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Abstract: This paper deals with an optimization problem for a nonlinear integro-differential system
that describes the unsteady plane motion of an incompressible viscoelastic fluid of Jeffreys–Oldroyd
type within a fixed bounded region subject to the no-slip boundary condition. Control parameters
are included in the initial condition. The objective of control is to match the velocity field at the
final time with a prescribed target field. The control model under consideration is interpreted as a
continuous evolution system in an infinite-dimensional Hilbert space. The existence of at least one
optimal control is proved under inclusion-type constraints for admissible controls.
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1. Introduction

It is well known that flow control problems play an important role in the research
field of fluid mechanics [1–4]. In particular, the study of control and optimization problems
for models of non-Newtonian fluids is a very interesting topic because of their extensive
applications in technology and industries. Related mathematical questions attract the
attention of many fluid dynamics researchers.

Slawig [5], Guerra [6] and Arada [7] investigated distributed control for the gener-
alized stationary Navier–Stokes equations with shear-dependent viscosity. A paper by
Abraham et al. [8] studied numerical shape optimization for a non-Newtonian fluid. In [9],
the existence of an optimal weak solution in a control model for the unsteady flow of a
viscoelastic medium is established, provided that the initial data are small. The paper [10]
is devoted to proving approximate-finite dimensional controllability for linearized mo-
tion equations (by neglecting the inertial effects) of the Jeffreys fluid within a bounded
flow region with the smooth boundary. Using the surface force as a control parameter,
Artemov and Baranovskii [11] established the existence of optimal solutions for a model
describing steady-state flows of a nonlinear-viscous incompressible fluid within a bounded
region. Optimal boundary control for various viscoelastic fluid systems was analyzed in
the works [12–14]. Manakova [15] proved the existence of optimal distributed control for
solutions of the Dirichlet–Showalter–Sidorov problem for a model of the dynamics of a
weakly viscoelastic fluid. Anh and Nguyet investigated [16] an optimal control problem
with a quadratic objective functional and the body force as a control parameter for the
three-dimensional Navier–Stokes–Voigt equations, which are a suitable regularization of
the classical Navier–Stokes equations and describe the motion of a viscoelastic fluid of
Kelvin–Voigt type. Ngan and Toi [17] proposed a finite-dimensional feedback control
scheme for stabilizing stationary solutions of the Navier–Stokes–Voigt equations with peri-
odic boundary conditions. Using methods of the theory of pseudo-monotone mappings,
Baranovskii [18] constructed an optimal weak solution to the model for the steady-state
flow of a dilatant fluid through a container with holes. In [19], certain classes of optimal
control problems for the stationary Boussinesq equations with variable density are studied.
Evcin et al. [20] analyzed the control of the power-law fluid flow and heat transfer in a
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square duct under an external magnetic field applying the flow index and the Hartmann
number. Baranovskii [21] investigated a boundary control problem for the non-isothermal
flow of a low-concentrated aqueous polymer solution moving within a fixed bounded
region of three-dimensional space R3. Dong and Liu [22] proposed a multi-objective topol-
ogy optimization method for convective heat transfer problems in a microchannel by using
the improved Cross model.

The literature survey indicates that interest in flow control problems for non-Newtonian
fluids has grown during the last few years. Despite the large number of works in this
subject area, the important case of the initial control (when control parameters are in-
cluded in the initial conditions) has not yet been studied. Most of the theoretical results
were obtained for time-independent flows. Keeping this fact in mind, in this paper, we
study an optimal initial control problem for the system of equations governing the un-
steady flow of an incompressible viscoelastic fluid of Jeffreys–Oldroyd type [23–25] in a
cylinder QT = O × (0, T):

Re(∂t~y + y1∂x1~y + y2∂x2~y)− (1− a)∆~y− divE+ grad π =~0, ∀(x1, x2, t) ∈ QT , (1)

div~y = 0, ∀(x1, x2, t) ∈ QT , (2)

E(x1, x2, t) =
2a
Wi

∫ t

0
exp

(
s− t
Wi

)
D(~y(x1, x2, s)) ds, ∀(x1, x2, t) ∈ QT , (3)

~y =~0, ∀(x1, x2, t) ∈ ∂O × (0, T), (4)

~y|t=0 = ~u ∈ Uad, (5)

