at the Euclidean group on the line E(1).

The properties of the Fourier transform and, in particular, transforming coordinates
into momenta and vice versa, FT[ f (x), x, p] = f̂ (p), forced us to introduce an enlarged
group adding a new generator to extend the Weyl–Heisenberg group H(1) to the group
H̃(1). This group is isomorphic to the central extension of the Poincaré group in (1 + 1)
dimensions enlarged with the P T transformation. Analogously, H̃(1) is isomorphic to
the central extension group of isometries of the two dimensional space R2 with signature
(+,−). This extension is denoted as P̃(1, 1) or also Ẽ(1, 1).

One representation of the infinitesimal generators of Ẽ(1, 1) as operators on L2(R)
is explicitly given by X = x, P = −(i/h) ∂x, D = − i

2h (x∂x + ∂x x), I = h. While
X and P algebraically express the connection between the configuration and momenta
representation described analytically by the Fourier transform, the dilatation operator
is given to obtain the factor e∓d/2. This factor is necessary in order to normalize the
representation (54) and (77). Finally, if we choose, for h, the value 1/h̄, we recover all the
well-known results of quantum mechanics.

We introduced a generalization of the Hermite functions, which are quite appropriate
to our discussion due to their behaviour under transformations by the group H̃(1). These
newly generalized Hermite functions also provide a three-parameter family of bases of
L2(R). However, these generalized Hermite functions are not eigenvectors of the Fourier
transform on L2(R), regardless of if the Fourier transform maps the orthonormal basis into
orthonormal basis. We may say that, from this point of view, the usual Hermite functions
are those with better properties among all types of generalized Hermite functions.

Let us also mention that the generalized Hermite functions are discrete bases in a
rigged Hilbert space on which the generators of H(1) or H̃(1) are continuous. Finally, since
the generalized Hermite functions belong to all spaces Lp(R) with p ≥ 1 and, in particular,
to L1(R) and L2(R), they are useful in the decomposition of wavelets in signal analysis by
making use of the Gabor transform [36–40]. This could be the subject of future research.
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