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Abstract: Directing at various problems of the traditional Q-Learning algorithm, such as heavy
repetition and disequilibrium of explorations, the reinforcement-exploration strategy was used to
replace the decayed ε-greedy strategy in the traditional Q-Learning algorithm, and thus a novel
self-adaptive reinforcement-exploration Q-Learning (SARE-Q) algorithm was proposed. First, the
concept of behavior utility trace was introduced in the proposed algorithm, and the probability
for each action to be chosen was adjusted according to the behavior utility trace, so as to improve
the efficiency of exploration. Second, the attenuation process of exploration factor εwas designed
into two phases, where the first phase centered on the exploration and the second one transited
the focus from the exploration into utilization, and the exploration rate was dynamically adjusted
according to the success rate. Finally, by establishing a list of state access times, the exploration factor
of the current state is adaptively adjusted according to the number of times the state is accessed.
The symmetric grid map environment was established via OpenAI Gym platform to carry out the
symmetrical simulation experiments on the Q-Learning algorithm, self-adaptive Q-Learning (SA-Q)
algorithm and SARE-Q algorithm. The experimental results show that the proposed algorithm has
obvious advantages over the first two algorithms in the average number of turning times, average
inside success rate, and number of times with the shortest planned route.

Keywords: reinforcement learning; Q-Learning algorithm; self-adaptive Q-Learning algorithm;
self-adaptive reinforcement-exploration strategy; path planning

1. Introduction

Reinforcement learning (RL), one of methodologies of machine learning, is used to
describe and solve how an intelligent agent learns and optimizes the strategy during the
interaction with the environment [1]. To be more specific, the intelligent agent acquires
the reinforcement signal (reward feedback) from the environment during the continuous
interaction with the environment, and adjusts its own action strategy through the reward
feedback, aiming at the maximum gain. Different from supervised learning [2] and semi-
supervised learning [3], RL does not need to collect training samples in advance, and
during the interaction with the environment, the intelligent agent will automatically learn
to evaluate the action generated according to the rewards fed back from the environment,
instead of being directly told the correct action.

In general, the Markov decision-making process is used by the RL algorithm for
environment modeling [4]. Based on whether the transition probability P of the Markov
decision-making process in the sequential decision problem is already known, the RL
algorithm is divided into two major types [5]: a model-based RL algorithm under known
transition probability and a model-free RL algorithm under unknown transition probability,
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where the former is a dynamic planning method, and the latter mainly includes strategy-
based RL method, value function-based RL method, and strategy–value function integrated
RL method. The value function-based RL method is an important solution to the model-free
Markov problem, and it mainly makes use of Monte Carlo (MC) RL and temporal-difference
(TD) RL [6].

As one of most commonly used RL algorithms, the Q-Learning algorithm, which is
based on value, reference strategy learning and TD method [7], has been widely applied to
route planning, manufacturing and assembly, and dynamic train scheduling [8–10]. Many
researchers have been dedicated to improving the low exploration efficiency problem of the
traditional Q-Learning algorithm. Qiao, J.F. et al. [11] proposed an improved Q-Learning
obstacle avoidance algorithm in which Q-Table was substituted with neural network (NN),
in an effort to overcome the deficiency of Q-Learning, namely, it was inapplicable under
continuous state. Song, Y. et al. [12] applied the artificial potential field to the Q-Learning
algorithm, proposed a Q value initialization method, and improved the convergence rate
of the Q-Learning algorithm. In [13], a dynamic adjustment algorithm for the exploration
factor in ε-greedy strategy was raised to improve the exploration-utilization equilibrium
problem existing in the practical application of RL method. In the literature [14], a nominal
control-based supervised RL route planning algorithm was brought forward, and the
tutor supervision was introduced into the Q-Learning algorithm, thus accelerating the
algorithm convergence. Andouglas et al. came up with a reward matrix-based Q-Learning
algorithm, which satisfies the route planning demand of marine robots [15]. Pauline et al.
introduced the concept of partially guided Q-Learning, initialized the Q-Table through the
flower pollination algorithm (FPA), and thus optimized the route planning performance
of mobile robots [16]. Park, J.H. et al. employed a genetic algorithm to evolve robotic
structures as an outer optimization, and it applied a reinforcement learning algorithm to
each candidate structure to train its behavior and evaluate its potential learning ability as
an inner optimization [17].