Minimize
∥∥~y|t=T −~b

∥∥
L2

subject to (1)–(5), (6)

where O ⊂ R2 is the flow region; (x1, x2) is a point of O; t is the time; T denotes the
final moment of time; ∂t, ∂x1 and ∂x2 are the partial derivatives with respect to t, x1
and x2; ∂O stands for the boundary of the region O; ~y = (y1(x1, x2, t), y2(x1, x2, t)) is
the velocity field; E = (Eij(x1, x2, t))2

i,j=1 is the “elastic part” of the stress tensor (E is
symmetric—that is, E12 = E21); π = π(x1, x2, t) is the pressure function, which includes
the potential of body forces; the operators “grad”, “div” and ∆ denote, respectively, the
gradient, the divergence and the Laplacian with respect to the space variables x1 and x2;
D(~y) is the symmetric part of the velocity gradient—that is, D(~y) = 1

2
(
grad~y + (grad~y)>

)
;

grad~y = (∂xj yi)
2
i,j=1; Re is the Reynolds number (Re > 0); Wi is the Weissenberg number

(Wi > 0); a is the coupling parameter (0 < a < 1); ~u = (u1(x1, x2), u2(x1, x2)) is a control
function;~b = (b1(x1, x2), b2(x1, x2)) is some desired velocity field; and Uad denotes the set
of admissible controls.

Equation (1) is the balance of linear momentum (Newton’s law) in the cylinder QT ,
and (2) represents the conservation of mass equation (the incompressibility condition).
The presence of relation (3) in system (1)–(5) means that the memory on the stresses is
taken into account. Note that the use of the exponential memory kernel is typical for
Jeffreys–Oldroyd viscoelasticity models (see, e.g., [26,27]). The coupled Equations (1)–(3)
describe mediums such as polymer solutions, concrete, bitumens and the earth’s crust. The
degenerate cases a = 0 and a = 1 correspond, respectively, to the classical Navier–Stokes
equations (Newtonian fluid) and the Maxwell model. More detailed discussions of the
physical background of non-Newtonian fluid models with memory can be found in the
survey article by Saut [28].

For the sake of simplicity, we prescribe the standard no-slip condition (4) at imperme-
able solid walls of the vessel O. However, the proposed approach can also be applied for
viscoelastic fluid systems with other physically-relevant boundary conditions, such as the
Navier slip [29] and the threshold-slip scenario [30].

The main goal of the present paper is to establish the solvability of optimization
problem (6). The structure of this paper is as follows. In the next section, we describe
some notation, function spaces and lemmas used in this paper. In Section 3, we introduce
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the definition of admissible triplets (“control–velocity–stress”) and study their properties,
which we will need further on. Section 4 is devoted to a rigorous formulation of problem (6)
by using the appropriate cost functional and the velocity control operator. There we also
formulate and prove our main result—Theorem 1—on the existence of optimal controls for
integro-differential system (1)–(5).

2. Preliminaries: Notation, Function Spaces and Auxiliary Statements

For the reader’s convenience, mostly standard notation is used.
The symbol , is used as “define the thing on the left as the thing on the right”.
The symbols {Ck}k∈N denote positive constants that depend only on the data of

integro-differential system (1)–(5).
Let X and Y be Banach spaces, and letA : D ⊂ X → Y be an operator. By Γ(A) denote

the graph of A; that is,

Γ(A),
{
(v,A(v)) : v ∈ D

}
⊂ X×Y.

The dual space of X is denoted by X∗. We shall denote the value of a functional ` ∈ X∗

on an element φ ∈ X by 〈`, φ〉X∗×X (so-called the “bra–ket” notation).
Let O be a bounded region in R2. By Lp(O), 1≤ p < +∞, denote the Lebesgue space

with the norm ‖ · ‖Lp . By Wk
q (O), k ∈ N, 1 ≤ q < +∞, denote the Sobolev space with the

norm ‖ · ‖Wm
q . More often, we will deal with the corresponding spaces of vector functions,

for which we use the notation Lp(O,Rn) and Wk
q (O,Rn); that is,

Lp(O,Rn), Lp(O)× · · · × Lp(O)︸ ︷︷ ︸
n spaces

,

Wk
q (O,Rn), Wk

q (O)× · · · ×Wk
q (O)︸ ︷︷ ︸

n spaces

.