It can be seen from the above description that the current research on the improvement
of the Q-learning algorithm mainly focuses on two aspects: The first is to study the
attenuation law of the exploration factor ε with the increase of the number of training
episodes. The second aspect is to adjust the exploration factor ε of the next episode
according to the training information of the previous episode. The article creatively
proposes the idea of dynamically adjusting the exploration factor of the current episode
according to the states accessed times, based on the decayed ε-greedy strategy, the concept
of behavior utility trace is introduced, and the states accessed list and on-site adaptive
dynamic adjustment method are added, so the self-adaptive reinforcement exploration
method is realized, and taking the path planning as the application object, the simulation
results verify the effectiveness and superiority of the proposed algorithm. The main
contributions of the proposed algorithm are as follows: (1) the traditional Q-learning
algorithm selects actions randomly according simply to the equal probability method,
without considering the differences of actions. In the article, the behavior utility trace is
introduced to improve the probability of effective action being randomly selected. (2) In
order to better solve the contradiction between exploration and utilization, the article
designs the attenuation process of the exploration factor into two stages. The first stage
is the exploration stage. The attenuation of the exploration factor is designed slowly to
improve the exploration rate. The second stage is the transition from the exploration stage
to the utilization stage, which dynamically adjusts the attenuation speed of the exploration
factor according to the success rate. (3) In addition, because the exploration factor is fixed
in each episode, the agent makes too much exploration near the initial location. The article
proposes to record the access times of the current state through the states accessed list, so as
to reduce the exploration probability of the states with more accessed times, and improve
the exploration rate of the state which is first accessed, so as to improve the radiation range
of exploration.
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2. Markov Process
2.1. Markov Reward Process (MRP)

In a timing sequence process, if the state at time t + 1 only depends on the state St at
time t while unrelated to any state before time t, the state St at time t is considered with
Markov property. If each state in a process is of Markov property, the random process is
called Markov process [18].

The key to describing a Markov process lies in the state transition probability matrix,
namely, the probability for the transition from the state St = s at time t into state St+1 = s′

at time t + 1, as shown in Equation (1):

Pss′ = p
[
St+1 = s′|St = s

]
(1)

For a Markov process with n states (s1, s2, · · · , sn), the state transition probability
matrix P from the state s into all follow-up states s′ is expressed by Equation (2):

P =

 Ps1s1 · · · Ps1sn

· · · · · ·
Psns1 · · · Psnsn

 (2)

In Equation (2), the data in each row of state transition matrix P denote the probability
value for the transition from one state into all other n states, and the sum of each row is
constantly 1.

An MRP is formed when the reward element is added into a Markov process. An
MRP, which is composed of finite state set S, state transition probability matrix P, reward
function R and attenuation factor γ(γ ∈ [0, 1]), can be described through a quadruple form
S, P, R, γ.

In an MRP, the sum of all reward attenuations since the initial sampling under a state
St until the terminal state is called the gain, which is expressed by Equation (3):

Gt = Rt+1 + γRt+2 + · · ·+ γkRt+k+1 =
∞

∑
i=0

γkRt+k+1 (3)

In Equation (3), Rt+1 is the instant reward at time t + 1, k is the total number of
subsequent states from the time t + 1 until the terminal state, and Rt+k+1 is the instant
reward of terminal state.

The expected gain of a state in the MRP is called value, which is used to describe the
importance of a state. The value v(s) is expressed as shown in Equation (4):

v(s) = E[Gt|St = s ] (4)

By unfolding the gain Gt in the value function according to its definition, the expres-
sion as shown in Equation (5) can be acquired:

v(s) = E[Rt+1 + γv(St+1)|St = s ] (5)

In Equation (5), the expected value of state St+1 at time t+ 1 can be obtained according
to the probability distribution at the next time. s denotes the state at the present time, s′

represents any possible state at the next time, and thus Equation (5) can be written into the
following form:

v(s) = Rs + γ ∑
s′∈S

Pss′v
(
s′
)

(6)

Equation (6), which is called Bellman equation in MRP, expresses that the value of
a state consists of its reward and the values of subsequent states according to a certain
probability and attenuation ratio.
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2.2. Markov Decision-Making Process

In addition to the MRP, the RL problem also involves the individual behavior choice.
Once the individual behavior choice is included into the MRP, the Markov decision-making
process is obtained.

The Markov decision-making process can be described using a quintuple form
〈S, A, P, R, γ, 〉, where its finite behavior set A, finite state set S and attenuation factor
γ are identical with those of the MRP. Different from the MRP, the gain R and state transi-
tion probability matrix P in the Markov decision-making process are based on behaviors.

The action At = a is chosen at state St = s, the gain Ra
s at the moment can be expressed

by the expected gain Rt+1 at time t + 1, and it is mathematically described as shown in
Equation (7):

Ra
s = E[Rt+1|St = s, At = a ] (7)

The mathematical description of state transition probability Pa
ss′ from the state St = s

into the subsequent state St+1 = s′ is shown in Equation (8):

Pa
ss′ = P

[
St+1 = s′|St = s , At = a

]
(8)

In the Markov decision-making process, an individual will choose one action from the
finite behavior set according to their own recognition of the present state, and the basis
for choosing such behavior becomes a strategy and a mapping from one state to action.
The strategy is usually expressed by the symbol π, referring to a distribution based on the
behavior set under the given state s, namely:

π(a|s ) = P[At = a|St = s ] (9)

The state value function vπ(s) is used to describe the value generated when the state s
abides by a specific strategy π in the Markov decision-making process, and it is defined by
Equation (10):

vπ(s) = E[Gt|St = s ] (10)

The behavior value function is used to describe the expected gain that can be obtained
by executing an action a under the present state s when a specific strategy π is followed.
As a behavior value is usually based on one state, the behavior value function is also called
state-behavior pair value function. The definition of behavior value function qπ(s, a) is
shown in Equation (11):

qπ(s, a) = E[Gt|St = s , At = a] (11)

By substituting Equation (3) into Equations (10) and (11), respectively, two Bellman
expectation Equations (12) and (13) can be acquired:

vπ(s) = E[Rt+1 + γvπ(St+1)|St = s ] (12)

qπ(s, a) = E[Rt+1 + γqπ(St+1, At+1)|St = s , At = a] (13)

In the Markov decision-making process, a behavior serves as the bridge of state
transition, and the behavior value is closely related to the state value. To be more specific,
the state value can be expressed by all behavior values under this state, and the behavior
value can be expressed by all state values that the behavior can reach, as shown in Equations
(14) and (15), respectively:

vπ(s) = ∑
a∈A

π(a|s)qπ (s, a) (14)

qπ(s, a) = Ra
s + γ ∑

s′∈S
Pa

ss′vπ

(
s′
)

(15)
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The following can be obtained by substituting Equation (15) into Equation (14):

vπ(s) = ∑
a∈A

π(s|a )
(

Ra
s + γ ∑

s′∈S
Pa

ss′vπ

(
s′
))

(16)

Equation (14) is substituted into Equation (15) to obtain:

qπ(s, a) = Ra
s + γ ∑

s′∈S
Pa

ss′ ∑
a′∈A

π(a′
∣∣s′)qπ

(
s′, a′

)
(17)

Each strategy corresponds to a state value function, and the optimal strategy naturally
corresponds to the optimal state value function. The optimal state value function v∗(s)
is defined as the maximum state value function among all strategies, and the optimal
behavior value function q∗(s, a) is defined as the maximum behavior value function among
all strategies, as shown in Equations (18) and (19), respectively:

v∗(s) = max
π

vπ(s) (18)

q∗(s, a) = max
π

qπ(s, a) (19)

From Equations (16) and (17), the optimal state value function and optimal behavior
value function can be obtained, as shown in Equations (20) and (21), respectively:

v∗(s) = max
a

Ra
s + γ ∑

s′∈S
Pa

ss′v
∗(s′) (20)

q∗(s, a) = Ra
s + γ ∑

s′∈S
Pa

ss′mqxq
a

∗(s′, a′
)

(21)

If the optimal behavior value function is known, the optimal strategy can be ac-
quired by directly maximizing the optimal behavior value function q∗(s, a), as shown in
Equation (22):

π∗(a|s ) =

1 if a = argmaxq∗(s, a)
a∈A

0 otherwise
(22)