Definitions and descriptions of properties of these spaces can be found in [31,32].
By parentheses (◦, ◦) denote the scalar product in the space L2(O,Rn); that is,

(~f ,~g),
∫∫
O

~f (x1, x2) ·~g(x1, x2) dx1dx2 =
n

∑
i=1

∫∫
O

fi(x1, x2)gi(x1, x2) dx1dx2,

for any ~f ,~g ∈ L2(O,Rn).
By definition, put

D((0, T)), {η ∈ C∞(0, T) : supp η ⊂ (0, T)},
D(O), {φ ∈ C∞(O) : supp φ ⊂ O}.

Let H1
0(O) be the closure of the set D(O) in the Sobolev space W1

2 (O).

Lemma 1. If w ∈ H1
0(O), then

‖w‖L4 ≤
4
√

2
√
‖w‖L2‖grad w‖L2 . (7)

The last inequality is usually called Ladyzhenskaya’s inequality (for the proof, see [33],
Chapter III, § 3).
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Following [34], we introduce three spaces of functions, which will be widely used in
the study of the problem under consideration:

V , {~ϕ = (ϕ1, ϕ2) ∈ C∞(O,R2) : div ~ϕ = 0 and supp ~ϕ ⊂ O};
H is the closure of the set V in the Lebesgue space L2(O,R2);

V is the closure of the set V in the Sobolev space W1
2 (O,R2).

We define the scalar product and the associated norm in the space V as follows:

(~φ, ~ψ)V , (grad~φ, grad ~ψ), ‖~φ‖V ,
√
(~φ,~φ)

V
.

From Friedrichs’s inequality, it follows that the norm ‖ ◦ ‖V is equivalent to ‖ ◦ ‖W1
2
.

By using the Riesz representation theorem, one may identify H with the dual space,
that is, H∗ ' H. Thus, we have the chain of inclusions: V ↪→ H ' H∗ ↪→ V∗, where the
symbol ↪→ denotes a continuous dense embedding.

Recall that the embedding W1
2 (O) ↪→ L2(O) is compact (see, e.g., [33], Chapter 2, § 1).

This yields the following statement.

Lemma 2. The embedding V ↪→ H is compact.

By Mn×n
sym denote the space of symmetric matrices of dimension n× n.

Let C([0, T]; X) be the space of continuous functions from [0, T] into X, and let
Lq(0, T; X) be the space of Lq-integrable functions from [0, T] into X.

Finally, let us formulate one auxiliary result needed for what follows.

Lemma 3. Let X and Y be Hilbert spaces such that Y ↪→ X ' X∗ ↪→ Y∗. Suppose that

σ ∈ L2(0, T; Y), σ′ ∈ L2(0, T; Y∗).

Then, the function σ is almost everywhere equal to a continuous function from [0, T] into X, and
we have the following equality, which holds in the scalar distribution sense on (0, T):

d
dt
‖σ(t)‖2

X = 2〈σ′(t), σ(t)〉Y∗×Y.

The proof of this lemma is given in [33], Chapter III, § 1.4.

3. Admissible Triplets of Integro-Differential System (1)–(5) and Their Properties

Assume the following conditions hold:

(i) The flow region O is bounded in R2 and the boundary ∂O is of the class C0,1;
(ii) The target function~b belongs to the space H;
(iii) The admissible controls set Uad is convex, closed and bounded in the space V.

Example 1. Consider an example of the admissible controls set that satisfies condition (iii):

Uad ,
{
~u ∈ V :

∫∫
O

|D(~u(x1, x2))|2 dx1dx2 ≤ r2
}

,

where r is a given number.

Let ~u : O → R2, ~y : O × [0, T]→ R2, and E : O × [0, T]→M2×2
sym.

Definition 1. The triplet (~u,~y,E) is called an admissible triplet of integro-differential system (1)–(5) if

(~u,~y,E) ∈ Uad × [L2(0, T; V) ∩ C([0, T]; H)]× C([0, T]; L2(O,M2×2
sym)),
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~y|t=0 = ~u, E|t=0 = O, (8)

and the following equalities

Re
d
dt
(~y,~z)− Re(y1~y, ∂x1~z)− Re(y2~y, ∂x2~z) + (1− a)

(
grad~y, grad~z

)
+ (E,D(~z)) = 0, (9)

Wi
d
dt
(E,F) + (E,F) = 2a

(
D(~y),F

)
, (10)

hold in the scalar distribution sense on (0, T), for any test functions~z ∈ V and F ∈ L2(O,M2×2
sym).

The set of all admissible triplets is denoted by Ξ(Uad).