3. Self-Adaptive Reinforcement-Exploration Q-Learning Algorithm
3.1. Q-Learning Algorithm

Compared with the TD reinforcement learning method based on value function and
the state–action–reward–state–action (SARSA) algorithm, the iteration of the Q-learning
algorithm is a trial-and-error process. One of the conditions for convergence is to try every
possible state–action pair many times, and finally learn the optimal control strategy. At the
same time, the Q-learning algorithm is an effective reinforcement learning algorithm under
the condition of unknown environment. It does not need to establish the environment
model, and has the advantages of guaranteed convergence, less parameters and strong
exploratory ability. Especially in the field of path planning, which focuses on obtaining
the optimal results, the Q-learning algorithm has more advantages, and it is the research
hotspot of scholars at present [19]. The Q in Q-Learning algorithm is namely the value Q(s,a)
of state–behavior pair, representing the expected return when the Agent executes the action
a (a ∈ A) under the state s (s ∈ S). The environment will feed back a corresponding instant
reward value r according to the behavior a of the Agent. Therefore, the core idea of this
algorithm is to use a Q-Table to store all Q values. In the continuous interaction between
the Agent and the environment, the expected value (evaluation) is updated through the
actual reward r obtained by executing the action a under the state s, and in the end, the
action contributing to the maximum return according to the Q-Table is chosen.
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Reference strategy TD learning means updating the behavior value with the TD
method under the reference strategy condition. The updating method of reference strategy
TD learning is shown in Equation (23):

V(St)← V(St) + α

(
π(At|St )

µ(At|St )
(Rt+1 + γV(St+1))−V(St)

)
(23)

In Equation (23), V(St) represents the value assessment of state St at time t, V(St+1)
is the value assessment of state St+1 at time t + 1, α is the learning rate, γ is the attenuation
factor, Rt+1 denotes the instant return value at time t + 1, π(At|St ) is the probability for
the target strategy π(a|s ) to execute the action At under the state St+1, and µ(At|St ) is the
probability to execute the action At under the state St+1 according to the behavior strategy
µ(a|s ). In general, the target strategy π(a|s ) chosen is of a certain ability. If π(At |St )

µ(At |St )
< 1,

the probability of the reference strategy choosing the action At is smaller than that of the
behavior strategy, and the updating amplitude is relatively conservative at the moment.
When this ratio is greater than 1, the probability of the reference strategy choosing the
action At is greater than that for the behavior strategy, and the updating amplitude is
relatively bold.

The behavior strategy µ of reference strategy TD learning method is replaced by the
ε-greedy strategy based on the value function Q(s,a), and the target strategy π is replaced by
the complete greedy strategy based on the value function Q(s,a), thus forming a Q-Learning
algorithm. Q-Learning updates Q(St ,At) using the time series difference method, and the
updating method is expressed by Equation (24):

Q(St, At)← Q(St, At) + α
(

Rt+1 + γQ
(
St+1, A′

)
−Q(St, At)

)
(24)

In Equation (24), the TD target value Rt+1 +γQ(St+1, A′) is the Q value of the behavior
A′ generated based on the reference strategy π. Thanks to this updating method, the value
of behavior obtained by the state St according to the ε-greedy strategy will be updated
by a certain proportion towards the direction of maximum behavior value determined by
the greedy strategy under the state St+1, and will finally converge to the optimal strategy
and optimal behavior value. The concrete behavior updating formula of the Q-Learning
algorithm is shown in Equation (25):

Q(St, At)← Q(St, At) + α

(
R + γmax

a′
Q
(
St+1, a′

)
−Q(St, At)

)
(25)

In Equation (25), a′ is the action acquiring the maximum behavior value under the
subsequent states.

3.2. Adaptive Reinforcement-Exploration Strategy Design
3.2.1. Behavior Utility Trace

In order to improve the low exploration efficiency of traditional exploration strategy,
in this study, the behavior utility trace [20] was introduced into the probability of action
selection, and the self-adaptive reinforcement-exploration strategy was proposed based on
the improved ε-greedy algorithm.

In the RL, the behavior utility trace was used to record the influence of each state
on its subsequent states and to adjust the step size during the state value updating. The
behavior utility trace is defined as shown in Equation (26):

Et(s) = λEt−1(s) + 1(St = s), λ ∈ [0, 1] (26)

In Equation (26), 1(St = s) is an expression used to judge true value. It is 1 when and
only when St = s, and 0 under other conditions.

Meanwhile, whether a state is accessed is also an important signal. After an action
is executed and transferred to a brand-new state, this, to some extent, indicates that the
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exploration of action is effective this time. Therefore, the state access function v(st) was
used in this study to describe whether a state is accessed as shown in Equation (27):

v(st) =

{
0 st ∈ V
1 else

(27)

In Equation (27), st represents the present state, V is the set of accessed states, and the
value of v(st) is 1 when and only when this state is accessed for the first time.

By combining instant reward and the features of utility trace and the relationship be-
tween whether a state is accessed and the action itself, an action utility trace based on instant
reward and state access function was designed in this study as shown in Equation (28):

Et(ai) =


λEt−1(ai) + e× v(st)× 1(rt > 0) ai = at−1 = at−2

e× v(st)× 1(rt > 0) ai = at−1 6= at−2

0 else

(28)

In Equation (28), the action ai ∈ A is the behavior space of the Agent, at−1 and at−2 are
the actions made at the previous time and the time before the previous time, respectively,
rt is the instant reward of the present state, and e value is the exploration incentive value
set according to the practical situation. When the same action is continuously chosen for
the E value (Et(ai)) of action ai ∈ A, the following will hold: When the instant reward
is non-negative and the present state is not accessed, the E value at the present time is
obtained by adding e to the attenuation value of E value at the previous time. When
the instant reward is negative or the present state is accessed, the E value at the present
time is the attenuation value of E value at the previous time. When the action selection
is not continuous, the following will be true: The E value at the present time will be e
under positive instant reward and 0 under negative instant reward, and the E value will be
constantly 0 under other circumstances.

3.2.2. Adaptive Reinforcement-Exploration Strategy

Based on the utility trace introduced, a self-adaptive reinforcement-exploration strat-
egy was put forward in this study. This strategy, which is a symmetric improvement of the
ε-greedy strategy, was improved mainly from the three following aspects:

• Introduction of the behavior utility trace to improve the probability for different
actions to be chosen and to enhance the effectiveness of exploration action.

When the strategy chooses to explore the environment at a certain probability, the
probability for each action to be randomly chosen is shown in Equation (29):

P(ai) =
1 + Eai

n + ∑n
1 Eaj

(29)

In Equation (29), the action is ai ∈ A, Eai is the E value of behavior utility trace for
each action, and n is the total number of behavior spaces. When a positive instant reward
is obtained by executing one action or the Agent is transferred to a new state, the E value
of this action will be enlarged, and so will the probability for it to be chosen. Through such
a design, the algorithm can be encouraged to explore in a linear form, thus expanding the
radiation range of the initial exploration.

• Real-time adjustment of exploration factor ε in different phases until it meets the
objective needs.

As for the adjustment of exploration factor ε, the whole attenuation process of ε is
divided into two phases. The first phase is the initial training phase of the Agent, in which
the Agent almost has no understanding of environmental information and its main task is
to explore the environment. In this phase, the attenuation of exploration factor ε should be
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slightly slow. In this study, the concrete adjustment formula for the exploration factor ε is
shown in Equation (30):

εt = 1− sin
(
( t

T )
2 ∗ π

2

)
t ≤ βT (30)

In Equation (30), εt is the exploration factor at the present time, t is the present number
of iteration cycles, T is the maximum number of training cycles of state, and β is the
self-adaptive exploration factor, with a range of [0, 0.5].

When the iteration cycle satisfies t > βT, here comes the second phase in which the
focus is shifted from the exploration to utilization. In this study, the exploration factor ε
was designed into an approximately linear attenuation and gradual stabilization at the
set minimum value during this phase. Meanwhile, in order to adjust the attenuation rate
according to the practical situation, the concept of success rate proposed in the literature
was taken for reference to design the concrete adjustment formula of exploration factor ε in
the second phase, as shown in Equation (31):

εt =

{
ε1 +

t−βT
T1−βT (εmin − ε1)− i× R ε1 +

t−βT
T1−βT (εmin − ε1)− i× R ≥ εmin

εmin else
(31)

In Equation (31), ε1 is the final value of ε in the first phase, T1 is the target number of
episodes of the minimum ε, R is the probability of the Agent successfully arriving at the
target position in every ten experiments, i is the accelerated utilization factor of the success
rate, and εmin is the set minimum value of the exploration factor.

Through such a design, the success rate of the Agent becomes higher, and the explo-
ration factor ε attenuates faster, so as to make better use of information and reach the goal
of accelerating the convergence while ensuring the algorithm effect.

• Adaptive adjustment of the exploration factor ε of the present action according to the
number of access times of the state.

If the traditional exploration strategy is used, although the previous information will
be shared in the subsequent iterations, the exploration of the Agent nearby the initial
position will be much greater than the exploration nearby the target position. In order
to improve the exploration rate nearby the target position and reduce the ineffective
exploration nearby the initial position, a dynamic adjustment method was proposed in this
study for the exploration factor under a state according to the number of access times of
this state. The adjustment formula of exploration factor εcur of the present state within the
iteration cycle is shown in Equation (32):

εcur =

{
εt + µ x = 0
εt − µsin(ϕx× π/2) else

(32)

In Equation (32), εt is the basic exploration factor of the present state sequence, µ and
ϕ are the utilization factors of number of state access times, x is the number of access times
of the present state, the maximum value on record is xmax, and ϕ satisfies ϕxmax ≤ 1.