Remark 1. The variational formulation (9), (10) is ordinarily derived from the viscoelastic system
(1)–(3) by the Green formula and the following identity

d
dt

(∫ t

0
K~x,~y(t, s) ds

)
≡ K~x,~y(t, t) +

∫ t

0
∂tK~x,~y(t, s) ds

with

K~x,~y : [0, T]× [0, T]→M2×2
sym, K~x,~y(t, s) , exp

(
s− t
Wi

)
D(~y(x1, x2, s)).

In order to prove the solvability of problem (6), we first study some properties of
admissible triplets.

Proposition 1. Suppose (~ui,~yi,Ei) ∈ Ξ(Uad), where i = 1, 2; then

sup
{

Re
2
‖~y1(τ)−~y2(τ)‖2

L2
+

Wi
4a
‖E1(τ)−E2(τ)‖2

L2
: τ ∈ [0, T]

}
≤ Π(‖~u1 − ~u2‖L2), (11)

where Π is a non-negative continuous function such that Π(0) = 0.

Proof. The proof proceeds in four steps.
Step 1. First we shall show that

~y ′i ∈ L2(0, T; V∗), i = 1, 2. (12)

Let us introduce operators A , B, C :

A : V → V∗, 〈A (~y),~z〉V∗×V , (a− 1)
(
grad~y, grad~z

)
,

B : V ×V → V∗, 〈B(~y,~y0),~z〉V∗×V ,Re(y1~y0, ∂x1~z) + Re(y2~y0, ∂x2~z),

C : L2(O,M2×2
sym)→ V∗, 〈C (E),~z〉V∗×V , −

(
E,D(~z)

)
.

From Definition 1 it follows that

Re~y ′i = A (~yi) +B(~yi,~yi) + C (Ei), i = 1, 2. (13)

Clearly, we have the following inclusions:

A (~yi) ∈ L2(0, T; V∗), C (Ei) ∈ L2(0, T; V∗), i = 1, 2. (14)

Therefore, it remains to check that

B(~yi,~yi) ∈ L2(0, T; V∗), i = 1, 2. (15)
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Indeed, using Hölder’s inequality and Ladyzhenskaya’s inequality (7), we obtain

|〈B(~yi(t),~yi(t)),~z〉V∗×V | ≤ C1‖~yi(t)‖2
L4
‖~z‖V

≤ C2‖~yi(t)‖L2‖grad~yi(t)‖L2‖~z‖V . (16)

From (16) and the inclusions

~yi ∈ C([0, T], L2(O,R2)), i = 1, 2,

it follows that (15) holds.
Taking into account (13)–(15), we conclude that both inclusions from (12) hold.
Step 2. Let us prove that

E′i ∈ L2
(
0, T; L∗2(O,M2×2

sym)
)
, i = 1, 2. (17)

Consider operators K and N :

K : L2(O,M2×2
sym)→ L∗2(O,M2×2

sym), 〈K (E),F〉L∗2×L2 , − (E,F),

N : V → L∗2(O,M2×2
sym), 〈N (~y),F〉L∗2×L2 , 2a

(
D(~y),F

)
.

From Definition 1 it follows that

WiE′i = K (Ei) +N (~yi), i = 1, 2.

It is directly verifiable that for the terms on the right-hand side of the last equality, the
following inclusions are true:

K (Ei) ∈ L2(0, T; L∗2(O,M2×2
sym)), N (~yi) ∈ L2(0, T; L∗2(O,M2×2

sym)), i = 1, 2,

whence (17).
Step 3. Let ~w,~y1 −~y2 and G,E1 −E2. Taking into account (12) and (17), we apply

Lemma 3 to functions ~w and G; this gives the following two equalities

d
dt
‖~w(t)‖2

L2
= 2〈~w ′(t), ~w(t)〉V∗×V ,

d
dt
‖G(t)‖2

L2
= 2〈G′(t),G(t)〉L∗2×L2 , (18)

which hold for almost all t ∈ (0, T).
Step 4. Since (~ui,~yi,Ei) ∈ Ξ(Uad), i = 1, 2, it is not hard to establish that

Re〈~w ′,~z〉V∗×V − Re(y11~w, ∂x1~z)− Re(y12~w, ∂x2~z)− Re(w1~y2, ∂x1~z)
−Re(w2~y2, ∂x2~z) +

(
G,D(~z)

)
+ (1− a)

(
grad ~w, grad~z

)
= 0, (19)

Wi〈G′,F〉L∗2×L2 + (G,F) = 2a
(
D(~w),F

)
, (20)

for any~z ∈ V and F ∈ L2(O,M2×2
sym).