3.3. Design of Reward and Penalty Functions

In essence, the RL problem solving means a maximization process of return during the
continuous trials and errors and interaction between the Agent and environment. Rightly,
as a reward given after the Agent executes an action, the reward function serves as the
bridge for the Agent to acquire the environmental information, and its quality has a direct
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bearing on the convergence or not of the final strategy [21]. The traditional reward function
is designed as shown in Equation (33):

r =


−r1 collision
r2 get_target
0 else

(33)

In Equation (33), both r1 and r2 are positive, collision means that a collision occurs,
when the instant reward −r1 is acquired at the moment, and get_target expresses that the
Agent successfully arrives at the target position, when the instant reward r2 is harvested.
Obviously, the reward function of such a design will be stuck in an obvious problem;
the reward values are too sparse, and the Agent will obtain the feedback of reward val-
ues only when experiencing a collusion or reaching the target position. However, the
Agent fails to obtain any reward feedback under other states, so the Agent has to wander
continuously and can be hardly converged. Therefore, the reward density needs to be
reasonably increased.

In the reward function designed in this study, any action of Agent would obtain an
instant reward. The Agent would acquire an instant reward r1 when colliding, a positive
reward r2 when approaching the target, a negative reward r3 when being away from the
target, and the final reward r4 when reaching the target position. In the path planning task,
the agent needs to reach the target location without collision. Reaching the target location
is the ultimate goal and the main task. Therefore, the reward value of r4 should be set to
the maximum. The setting of r1 is to avoid collision and can be regarded as a secondary
task, so it is less than r4. The setting of r2 and r3 is to avoid that the reward values are too
sparse to make the agent unable to reach the target location, which plays an auxiliary role.
Therefore, the values of r3 and r4 are set to two orders of magnitude smaller than r4 or
r1.The reward function with symmetry designed in this study is shown in Equation (34).

r =


−r1 collision
+r2 close_to_target
−r3 far_from_target
r4 get_target

(34)

In Equation (34), r1, r2, r3 and r4 are all positive, close_to_target means approaching
the target position, and far_from_target means being far from the target position.

3.4. Algorithm Implementation

The basic idea followed by the proposed SARE-Q algorithm was described as follows:
The self-adaptive reinforcement-exploration strategy was used as the behavior selection
strategy of the Q-Learning algorithm to improve the environmental exploration efficiency
and better balance the contradiction brought by the exploration-utilization problem. Mean-
while, the optimized reward function was combined to enhance the agent-environment
interaction efficiency and improve the performance of the original algorithm. The algorithm
pseudocode is shown in Algorithm 1:
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Algorithm 1 SARE-Q algorithm.

Initialization: The following are initialized: The minimum exploration factor εmin, the
maximum number of iterative episodes Tmax_episodes, the maximum step size of single episode
Tmax_steps, learning rate α, reward attenuation factor γ, utility trace attenuation factor λ,
exploration incentive value e, self-adaptive exploration factor β, utilization factor i of the success
rate, and utilization factors µ and ϕ of access times. The terminal state set ST is set. For each state
s (s ∈ S), a (a ∈ A), and the initial value of Q-Table is randomly set. The T-Table of state access
times is initialized, so is the behavior utility trace table, namely, E-Table.

Loop iteration (for t = 1, 2, 3 · · · (t < Tmax_episodes)):
Initialize the initial state s
Update the basic exploration factor εt
Cycle (for t = 1, 2, 3 · · · (t < Tmax_steps)):

Update the exploration factor εcur in this episode
Choose an action a according to the self-adaptive reinforcement-exploration

strategy and Q-Table
Execute the action a, and acquire the instant reward r and the state s1 at the next

time
Update Q-Table, T-Table and E-Table

s← s1
Until reaching the terminal state s or the maximum step size Tmax_steps of single episode

Until reaching the maximum number of iterative episodes Tmax_episodes

4. Simulation Experiment and Results Analysis
4.1. Simulation Experimental Environment and Parameter Setting

In this study, the simulation experiment was carried out in the n × n symmetric grid
map environment commonly used in the route planning experiment. Three experimental
scenarios—multi-obstacle grid map environments consisting of 10 × 10, 15 × 15 and
20 × 20 grids, respectively—were designed to verify the Q-Learning algorithm, the self-
adaptive Q-Learning (SA-Q) algorithm proposed [22], and the SARE-Q algorithm proposed
in this study. Hereby the simulation experimental environment design was introduced by
taking the 20 × 20 grid environment for example as shown in Figure 1.
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Figure 1. The schematic diagram of 20 × 20 grid environment.