Setting

~z(t) ≡ ~w(t), F(t) ≡ 1
2a

G(t)

into (19) and (20), respectively, we add the obtained equalities. Using (18) and the follow-
ing relations

−Re(y11~w, ∂x1~z)− Re(y12~w, ∂x2~z) = 〈B(−~y1, ~w), ~w〉V∗×V = 0,

we arrive at the equality
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Re
2

d
dt
‖~w(t)‖2

L2
− Re(w1(t)~y2(t), ∂x1~w(t))− Re(w2(t)~y2(t), ∂x2~w(t))

+(1− a)‖~w(t)‖2
V +

Wi
4a

d
dt
‖G(t)‖2

L2
+

1
2a
‖G(t)‖2

L2
= 0. (21)

Let us estimate the sum of the second and third terms on the left-hand side of (21).
Using the formula for integration by parts and applying the Hölder, Young, and Ladyzhen-
skaya inequalities, we obtain

|Re(w1(t)~y2(t), ∂x1~w(t)) + Re(w2(t)~y2(t), ∂x2~w(t))|
= Re|(w1(t)∂x1~y2(t), ~w(t)) + (w2(t)∂x2~y2(t), ~w(t))|
≤ C3‖~w(t)‖2

L4
‖~y2(t)‖V

≤ C4‖~w(t)‖L2‖grad ~w(t)‖L2‖~y2(t)‖V

= C4‖~w(t)‖L2‖~w(t)‖V‖~y2(t)‖V

≤ C5‖~w(t)‖2
L2
‖~y2(t)‖2

V + (1− a)‖~w(t)‖2
V . (22)

Due to (22), we derive from (21) the following estimate

d
dt

(
Re
2
‖~w(t)‖2

L2
+

Wi
4a
‖G(t)‖2

L2

)
≤ ζ(t)

(
Re
2
‖~w(t)‖2

L2
+

Wi
4a
‖G(t)‖2

L2

)
, (23)

where
ζ : [0, T]→ R, ζ(t),C6‖~y2(t)‖2

V .

Since ~y2 ∈ L2(0, T; V), we see that ζ ∈ L1(0, T). Therefore, we can apply the Grönwall
lemma to (23) and obtain

Re
2
‖~w(t)‖2

L2
+

Wi
4a
‖G(t)‖2

L2
≤
(

Re
2
‖~w(0)‖2

L2
+

Wi
4a
‖G(0)‖2

L2

)
exp(‖ζ‖L1(0,T)),

for any t ∈ (0, T). Further, using the relations

~w(0) = ~y1(0)−~y2(0) = ~u1 − ~u2,

G(0) = E1(0)−E2(0) = O,

we arrive at inequality

Re
2
‖~w(t)‖2

L2
+

Wi
4a
‖G(t)‖2

L2
≤ Re

2
‖~u1 − ~u2‖2

L2
exp(‖ζ‖L1(0,T)), ∀t ∈ [0, T].

This yields required inequality (11) with the function Π defined as follows:

Π : [0,+∞)→ [0,+∞), Π(s),
Re
2

s2 exp(C7)

with
C7 ,C6 sup

{
‖~y‖2

L2(0,T;V) : (~u,~y,E) ∈ Ξ(Uad)
}
< +∞.

Thus, Proposition 1 is proved.

Corollary 1. Suppose (~u,~yi,Ei) ∈ Ξ(Uad), where i = 1, 2; then

~y1(t) ≡ ~y2(t), E1(t) ≡ E2(t), ∀t ∈ [0, T].

Proposition 2. For any vector-valued function ~u from the set Uad, there exists a unique pair (~y,E)
such that (~u,~y,E) ∈ Ξ(Uad).
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Proof. Following the general line of the approach proposed in [29], in order to construct ~y
and E, we shall apply the Faedo–Galerkin scheme.

Let {~zk}k∈N be a total sequence of vector functions in both the spaces H and V such
that this sequence is an orthonormal basis of H. To construct such a sequence, one can
use a technique that is based on the analysis of solutions to a spectral problem with the
symmetry and compactness properties (see, [34], Chapter 1, § 6.3).