As shown in Figure 1, there were in total 20 × 20 = 400 grids. The grey grids in the
figure represented obstacles, and eight different obstacles were set in total. The green grid
expressed the initial position of the Agent, with the coordinates of (2,14). The blue grid
was the target position of the Agent, with the coordinates of (17,6). The red circle was the
Agent. The initial position and target position of the Agent were fixed, and the Agent only
moved within the white grids, where neither obstacles nor boundary could gain access.
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That the Agent was located in different grids represented different states, it could move
towards four directions: up, down, left and right, but it could move forward only by the
unit grid length towards one direction each time. When the Agent moved towards one
direction, if the next target position was an accessible grid, it must be shifted to this grid. If
the next target position went beyond the edge or was inaccessible for obstacles, etc., the
Agent would stay at the original position.

The experimental simulation platform in this study was as follows: the computer
operating system was Windows10, with the CPU of i5-8300H, internal storage of 8 GB, the
graphics card of 1050Ti, video memory of 4 GB, conda version of 4.8.4, Python version of
3.5.6, and simulation platform of OpenAI Gym. The related algorithm parameters used
were as follows [23]: the initial exploration factor was εinit = 1, the minimum exploration
factor was εmin = 0.01, and through the repeated experiments, the learning rate was set
as α = 1.0, reward attenuation factor as γ = 0.9, the maximum step size of single episode
as Stepmax = 100, the maximum number of iterative episodes as Tmax_episodes = 1000, the
maximum number of exploration episodes as 0.8 times of maximum number of iterative
episodes Tmax_episodes, namely 800, utility trace attenuation factor as λ = 0.75, exploration
incentive value as e = 1, self-adaptive exploration factor as β = 0.1, utilization factor of
the success rate as i = 0.1, µ and ϕ for the utilization factor of access times as 0.5 and 0.1,
respectively, and r1, r2, r3 and r4 for the reward function as 20, 0, 0.2 and 30, respectively.

4.2. Simulation Experiment and Result Analysis

In the experimental environment as shown in Figure 1, three different algorithms
were used for the route planning, and their typical return curves are displayed in Figure 2,
where the x-coordinate denotes the present iterative episode, and y-coordinate represents
the total return obtained by each episode.

It could be observed from Figure 2 that in the 20× 20 grid environment, in comparison
with the Q-Learning algorithm and SA-Q algorithm, the Agent could reach the target
position earlier by using the SARE-Q algorithm, and the number of times for it to reach
the target position was the maximum. From the curve shape, the curves obtained by
the Q-Learning algorithm and the SA-Q algorithm were straighter than that obtained by
the proposed algorithm after the initial convergence, which is ascribed to the dynamic
adjustment of exploration factor ε. For any state not accessed or the state accessed for just a
few times, the proposed algorithm would reinforce the exploration nearby such state, thus
leading to a great curve fluctuation. However, for the other two algorithms, the exploration
factor ε was stabilized at a small value in the later iteration phase, and it almost did not
fluctuate after being approximately converged.

The optimal routes obtained by 100 route planning experiments using the three
different algorithms are shown in Figure 3. It could be shown that all three algorithms
could give the shortest routes, among which the number of turning times of the optimal
route given by the Q-Learning algorithm was six, that by the SA-Q algorithm was seven
and that by the SARE-Q algorithm was four.

The statistical performance results of the three algorithms in executing the route
planning task for 100 times are listed in Table 1. It could be shown from Table 1 that the
average operating time of the SARE-Q algorithm differed a little from the SA-Q algorithm
and the Q-Learning algorithm. The average number of turning times of the proposed
algorithm was the least, and it was much smaller than that of the Q-Learning algorithm
and the SA-Q algorithm. As for the average success rate, the proposed algorithm was 16.3%
ahead of the SA-Q algorithm, and considerably 35.8% ahead of the Q-Learning algorithm.
In the aspects of average step size and number of times with the shortest route, all of the
three algorithms might miss the shortest route, but the SARE-Q algorithm was superior to
the other two algorithms.
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Figure 3. The optimal routes planned by three different algorithms in a 20 × 20 grid environment: (a)
The optimal route planned by the Q-Learning algorithm; (b) the optimal route planned by the SA-Q
algorithm; (c) the optimal route planned by SARE-Q algorithm.