Moreover, we fix some orthonormal basis {Fk}k∈N in the space L2
(
O,M2×2

sym).
Take an arbitrary natural number n. The Faedo–Galerkin method reads:

Find ~yn and En of the form

~yn(x1, x2, t),
n

∑
k=1

an,k(t)~zk(x1, x2),

En(x1, x2, t),
n

∑
k=1

Bn,k(t)Fk(x1, x2),

where an,k : [0, T]→ R and Bn,k : [0, T]→ R are unknown functions, satisfying the finite-
dimensional approximate problem:

Re(∂t~yn,~zk) + Re(yn1∂x1~yn,~zk) + Re(yn2∂x2~yn,~zk) + (En,D(~zk))

+(1− a)(grad~yn, grad~zk) = 0, t ∈ (0, T), k = 1, . . . , n, (24)

Wi(∂tEn,Fk) + (En,Fk) = 2a(D(~yn),Fk), t ∈ (0, T), k = 1, . . . , n, (25)

~yn(x1, x2, 0) =
n

∑
k=1

(~u,~zk)~zk(x1, x2), (x1, x2) ∈ O, (26)

En(x1, x2, 0) = O, (x1, x2) ∈ O. (27)

For the Faedo–Galerkin solutions (~yn,En), we shall derive global-in-time a priori
estimates independent of the parameter n. Such estimates ensure the solvability of the
Cauchy problem (24)–(27) on the entire interval [0, T] for any n ∈ N.

Suppose the pair (~yn,En) satisfies system (24)–(27). Multiply (24) by an,k(t) and sum
the resulting equalities for k = 1, . . . , n; this gives

Re(∂t~yn,~yn) + Re(yn1∂x1~yn,~yn) + Re(yn2∂x2~yn,~yn)

+(En,D(~yn)) + (1− a)(grad~yn, grad~yn), t ∈ (0, T). (28)

Since
Re(yn1∂x1~yn,~yn) + Re(yn2∂x2~yn,~yn) = −〈B(~yn,~yn),~yn〉V∗×V = 0,

we see that (28) reduces to

Re(∂t~yn,~yn) + (En,D(~yn)) + (1− a)
(
grad~yn, grad~yn

)
= 0, t ∈ (0, T). (29)

Further, we multiply (25) by Bn,k(t) and sum up the resulting equalities for k = 1, . . . , n.
This yields the following equality:

Wi(∂tEn,En) + (En,En) = 2a(D(~yn),En), t ∈ (0, T). (30)

Next, we multiply (29) by 2a and sum the result with (30); this gives

2a Re(∂t~yn,~yn) + 2a(1− a)(grad~yn, grad~yn) + (En,En) + Wi(∂tEn,En) = 0, t ∈ (0, T).

Whence

a Re
d
dt
‖~yn‖2

L2
+ 2a(1− a)‖grad~yn‖2

L2
+ ‖En‖2

L2
+

Wi
2

d
dt
‖En‖2

L2
= 0, t ∈ (0, T).
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By integrating the last equality with respect to t, from 0 to τ, we find that

a Re ‖~yn(τ)‖2
L2
+ 2a(1− a)

∫ τ

0
‖grad~yn(t)‖2

L2
dt +

∫ τ

0
‖En(t)‖2

L2
dt

+
Wi
2
‖En(τ)‖2

L2
= a Re ‖~yn(0)‖2

L2
, τ ∈ [0, T]. (31)

Taking into account the relations

‖~yn(0)‖L2 ≤ ‖~u‖L2 ≤ sup
{
‖~h‖L2 : ~h ∈ Uad

}
= C8 < +∞,

‖grad~yn(t)‖L2 = ‖~yn(t)‖V , t ∈ (0, T),

we deduce from (31) the following estimate:

a Re ‖~yn(τ)‖2
L2
+ 2a(1− a)

∫ τ

0
‖~yn(t)‖2

V dt +
∫ τ

0
‖En(t)‖2

L2
dt

+
Wi
2
‖En(τ)‖2

L2
≤ a Re C2

8 , τ ∈ [0, T]. (32)

From this estimate and condition (iii), it follows that the

sup
{
‖~yn(τ)‖L2 : n ∈ N, τ ∈ [0, T]

}
< +∞,

sup
{
‖En(τ)‖L2 : n ∈ N, τ ∈ [0, T]

}
< +∞.