Table 1. The performance comparison of the three different algorithms in a 20 × 20 grid environment (100 times).

Evaluation Indexes Q-Learning Algorithm SA-Q Algorithm SARE-Q Algorithm

Average operating time (s) 2.047 1.739 1.995
Average number of turning times (times) 9.16 10.22 7.6

Average success rate (%) 30.2 49.7 66
Average step size (step) 23.38 24.44 23.16

Number of times with the shortest route (times) 83 88 92
Number of turning times of the optimal route (times) 6 7 4

The simulation experiments were implemented in 15 × 15 and 10 × 10 symmetric
grid environments, in an effort to explore the influence of different grid environments
on the algorithm performance, and the corresponding experimental results are shown in
Tables 2 and 3.
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Table 2. The performance comparison of the three different algorithms in a 15 × 15 grid environment (100 times).

Evaluation Indexes Q-Learning Algorithm SA-Q Algorithm SARE-Q Algorithm

Average operating time (s) 1.43 1.034 1.147
Average number of turning times(times) 9.67 10.32 8.33

Average success rate (%) 41.9 71.5 85.5
Average step size (step) 24.24 24.16 24.04

Number of times with the shortest route (times) 89 93 98
Number of turning times of the optimal route (times) 9 9 7

Table 3. The performance comparison of the three different algorithms in a 10 × 10 grid environment (100 times).

Evaluation Indexes Q-Learning Algorithm SA-Q Algorithm SARE-Q Algorithm

Average operating time (s) 0.819 0.629 0.79
Average number of turning times(times) 7.19 7.13 6.1

Average success rate (%) 58.4 70.4 75.2
Average step size (step) 18.1 18.81 18

Number of times with the shortest route (times) 94 99 100
Number of turning times of the optimal route (times) 5 5 4

As shown in Tables 1–3, all performance indexes of the three algorithms declined
with the increase in the number of map grids. During this process, the SA-Q algorithm
was comprehensively ahead of the Q-Learning algorithm in terms of performance indexes,
though some of its performance indexes were lower than those of Q-Learning algorithm.
The SA-Q algorithm was always superior to the other two aspects in terms of operating
time. Although the operating time was not as superior as that of the SA-Q algorithm, the
other performance indexes of the SARE-Q algorithm were all better than those of the other
two algorithms.

5. Conclusions

The SARE-Q algorithm was proposed in this study, in order to tackle the problems of
the traditional Q-Learning algorithm, e.g., slow convergence and easy local optimization.
In the end, the route planning was simulated on the OpenAI Gym platform. By a symmetric
comparison with the Q-Learning algorithm and SA-Q algorithm, the superiority of the
proposed SARE-Q algorithm was verified. The following conclusions were obtained
through the theoretical study and simulation experiments:

1. The problems existing in the Q-Learning algorithm were studied, the behavior utility
trace was introduced into the Q-Learning algorithm, and the self-adaptive dynamic
exploration factor was combined to put forward a reinforcement-exploration strategy,
which substituted the exploration strategy of the traditional Q-Learning algorithm.
The simulation experiments of route planning manifest that the SARE-Q algorithm
shows advantages, to different extents, over the traditional Q-Learning algorithm and
the algorithms proposed in other references in the following aspects: average number
of turning times, average inside success rate, average step size, number of times with
the shortest planning route, optimal number of turning times of route, etc.

2. Though being of a certain complexity, the random environment given in this study
is obviously too simple compared with the actual environment. Therefore, the al-
gorithms should be explored under the environment with dynamic obstacles and
dynamic target positions in the future. Meanwhile, the algorithm was verified only
through the simulation experiments, so the corresponding actual system should be es-
tablished for the further verification. In addition, the SARE-Q algorithm proposed in
this study remains to be further optimized in the aspect of parameter selection. How
to optimize the related parameters through intelligent algorithms is the follow-up
research content.

3. Restricted by the action space and sample space, the traditional RL algorithm is
inapplicable to actual scenarios with very large state space and continuous action
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space. With the integration of deep learning and RL, the deep RL method will
overcome the deficiencies of the traditional RL method by virtue of the powerful
character representation ability of deep learning technology. The subsequent research
content lies in studying the deep RL method and verifying it in the route planning.
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