This implies that the Cauchy problem (24)–(27) is solvable on the interval [0, T].
In view of inequality (32), we also have

sup
{
‖~yn‖L2(0,T;V) : n ∈ N

}
< +∞,

Moreover, using techniques similar to those employed for constructing solutions to the
evolution Navier–Stokes equations (see [34], Chapter 1, § 6.4]), one can deduce

sup
{
‖~y ′n‖L2(0,T;V∗) : n ∈ N

}
< +∞.

Therefore, without loss of generality, we can assume that

~yn converges to ~y weakly in L2(0, T; V) as n→ +∞, (33)

~yn converges to ~y strongly in L2(0, T; H) as n→ +∞, (34)

En converges to E weakly in L2(0, T; L2
(
O,M2×2

sym)) as n→ +∞, (35)

for some ~y and E.
We multiply (24) by an arbitrary function ξ ∈ D(0, T) and integrate with respect to t

from 0 to T. By integrating by parts the first term in the left-hand side of the obtained
equality, we find that

−Re
∫ T

0
(~yn,~zk)ξ

′ dt + Re
∫ T

0
(yn1∂x1~yn,~zk)ξ dt + Re

∫ T

0
(yn2∂x2~yn,~zk)ξ dt

+
∫ T

0
(En,D(~zk))ξ dt + (1− a)

∫ T

0
(grad~yn, grad~zk)ξ dt = 0. (36)

Next, we multiply (25) by function ξ and integrate with respect to t from 0 to T. By
integrating by parts the first term in the left-hand side of the obtained equality, we get

−Wi
∫ T

0
(En,Fk)ξ

′ dt +
∫ T

0
(En,Fk)ξ dt = 2a

∫ T

0
(D(~yn),Fk)ξ dt. (37)
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Taking into account (33)–(35), we pass to the limit n→ +∞ in equalities (36) and (37);
this gives

−Re
∫ T

0
(~y,~zk)ξ

′ dt + Re
∫ T

0
(y1∂x1~y,~zk)ξ dt + Re

∫ T

0
(y2∂x2~y,~zk)ξ dt

+
∫ T

0
(E,D(~zk))ξ dt + (1− a)

∫ T

0
(grad~y, grad~zk)ξ dt = 0, (38)

−Wi
∫ T

0
(E,Fk)ξ

′ dt +
∫ T

0
(E,Fk)ξ dt = 2a

∫ T

0
(D(~y),Fk)ξ dt, (39)

for each k ∈ N.
Since the sequence {~zk}k∈N is total in the space V and the sequence {Fk}k∈N is total in

L2
(
O,M2×2

sym), we see that equalities (38) and (39) remain valid if we replace~zk and Fk with
arbitrary functions~z ∈ V and F ∈ L2(O,M2×2

sym), respectively.
Moreover, in view of relations (26) and (27), we arrive at both equalities from (8).
Thus, we have established that (~u,~y,E) ∈ Ξ(Uad).
The uniqueness of the pair (~y,E) satisfying the conditions of this proposition follows

directly from Proposition 1. The proof is completed.

4. The Operator Setting of Optimization Problem (6) and the Main Result

In the previous section, it is shown that, for any choice of control ~u from the set Uad,
there exists a unique triplet (~u,~y,E) belonging to the set Ξ(Uad). This allows us to in-
terpret control model (1)–(5) as a continuous evolution system in the Cartesian product
H × L2(O,M2×2

sym) and correctly define the control operators for both the velocity and
stress fields.

Definition 2. The velocity control operator Φvel is a map from [0, T]×Uad into H that is defined
by the following formula:

Φvel(t,~u),~y(t),

where the vector-valued function ~y is the second component of the admissible triplet (~u,~y,E).

Definition 3. The stress control operator Φstress is a map from [0, T]×Uad into L2(O,M2×2
sym)

that is defined by the following formula:

Φstress(t,~u),E(t),

where the matrix-valued function E is the third component of the admissible triplet (~u,~y,E).

From Definitions 2 and 3 it follows that

Γ(Φvel(τ, ·)×Φstress(τ, ·)) = Ξ(Uad)|t=τ , ∀τ ∈ [0, T].

The next statement is an important consequence of Proposition 1.

Proposition 3. Under conditions (i) and (iii) from Section 3, we have

‖Φvel(t,~u1)−Φvel(t,~u2)‖L2 ≤
√

2Π(‖~u1 − ~u2‖L2)

Re
, (40)

‖Φstress(t,~u1)−Φstress(t,~u2)‖L2 ≤ 2

√
aΠ(‖~u1 − ~u2‖L2)

Wi
,

for any ~u1,~u2 ∈ Uad and t ∈ [0, T].
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Let us consider the cost functional JT,~b : Uad → R defined as follows:

JT,~b(~u), ‖Φvel(T,~u)−~b‖L2 .

Definition 4. The vector function ~u? from the admissible controls set Uad is called an optimal
control for integro-differential system (1)–(5) (or in other words, ~u? is a solution of optimization
problem (6)) if

~u? = arg min
~u∈Uad

JT,~b(~u). (41)

By Uopt we denote the set of all optimal controls for (1)–(5).
Now we are ready to formulate and prove the main result of this work.

Theorem 1. Suppose conditions (i)–(iii) from Section 3 hold; then there exists at least one optimal
control for integro-differential system (1)–(5)—that is, the set Uopt is not empty.

Proof. First, let us show that the admissible controls set Uad is compact in the space H.
From condition (iii) and Lemma 2, it follows that Uad is relatively compact in H.
We claim that Uad is closed in H. Indeed, consider a sequence {~un}n∈N ⊂ Uad

such that
~un converges to ~u0 strongly in H as n→ +∞. (42)

Since the sequence {~un}n∈N is bounded in V, without loss of generality, we can assume
that there exists a vector function ~u# ∈ V such that

~un converges to ~u# weakly in V as n→ +∞. (43)

In view of (iii), the set Uad is convex and closed in V, and hence this set is weakly closed
in V. Therefore, from (43) it follows that the inclusion ~u# ∈ Uad holds. On the other hand,
using Lemma 2 and (43), we deduce that

~un converges to ~u# strongly in H as n→ +∞. (44)

Then, comparing (42) and (44), we obtain that ~u0 = ~u#, and hence ~u0 ∈ Uad.
From inequality (40) it follows that the operator Φvel(T, ·) is a continuous map from

Uad ⊂ H into H. Consequently, the set of final states Φvel(T, Uad) is compact in H. From the
Weierstrass extreme value theorem, it follows that there exists an element~q? ∈ Φvel(T, Uad)
such that

‖~q? −~b‖L2 = inf
{
‖~q−~b‖L2 : ~q ∈ Φvel(T, Uad)

}
. (45)

Consider a vector function ~u? ∈ Uad that satisfies the equality Φvel(T,~u?) = ~q? and
rewrite (45) as follows:

‖Φvel(T,~u?)−~b‖L2 = inf
{
‖~q−~b‖L2 : ~q ∈ Φvel(T, Uad)

}
. (46)

It is clear that equality (46) is equivalent to (41). Therefore, we deduce that ~u? is an optimal
control in model (1)–(5), which completes the proof.

Remark 2. The solvability of an optimization problem for the Navier–Stokes equations (in our
notation, the particular case a = 0) with an initial control was established in [35] under the
assumption that Uad = V.
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Abbreviations
For the reader’s convenience, we collect here the main notation used in this paper.

Symbols Meaning
x1, x2 space variables
t time
T final moment of time
O flow region
QT cylinder O × (0, T)
~y velocity field
~b target function
~u control function
E “elastic part” of the stress tensor
D(~y) strain velocity tensor
π pressure function
Re Reynolds number
Wi Weissenberg number
a coupling parameter
Uad admissible controls set
Ξ(Uad) set of all admissible triplets
JT,~b cost functional
Ck positive constants that depend only on data of model (1)–(5)
Γ(A) graph of A
grad gradient with respect to the space variables x1, x2
div divergence with respect to the space variables x1, x2
∆ Laplacian with respect to the space variables x1, x2
↪→ continuous dense embedding
Mn×n

sym space of symmetric matrices of dimension n× n
Lp Lebesgue space
Wk

q Sobolev space
V {~ϕ ∈ C∞(O,R2) : div ~ϕ = 0 and supp ~ϕ ⊂ O}
H closure of V in L2(O,R2)

V closure of V in W1
2 (O,R2)

C([0, T]; X) space of continuous functions from [0, T] into X
Lq(0, T; X) space of Lq-integrable functions from [0, T] into X
~z, F test functions
~yn,En Galerkin solutions
A , B, C , K , N auxiliary operators
Φvel velocity control operator
Φstress stress control operator
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